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ON THE TWO-DIMENSIONAL SAIGO-MAEDA
FRACTIONAL CALCULUS ASSOCIATED
WITH TWO-DIMENSIONAL ALEPH TRANSFORM

RAM K. SAXENA - JETA RAM - DINESH KUMAR

This paper deals with the study of two-dimensional Saigo-Maeda op-
erators of Weyl type associated with Aleph function defined in this paper.
Two theorems on these defined operators are established. Some interest-
ing results associated with the H-functions and generalized Mittag-Leffler
functions are deduced from the derived results. One dimensional analog
of the derived results is also obtained.

1. Introduction and Preliminaries

The Aleph-function is defined in terms of the Mellin-Barnes type integral in the
following manner [16, 17]:
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An account of the convergence conditions for the defining integral can be found
in the paper by Saxena and Pogéany [16] (also see [19]).

The object of this paper is to derive certain properties of two-dimensional Saigo-
Maeda operators of Weyl type. The results obtained are of general nature and
includes as special cases, the results given earlier by Arora et al. [1], Saxena et
al. [18, 21], Nishimoto and Saxena [6], Raina and Kiryakova [9] and Saigo et
al. [12].

Remark 1.1. The fractional integration of the Aleph function is obtained by
Saxena and Pogany [17], Ram and Kumar [8].

2. Generalized Fractional Integrals

We present below the definitions of the following generalized fractional in-
tegration operators of arbitrary order involving Appell function F3 as a ker-
nel,introduced by Saigo and Maeda [[11], p. 393, Eqn. (4.12)].

Let y> 0 and a,a,B,B,7 € C, then following Saigo and Maeda [11], we
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define the Saigo-Maeda operators [ : in the following
manner:
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Here the function F3(ct, o, B,B';7;2:€) is the familiar Appell hypergeometric
function of two variables defined by
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These operators reduce to the Saigo fractional integral operators [10] due to the
following relations:

PP T =04 Pry  (veo), ©)

and ,
EOPP Y ) =112 7P ) (yeo). (7

Lemma 2.1 ([11] p. 394, eqns. (4.18) and (4.19)). Let o, ot ,B,B ,y € C, then
there holds the following power function formulae:

1. IfR(y) > 0, R(p) > max [o,st(a+ o +B—9),R(a —B)]. then
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2. If () > 0, K(p) < 1+ min [R(~p), Re+a' 7). R(a+p ~ ),
then
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Remark 2.2. A detailed account of fractional claculus operators can be found
in the monograph by Samko et al. [13] and in a survey paper by Srivastava and
Saxena [23] and Haubold-Mathai-Saxena [2].

3. The two-Dimensional Saigo-Maeda Operator of Weyl Type

Following Miller [[5],p. 82], we denote by u; the class of function f(x) on R
which are infinitely differentiable with partial derivatives of any order behaving

as O (|x|*‘§> when x tends to oo for all . Similarly by u;, we denote the class
of functions f(x,y) on Ry x R, which are infinitely differentiable with partial
derivatives of any order behaving as O (|x|_‘5‘ | y|_§2> when x and y both tends
to oo for all &;(i = 1,2).

The two-dimensional Saigo-Maeda operator of Weyl type of orders R(y) >
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0, R(&) > 0is defined in the class uy of functions f(x,y) by
[[21], p.815, Eqn.(2.19)]
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In view of the relations (6) and (7), the above equation reduces to the two-
dimensional Saigo operator of Weyl type studied by Saigo et al. [[12], p.64,
Eqgn. (2.11)].

4. Two-Dimensional Laplace and Aleph Transforms

The Laplace transform [1] 7(p,q) of a function f(x,y) € uy is defined as

ip.) = Lifey)ipal = [ e flry)dsdy, (R(p) >0, R(g) >0).

(1D
Analogously, the Laplace transform of f[av/x> — b? H (x—=D),c\/y*—d? H (y—
d)] is defined by the Laplace transform of F(x,y), as

F(x,y)=f [a xz—bzfl(x—b),c yz—dzlfl(y—d)} , x>b>0;y>d>0,
(12)

where H(.) denotes Heaviside’s unit step function.

Definition 4.1. By two-dimensional Aleph function transform 7(p, q) of a func-

tion F(x,y), we mean the following repeated integral involving two different
Aleph functions.
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Here, we assume that b > 0, d > 0, u > 0, v > 0; ii(p,q) exists and belongs to
uy. Further let

T T R
|arg(p")] < 5 91 are(q")| < S v, (i 20, w2 0,i=1,r); (14)
where
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Ny M, , P Qi,
vi=YC+YDi—tn | )Y Ci+ Y Dj (16)
j=1 i=1 j=Nr+1 j=Ma+1
and
RE)+1<0O,R(E)+1<0 (i=1,r), a7
with
M, N Qi P; 1
G=Ybi—Ya+ul ¥ bi— Y ai|+5(R-0), (8
j=1 j=1 j=Mi+1 j=N1+1
My N , Qil Pi/ 1 /
Ci:Zdj—ZCj—l-Ti Z dji — Z Cji +§(PZ_Q1) (19)
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Due to the generality of the X-function, the integral transform (13) provides a
generalization of a number of integral transforms such as, the two-dimensional
Laplace transform, Stieltjes transform, Hankel transform, Whittaker transform,
H-transform and /-transform etc.

5. Relationship Between Two-Dimensional Aleph Function Transforms in
Terms of Two-Dimensional Saigo-Maeda Operator of Weyl Type

For proving the main results, we define the two-dimensional Aleph function
transform 7i(p,q) of F(x,y) as
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X F(x,y)dx dy, (20)

where it is assumed that 71 (p, ¢) exists and belongs to uz; u > 0, v > 0 and other
conditions on the parameters in which additional parameters o, o, B, B’, Y. M,
n/, 5,8, ¢ included correspond to those in (10).

Theorem 5.1. Let h(p,q) is given by (13), then for R(y) >0, R({) >0, b >
0,d >0, ky >0, kp > 0, there holds the formula

) ,7 9, ,7 b 176‘,6,7 JE—
138 BBy 109 L h(p, )] = ki (p,q), 1)
provided that Iy (p,q) exists and belongs to u,.

Proof. Let R(y) > 0, R(L) > 0, then by virtue of the results (10) and (13), it
follows that
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On interchanging the order of integration, which is permissible under the given
conditions, evaluating the u— and v— integrals, and applying Lemma 1, we
obtain the L.H.S. of (22).

<[ _1 1M 43N,
:/b /d (px)p (qy)ﬁ NP:'I+3.,QH1r3ﬂ'f;rX
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Mi+3,N1:M>43,N: ‘n o
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As far as the two-dimensional Weyl type Saigo-Maeda operators Ig b

xlgiﬂ 08,6 preserve the class u, it follows that 7 (p,q) also belongs to us.
This completes the proof of Theorem 5.1. 0

6. Special Cases of Theorem 5.1

If we put & =1’ =0 in Theorem 5.1 and use the relation

Il‘j‘;ﬁ 0.7 flx)= Ig;f T f(x) (right-sided Saigo fractional integral operator),
(23)

then we arrive at the result concerning the two-dimensional Saigo fractional
integral of Weyl type as given following:

Corollary 6.1. Let h(p,q) be given by (13) then for R(a) > 0,R(n) > 0,b >
0,d > 0,u > 0,v > 0, there hold the formula

I8PV IS h(p,q)] = ha(p.q), (24)

provided that hy(p,q) exists and belongs to uy, where hy is represented by the
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repeated integral, given below:

I A _ 1y Mi4+2,N;
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Next, if we put 7, = 7, = 1,i = 1,7 and set r = 1 in Theorem 5.1, then we
see that the two-dimensional X-transforms reduce to the corresponding two-
dimensional H-transform H(p,q), defined as [21].

M ,N1;:M3,N-
(p q) P11Q11P2 2Q22 [F<

= -1 —1 ;M N
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]

] F(x,y) dxdy, (26)

M, N
< Hpp® [(qy)v

where u > 0,v>0,b>0,d >0; H (p,q) exists and belong to uy,
The sufficient conditions for the absolute convergence of the equation (26) are
given below:

u 71' Vv ﬂ
|arg(p )|<§(p,]arg(q )|<EW7 ((P>O,l[/>0), (27)
where 0
1
¢_ZA—ZA+ZB—Z i\ (28)
.] =N1+1 —M]-‘rl
(&)
v = ZC—ZC+ZD—Z Jr (29)
j=N>+1 Jj=M>r+1
and
0 Py O P
Y Bi—)Y A;j>0, Y Dj—) C;>0. (30)
j=1 j=1 j=1 j=1

Then we obtain the following result given by Saxena et al. [21]:

Corollary 6.2. Let H (p,q) be given by (26), then for Re (a) > 0, Re(n) > 0,
b>0,d>0,u>0,v>0, there holds the formula which is obtained by Saxena
etal. [21].

I3 PP LTSS (A (p,g)) = Hi(p.q), (31)
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provided that H; (p,q) exists and belongs to up, where H, is represented by the
repeated integral:

R oo [ 1 —1 yyM|+3.N
i (p,q):/b /d (px)" " (ay)°  Hp\ 53
u (aﬁAj)l‘Pl,(1,p7u)7(1+a7ﬁ7p7u)7(1+(x+a'+B/*Y*p7u) M2+3:N2
x| (px) (1—B*p,u),(1+a+ﬁ/777p,u)7(1+a+a/fyfpvu)v(’?j’3f)1.91 For.0a3
(€:€), py (1=0 W), (140 =8=0v).(1+n+1'+8'~{ ~0)
(1—E—G,V)»(l+77+5'—C—0~,V)7(1+77+77,_C_07V)7(dj7D./')l,Qz:| Fwy) dudy.
(32)

X [(qy)v

We now deduce the results for the two-dimensional Mittag-Leffler function
transform from above Corollary 1.2.

Definition 6.3. The generalized Mittag-Leffler function introduced and studied
by Prabhakar [7], is defined by

ES _y O §cC,R 0,R 0). (33
310 = X gyt (B19 € CRe(B)>0.Re(1)>0). G3)
Its relation with the H-function is obtained by Saxena et al. [15] in the following

form:
5 1 1-8,
1),

_ LU |(-80)
Epy(@) = r(a)Hle[ <o

(34)

(1 Yﬁ)}

Definition 6.4. By two-dimensional Mittag-Leffler function E (p,q) of a func-
tion F (x,y), we mean the following repeated integral involving two different
Mittag-Leffler functions.
E(p,q) = Eg 'y, IF (63); 0,05 pod]
p:q Bi.yi: B p p,.q
L I g
= / / PP @) B [(p0)EgR, [(ay)] F (x,y) dxdy, (35)

where BlaﬁZa’}/la’}/Za‘gl?éZ € C7 Re (ﬁl) > 07 Re (ﬁZ) > 07 Re('}/l) > 07 Re('}/z) >
0. Here, it is assumed that b > 0, d > 0; E (p,q) exists and belongs to u5.

If we use the identity (34) and make suitable changes in the parameters,
then two-dimensional H-transform reduces to two-dimensional Mittag-Leffler
function transform and we arrive at the following:

Corollary 6.5. Let E (p,q) be given by (35), then for Re (o) > 0,Re(n) > 0,
b > 0,d > 0, then there holds the formula which is introduced as following:

Igg,ﬁ,ﬁ/,y Igg/,é,ahé [E (p,q)] = £ (p.q), (36)
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provided that E, (p,q) exists and belongs to u,, where E| is represented by the
repeated integral as following:

A (p,q) = F;/m/m (px)P " (qy)°!

a1 [ (1-81.1),(1-p.ae),(1-+0—B—p.ae),(1-+a+a/+B'~y—p.u)

XH4,5[ (P2)"|(0.1). 1~ pu)<1+a+ﬁ'fyfp,u),<1+a+a'fy—p,u>,<1—y.,;s.)}
4,1 v |[(1=8,,1), (1 ow),(1+n—8—0ow),(14+n+n'+8'—{—0o )

< Hys [—(qy) (0.1), (1~ )(1+n+5’f§fG,V)7(1+n+n/féfo,v)7(17727l32)}

x F (x,y) dxdy, (37)

then from (35) - (37), we obtain

Epa)= [ [ 0P @) B, (0" ES, (@) F () dxdy
(38)

7. One- Dimensional Analogue of Theorem 5.1

In this section we establish a theorem for the one-dimensional Aleph transform
Ti(p) of F (x) with similar proof as followed for Theorem 5.1.
The Laplace transform 7 (p) of a function f (x) € u; is defined by

Mp) =L @)ipl = [ e f () dv, (Re(p) >0). (39)

Analogously, the Laplace transform of f [a\/xz "0 H (x—">)| is defined by
the Laplace transform of F (x), where

F(x):f[a\/xz—bzgl(x—b)], x>b>0, (40)

*
and H (.) denotes Heaviside’s unit step function.

Theorem 7.1. Let 7i(p) be the one-dimensional Aleph-function transform of
F (x)defined by

h(p) = P,,Q,,r, [F (x); p; p]
:/ 0Pl R PQ,r, |:(px>k

(af’A/')l‘,N [T )]N+1P

(bj’Bj)l,M""’ [T](b/ Bl)]M+l Qi
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where Ti(p) exists and belongs to uy, where k > 0; together with the following
conditions:

arg (1) < 01 4= 0(i=T7), where

N M P Qi
¢,:ZA,-+ZB‘,—T,-< Y A+ ) Bji>;
j=1 j=1

J=N+1 J=M+1
and R{&}+1<0(i=1,r), (42)
M N 0 P 1
whereéi:ij—Zaj+Ti< Y bi— ) aﬁ>+2(Pi—Qi); (43)
== J=M+1 J=N+1

also F (x) = f {a\/xz—bzlfl(x—b)] ,x>b>0. Then for Re(at) >0, b >
0, k > 0, there holds the formula
L2 PP n(p)) = mi(p) (44)

provided that h (p) exists and belongs to u;, where

” 1\ M43N
hin (p) :A (px)p NH+3,Qi+3,Ti;r

« ( )k (aj,Aj)lvN,(l7p,k),(1+0{7ﬁ7p’k),(1+a+(xl+ﬁl*’)/*p,k),..‘,[‘L’j(aj,Aj):IN+1YP[_
px (1=B=p k), (1 0B =7 ), (1+ @+ —1=p ), (51,81 oo 555181 ],
X F (x) dx, (45)
and

1E PP £ (p)

p700
pa—y/oo -1, —a < / / P u

= u—p u *F o, BBy 1—=1—— | f(u)du
r Sy “P 1)

= p* L PP f (). (46)

8. Special Cases of Theorem 7.1

If we set ; = 1,i = 1,r and set r = 1 in Theorem 7.1, then we see that the
one-dimensional X-transform reduces to the corresponding one-dimensional H-
transform H (p), defined by [21].

H(p) = Hpy [F(x);p3 p)
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where k > 0,b > 0; H (p) exists and belongs to u;. Then under the conditions
stated in Corollary 1.2, we obtain the following:

Corollary 8.1. Let H (p) be given by (47), then for Re (o) > 0, b > 0, k is being
positive integer, there holds the formula [21].

199PPY 18 ()] = Ai(p), (48)

provided that Hy (p) exists and belongs to u1, where Hy (p) is represented by

A ” 1, M+3.N
H, (P):/b (px)P Hp 5013

i | (@4)), p(1=p k). (1+a—B—p k), (1+a+a'+B'—y—p k)
x| (px)

(1—Bp).(1+aB—y—pd).(1+ota—y—pi.(by5), | T ) 4% (49)

Lo

Definition 8.2. By one-dimensional Mittag-Leffler function transform E (p) of
a function F (x) we mean the following integral involving Mittag-Leffler func-
tion.

E(p) = E], (F@ipipl= [ (pP ER, (0] F)dx.  (50)

where ﬁl,’)/l,51 € C, Re (ﬁl) >0, Re (’)/1) > 0.
Here, we assume that b > 0; E (p) exists and belongs to u;.

Corollary 8.3. If we use the identity (34) and make suitable changes in the pa-
rameters, then one-dimensional H-transform reduces to Mittag-Leffler function
transform and we obtain

B ()= gy [ (o

k| (1=81,1),(1—p,k),(1+-a—B—p k),(1+a+0'+B'—y—p k)
X [_ (px) ’(0,1),1(17/37p.,k),(1+(X+[3'777p,k),(1+O¢+Oc'f)/fp,k),(lfyl,/31)] F (x) dx.
(5D

Let £ (p) be given by (50), then for Re(a) > 0, b > 0, there holds the
formula

IyS PPV IE(p)] = Ei(p), (52)

provided that £y (p) exists and belongs to u;.
Thus by virtue of (34) the one-dimensional H-transform reduces to one-
dimensional Mittag-Leffler function transform and it yields

Eip) = [ () B, (o) F (x) d (53)
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Next, if we put o =0in 7.1 and use the relation

Tz;zﬁ O=rpla flx) = Tgﬁ’y (x) (right-sided Saigo fract. integral operator),
(54
then we obtain the following Corollary concerning one-dimensional Saigo frac-

tional integral of Weyl type:
Corollary 8.4. Let li(p) be the one-dimensional Aleph function transform of

F (x) as given in (41), I(p) exists and belongs to u;. Then for Re(a) > 0,
b >0, k>0, there holds the formula

%57 h(p)] = ma(p), (55)

provided that hy (p) exists and belongs to uy, where hy is represented by

« 1 o M12N
hz(P):/b (px)P NB:Z,Q;—i—Z,T;;r

k (aijj)I‘Nv(l7p:k)7(1+a+ﬁ+yfp’k)v'"7[Tj(aﬁAj)}NJr]p.
» L) F
X [(1”“) (7P (14B=p k) (b1 8, oo [51 (818 (x)dx,  (56)
and
7a=ﬁ*,’y
1, f(p

)
P - . p
:F(a)/p w P (u—p)* R <a+ﬁ,—y,a,1_;> f(u) du

= pPIsBYf (p). (57)

9. Result and Discussions

In this paper we have obtained the two-dimensional X-transforms involving
Weyl type two-dimensional Saigo-Maeda operators. The two-dimensional H-
transform and two-dimensional Mittag-Leffler function transform are special
cases of our main findings.



280

(1]

(2]

(3]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

RAM K. SAXENA - JETA RAM - DINESH KUMAR
REFERENCES

A.K. Arora - R.K. Raina - C.L. Koul, On the two-dimensional Weyl fractional
calculus associated with the Laplace transforms, C. R. Acad. Bulg. Sci. 38 (1985),
179-182.

H.J. Haubold - A. M. Mathai - R. K. Saxena, Mittag-Leffler functions and their
applications, Journal of Applied Mathematics (2011), 1-51.

A.M. Mathai - H.J. Haubold, Special Functions for Applied Scientists, springer,
New York (2007).

A.M. Mathai - R. K. Saxena - H.J. Haubold, The H-function: Theorey and Appli-
cations, Springer, New York (2010).

K.S. Miller, The Weyl fractional calculus, Fractional Calculus and its Applica-
tions, Lecture Notes in Math. Vol. 457, Springer, Berlin-Heidelberg- New York
(1975), 80-89.

K. Nishimoto - R. K. Saxena, On the two-dimensional Erdélyi-Kober operators of
Weyl-type, J. Coll. Engg. Nihon Univ., B- 31 (1990), 23-27.

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler
function in the kernel, Yokohama, Math. J. 19 (1971), 7-15.

J. Ram - D. Kumar, Generalized fractional integration of the X-function, J. Ra-
jasthan Acad. Phy. Sci. 10 (4) (2011), 373-382.

R.K. Raina - V. S. Kiryakova, On the Weyl fractional operator of two dimensions,
C. R. Acad. Bulg. Sci. 36 (1983), 1273-1276.

M. Saigo, A remark on integral operators involving the Gauss hypergeometric
functions, Math. Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.

M. Saigo - N. Maeda, More generalization of fractional calculus, Transform
Methods and Special Functions, Varna, Bulgaria 1996, 386—-400.

M. Saigo - R. K. Saxena - J. Ram, On the two-dimensional generalized Weyl frac-
tional calculus associated with two-dimensional H-transform, J. Trac. Calc. 8
(1995), 63-73.

S.G. Samko - A. A. Kilbas - O. 1. Marichev, Fractional Integrals and Derivatives,
Theory and Applications, Gordon and Breach, Yverdon, 1993.

R.K. Saxena - V. S. Kiryakova, On the two-dimensional H-transforms in terms of
Erdélyi-Kober operators, Math. Balkanica 6 (1992), 133-140.

R. K. Saxena - A. M. Mathai - H.J. Haubold, Unified fractional Kinetic equation
and a diffusion equation, Astrophysics and Space Sciences 290 (2004), 299-310.

R.K. Saxena - T. K. Pogany, Mathieu-type Series for the X-function occurring in
Fokker-Planck Equation, EJPAM 3 (6) (2010), 980-988.

R.K. Saxena - T. K. Pogany, On the fractional integration formula for Aleph func-
tions, Appl. Math. Comput. 218 (2011), 985-990.

R.K. Saxena - J. Ram - S. Chandak, On two-dimensional generalized Saigo frac-
tional calculus associated with two-dimensional generalized H-transforms, J. In-
dian Acad. Math. 27 (1) (2005), 167-180.



ON THE TWO-DIMENSIONAL SAIGO-MAEDA FRACTIONAL CALCULUS ... 281

[19]

[20]

(21]

(22]

(23]

R.K. Saxena - J. Ram - D. Kumar, Generalized fractional differentiation for Saigo
operators involving Aleph-Function, J. Indian Acad. Math. 34 (1) (2012), 109-
115.

R.K. Saxena - J. Ram - D. Kumar, Generalized fractional differentiation of the
Aleph-Function associated with the Appell function F3, Acta Ciencia Indica 38
(4) (2012), 781-792.

R.K. Saxena - J. Ram - D.L. Suthar, On two-dimensional Saigo-Maeda frac-

tional calculus involving two-dimensional H-transforms, Acta Ciencia Indica 30
(4) (2004), 813-822.

R. K. Saxena - M. Saigo, Generalized fractional calculus of the H-function asso-
ciated with the Appell function F3, J. Fract. Calc. 19 (2001), 89-104.

H. M. Srivastava - R. K. Saxena, Operators of fractional integration and their ap-
plications, Appl. Math. Comput. 118 (2001), 1-52.

RAM K. SAXENA

Department of Mathematics and Statistics,

Jai Narain Vyas University, Jodhpur-342005, India.
e-mail: ram.saxena@yahoo.com

JETA RAM

Department of Mathematics and Statistics,

Jai Narain Vyas University, Jodhpur-342005, India.
e-mail: bishnoi_jr@yahoo.com

DINESH KUMAR

Department of Mathematics and Statistics,

Jai Narain Vyas University, Jodhpur-342005, India.
e-mail: dinesh_dino03@yahoo.com



