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SOBOLEYV TYPE SPACES ASSOCIATED
WITH THE ¢-RUBIN’S OPERATOR

M. MOKHTAR CHAFFAR - NEJI BETTAIBI - AHMED FITOUHI

In this paper, we introduce and study some g-Sobolev type spaces
by using the harmonic analysis associated with the g-Rubin operator. In
particular, embedding theorems for these spaces are established. Next, we
introduce the g-Rubin potential spaces and study some of its properties.

1. Introduction

In classical analysis, Sobolev spaces are vector spaces whose elements are func-
tions defined on domains in n-dimensional Euclidean space R" and whose par-
tial derivatives satisfy certain integrability conditions. Their uses and the study
of their properties were facilitated by the theory of distributions and Fourier
analysis. For instance, the Sobolev space W*(R), s € R, is defined by the use
of the classical Fourier transform as the set of all tempered distributions u with
classical Fourier transform F(u) satisfying

(L+[E1)3F(u) € LX(R).

Generalization of the Sobolev spaces have been studied by replacing the classi-
cal Fourier transform by a generalized one. As far as we know, in the literature,
except [7], there is no paper concerning generalizations of Sobolev spaces in the
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context of g-differential-difference operators. This paper is an attempt to fill this
gap by studying the generalized Sobolev spaces associated with the g-Rubin’s
operator. The main tools in this study are some elements of the g-Rubin-Fourier
harmonic analysis. Next, we introduce and study the g-Rubin potential spaces.

The present paper is organized as follows: In Section 2, we present some
preliminary results and notations that will be useful in the sequel. In Section
3, we establish some results associated with g-Rubin Fourier analysis and we
state some useful result about g-tempered distributions. Section 4 is devoted to
introduce and study the Sobolev type spaces associated with g-Rubin operator
by using some elements of harmonic analysis associated with g-Rubin operator.
Some embedding theorem are established. Finally, in Section 5, we introduce
the g-Rubin potential spaces and study some of their properties.

2. Notations and preliminaries

Throughout this paper, we assume 0 < g < 1 and we refer to the general refer-
ences [3] and [5] for the definitions and properties of the basic hypergeometric
functions. In what follows, we will fix some notations and recall some prelimi-
nary results.

2.1. Basic symbols.

We put R, = {£4" : n€ Z}, I@q =R,U{0} and
Ry+=1{q" : neZ}.
For a € C, the g-shifted factorials are defined by

n—1 o

(a;q)o=1; (a;q),,:I_I(l—aqk)7 n=1,2,...; (a;q)wzn(l—aqk).
k=0 k=0
We also denote
1—¢" (4:9)n
xl,=——, x€C and [n],!= , neN.
[ ]51 l—q [ ]’1 (l—q)"

2.2. Operators and elementary special functions.

A g-analogue of the classical exponential function is given by (see [8, 9])

e(z:q°) = cos(—iziq”) + isin(—iz:q"), (1)
where
2 - (n+1) 2 2 - (n+1) Xt
cos(x;q°) = —1)'g"" , sin(x;q”) = —1)'q"" )



SOBOLEV TYPE SPACES ASSOCIATED WITH THE ¢-RUBIN’S OPERATOR 39

These three functions are entire on C and when ¢ tends to 1, they tend to the
corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all x € R, (see [8])

eos(siq?)| € . [sin(aiq?) <
and
| elivig?)| < —. )
" (:9)=
The qz—analogue differential operators is defined as ( see [8, 9])
flg ')+ (—q"2) = faz)+ f(—q2) =2 (—2) .
0
2(f)(2) = 21 —q): Soir
lim d, (f)(x) (in Ry) if z=0.

x—0

A repeated application of the g*-analogue differential operator n times is de-
noted by:

Nf=F T F=a,0f).

The following lemma lists some useful computational properties of d, and
reflects its sensitivity to parity of its argument.

Lemma 2.1.
1) 9;sin(x;¢%) = cos(x;¢?), 9;c0s(x;¢%) = —sin(x;¢?) and

dge(x:q%) = e(x;q).
2) For all function f on Ry, 9,f(z) = fE(q(l Z_) q)f ) + Jo <8 :Z;iqz)

3) For two functions f and g on Ry, we have

0,(f8)(2) = q " (9,15)(q ' 2)80(q '2) +a " £o(2) (9y80) (¢ '2)
( 9gf0)(2)8e(2) +4£0(q2)(9g8¢)(qz) + fe(2)(d480)(2) “)
+q(94£2)(q2)80(q2) + (04.fe) (2)8e(q ' 2) + fo(2)(9g8e) (2)-

Here, for a function f defined on R, f. and f, are respectively, its even and
odd parts.

The g-Jackson integrals are defined by (see [4])

=

/Oaf( Vdgx=(1-g anfaq /f dp=(1-0) ¥ 4" (40" ~af(ad")
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and

| i@dp=0-9) ¥ fa)q+(1-0) ¥ fl-q

n—-—oo n—-—oo

provided the sums converge absolutely.

The following simple result, giving g-analogues of the integration by parts
theorem, can be verified by direct calculation.

Lemma 2.2.
1) For a >0, lf/ (04f)(x)g(x)dyx exists, then

[ @@ =2 [fla gola) + folalselg™@)] = [ £0)(@4) (e
&)
2)If/ 9, f)(x)g(x)dyx exists,

| @unwsdp=- [ s ©)

3. Elements of g-harmonic analysis related to the operator 9,

In what follows, we need the following sets and spaces:

e CI(R,) the space of functions f p times g-differentiable on @q such that for
all 0 <n < p, 9} f is continuous on I@q.

e D,(R,) the space of functions defined on R, with compact supports.

o S,(R,) the space of functions f defined on R, satisfying, for all m,n non-
negative integers,

Pong(f) = sup [ X" f(x) |[<eo
x€R,

and

)lcig(l) dyf(x) (in Ry) exists.

e §'4(R,) the space of tempered distributions on R,. It is the topological dual
of §;(R).

o ZE(Ry) = {f Hprq_</i|f(x)’1’dqx>’l’<°°}.

o Li(Rg) = {f |/ lleo.g = sup [ £ )<oo}.

xEq



SOBOLEV TYPE SPACES ASSOCIATED WITH THE ¢-RUBIN’S OPERATOR 41

4. Elements of harmonic analysis associated with the g-Rubin operator

In [9], R. L. Rubin defined the g-Rubin-Fourier transform as

K/ f(t)e(—itx;q )
1
1+gq)2 5q)eo s .
where K = ( +q22 and I';(x) = (qx 9) (1—¢g)' is the g-Gamma function.
2T, (3) (4%:9)e
Note that letting g 1 1 subject to the condition
Log(1—
M €27, (7)
Log(q)

gives, at least formally, the classical Fourier transform (see [6]). In the remain-
der of this paper, we assume that the condition (7) holds.

It was shown in [9] that the g-Rubin-Fourier transform F, verifies the fol-
lowing properties:

D If f(u), uf(u) € Ly(R,), then
9 (F4(f)) (x) = Fo(—iuf(u))(x).
2)If f, dyf € L)(R,). then
Fq(9gf) (x) = ixFq(f) (x)- ®)
In the following theorem, we give some useful result.

Theorem 4.1. For f € L}I(Rq), we have

i) F4(f) is continuous on Hiq.
ii) F4(f) is bounded on R, and we have

(1+49)
1Fg(Plleog < =7 I1f g )
T (3) @)
iii) We have the following reciprocity theorem
vVt € R, K/ e(itx;q )d (10)

Theorem 4.2. The g-Rubin Fourier transform F, is an isomorphism from
S4(Ry) onto itself: Moreover, for all f € S;(Ry), we have

Fo (@) = Fo(f)(—x) = Fo(F)(x), xeR,. (11)
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Proof. We begin by proving that 7, leaves S,(R,) invariant.

From the definition of S;(R,) and the properties of the operator d, (Lemma
2.1), one can easily see that S,(IR,) is also the set of all functions defined on
Ry, such that for all k,/ € N, we have

sup ‘8;‘ (xlf(x)ﬂ < oo and 11m8kf( ) exists.

x€R, x—0

Now, let f € S;(R,) and k,I € N. On the one hand, from the properties of the
operator d,, we have for all n € N, /' f € S;(R,) C Ly(R,).
On the other hand, from the relation (8), we have

MF(fA) = (i) F, (éf)()
= (—i K/ e(—idx;q*)d,

So, using the relation (3), we obtain for all A € R,
A = [ 5% [ Ardfe(-iani s
2c
/ 9410l < o

(4:9)
This together with the Lebesgue theorem prove that F,(f) belongs to S,(RR,).
By Theorem 4.1, we deduce that F is an isomorphism of S,(R,) onto itself
and for f € S;(R,), we have (F,) ' (f)(x) = F4(f)(—x), x€R,. O

IN

In [8], we find the following Plancherel theorem.

Theorem 4.3. F, is an isomorphism from LLZ](]Rq) onto itself. For f € Lf](Rq),

1Fg(Fl2q = [1£ll24 (12)

and
Vt e Ry, K/ e(itx;q )d (13)

The g-translation operator 7, , x € Iﬁq is defined (see [8]) on Lé(Rq) by
Tax(f K/ e(itx;q ) (ity;qz)dqt, yeR,, (14)

70(f) () = f(¥)- (15)

It was shown in [8] that the g-translation operator can be also defined on chz (Ry)
and we have the following result.
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Proposition 4.4. Forall f € L;(Rq), we have T, f € Lé(Rq) and

2 ~
1%gxfll2g = 7<= < Ifll2g: xE€Ry.
q,X. q ( ;q)w q q

Furthermore, it verifies the following properties.

Proposition 4.5. For f, g € L111 (Ry), we have

i) Tq(f) (V) = T4y(f)(x), x, y ERg. _
i) 7o T () (=)8(0)dgy = |70 f () Tg(8) (—¥)dyy, x € Ry
iii)

Fo(tguf)(A) = e(ilx;q*) Fy(f)(A), x €Ry.

v) Oy Tyf = Tyudyfs x € Ry.

43

(16)

By using the g-translation operator, we define the generalized convolution

product fx, g of two functions f,g € S;(R,) as follows:

f*q8=K [ Tqcf ()8 (y)dgy
Proposition 4.6. For f,g € S,(R,) we have

Fo(f*q8) = F4(f)F4(8)-

We finish this section by stating some useful results about the g-tempered

space.

Definition 4.7. The g-Rubin transform of a g-distribution u in S (R,) is defined

by
(Fog(u), 0) = (u, Fy(@)) uec S'y(Ry), ¢ € S4(R,).

Proposition 4.8. The g-Rubin transform F, is a topological isomorphism from

§'4(Ry) onto itself.
Proof. The result is a consequence of Theorem 2.
For u € §';(R,), we define the distribution d,u, by
(g, W) = —(u,9g), W € S4(Ry).
These distributions satisfy the following properties

VpeNue S (Ry), fq(acf”) = (—iy)" Fy(u).

O

(17)
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5. g-Sobolev spaces

In this Section, we establish the main properties of the Sobolev spaces associ-
ated with the g-Rubin operator.

Definition 5.1. For s € R, we define the Sobolev space Wy (R,) as
WiR,) = {ue S (Ry): (14|63 Fy(w) € LZ(R,) }.

We provide Wy (R, ) with the scalar product

)= [+ IEPPF O F0IENd,E

and the norm

1
2

lullyvsge,) = ( | a+ |é|2>S|fq<u><é>\2dqé) (18)

Remark 5.2. Let u € W, (RR,). Then, using the relations (11) and (18), and the
change of variables {& = —¢, we obtain

[ A IEPIF ) EPdE = [+ Py 17 @ 0Py

Then, 7 € W3(R,) and 7wz, = 1wz,
Proposition 5.3. i) For all s € R, we have
S4(Ry) CTWy(Ry).
ii) We have
Wg(Rq) = LEJ(Rq)'
iti) For all s, sy in R, such that s\ > s,, the space W;l (Rq) is continuously
contained in W (R).

Proof. 1) and ii) are immediately from the definition of the generalized Sobolev
space.
iii) Let 51,52 € R such that s; > s, and u € W (Ry).
Then,
VEER,, (1+[EP)" < (1+]EP)"

and

= Ry 2 = N 2
[ la+igpR@@ 4 < [ 10+1EP Fw @) deé <o
So, u € W2 (R,) and ”I/tHW;z(Rq) < H”HW;;‘(R(,)'
Then, the space W;! (R,) is continuously contained in W2 (RR).
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Proposition 5.4. The space W;(Ry) provided with the norm ||.||ys(r,) is a Ba-
nach space.

Proof. Let (uy)en be a Cauchy sequence in Wy(R,). Then, from the definition
of the norm ||. ”W; () it is €asy to see that (F, (un ), is a Cauchy sequence in

L2 (Ry, (1+1]&[%)dy8).
But L*(Ry, (1 + |§|?)*d,&) is complete, then there exists a function u in
I2(Ry, (1 + |E)d,) such that

lim || F,(up) —uHLz Ry (14+|E[2)d &) = 0. (19)

n—+-o0

Thenu e S (’I(Rq) and from Proposition 4.8, we obtain
v=(F,) " (u) € S)(Ry).

So, Fy(v) = u € L*(Ry, (1+[&|*)°d,& ), which proves that v € W5(R,).
Furthermore, using the relation (19), we get:

Wm [[un —vllwye,) = Hm (|1 Fg(un) —ull 2y, (141¢p)4,8) = O-

n—+

Hence, W, (IR,) is complete. O

Lemma 5.5 (Convexity). Let sy, s € R, such that sy < s, and s = (1 —1)s; +1s3,
t €0, 1[. Then we have
Vue Wy (Ry), lullwsmw,) < llul IV;;] ) % leellype )

Proof. Let 51,57 € R, such that s; < s, and s = (1 —1)s; +ts2,7 €]0,1].
Letu € W2 (R,). Then,

e, = [ 10 +1ERF )] et
= [ |asigprrr e

Then, using the Holder’s inequality, we get

(14 [E12)2 Fy ) ()" dyé.

oo 1—t
Ry < | [ 10-+18P R0 )P
<| I+ @ ]

2(1—t
< Ml * Il e, -
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Proposition 5.6. Let s1,s,s0 be three real numbers, satisfying s; < s < s;.
Then, for all € > 0, there exists a nonnegative constant Ce such that for all
u € Wy(R,), we have

lullys g,y < Cellulln g, +€llllyze e, -

Proof. Let sy,s,50 € R, 51 < s and s €]sy,s2[. Then there exists ¢ €]0, 1[ such
that s = (1 —1)s; +1s2.

t

N\ 1=t
From the previous lemma and using (£ﬁ> €' =1, we getforu € W (Ry),

1—¢ t
leellvwy e,y < llellypor s leelly e

= (e lllwey) (ellnee,)
So from the fact,
Va,b>0, ab'™" <a+b,
we obtain
el ey < €T il )+ Elllpe e, -

s—51

This completes the proof by taking C, = g T =gvn, O

A characterization of W, (R,), for s = m, a positive integer, is given below.

Proposition 5.7. Let m € N. Then

WI(R,) = {u € 5,(Ry) : Fy(du) € LA(R,), 0 < j < m}

Proof. Letu € Wi'(R,). Then, using the formula (17), we obtain

Fo(9du) = (—id) Fy(u), 0< j<m (20)

and
Vo<j<m [ IFOuEPdE= [ 1~ Fw)E)PdE
< [ A+IEPAIFWE)PdE
< [ A+IEPEIF )P
< oo,

So,
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Hence,

WI(R,) C {u € S)(Ry) : Fy(dju) € I2(R,), 0 < j < m} .
Conversely, assume that
fq(atju) € Lé(Rq),O <j<m.

It is easy to see that there exists a positive constant C such that

m

141807 <C gl
Then using the formula (20), we obtain
[ 10 +1ER)E R ()P sci/_im—ié)ffq(u)(é)rqu&
_cZ/ (E)2d &€ < oo.

Hence
ue W;"(Rq).

Finally, we obtain
{ue SRy Fyoju) € LA(R,), 0< j<m} C WI(R,).
This leads to the result. O
Using the g-Plancherel theorem, we obtain the following result.
Corollary 5.8. For m € N, we have
Wi (Ry) = {f € Le(Ry) : 9if € Li(R, com.}

Proposition 5.9. Let s € R, and p € N such that s > % + p. Then, we have
Wi(R,) C C{(Ry).

Proof. Let s € R such that s > % + p and u € Wy(R,). Then, for 0 <n < p, we
have

[ @ @da = [ A+ AR) (1 P EF W) R
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Using the Cauchy-Schwarz inequality, we deduce that

| A F @)l < (/_Z (A1 + \/12)%)2%,1)5
" </i (4IP3 !fq(u)(/l)\rdqu. @)

Since s > % +pandu e W;(]Rq), then for all 0 < n < p, we have

1
o0 A\ 2 b
Con = </w (Aa+a) qu> <o

| W F @) <

and

So,
A" Fy(u)(A) € Ly(R,) forall 0<n<p.

In particular F,(u) € L}I(Rq). Then, from (13), we have
u(x) = K / Fo(u)(A)e(ixh:q?)d A, x € R,. 22)
The g-derivation under the g-integral sign gives

VO<n<p, VxeR, dju(x)= K/w (id)" Fy(u)(A)e(ixA; ¢*)d 2. (23)

Then since A"F,(u) € L}I(Rq), the inequality (3), the Lebesgue theorem and

Theorem 4.1 show that 8;u 1s continuous on ]INQq forall0 <n < p.
So u € CJ(R,). This shows that W3 (R,) C CJ/(R,), which completes the proof.
O

Theorem 5.10. For all s € (0,1), we have

W(R,) = {feij(Rq): /w </°° ‘(f_&"ﬁfzz(é)‘qux) dy& <oo},

where T, . is the g-translation operator defined by (14).

Proof. Since 0 < s < 1, then

V& € R, max(1,|E) < (1+§[*)2 < 1+[E/.
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So,
WS {fELZ 0) &P F4(f) eLé(Rq)}-

11— e(it;q?)|?
‘1‘_/ £ 725 s dat-
Since s € (0, 1), then the relation (3) and the fact that

11 —e(it;q*)|? o1
|t|1+23 10 |t|2S71

Put,

0<

imply that
0<I;s<oo.

Using the change of variables t = Ex, we get

o [ |1 —e(ixE;¢?)|?
Is =8| ZS[ "x(’H_zs)‘dqx. (24)

Now, let f € Lf] (R,), then by the relation (24), we get for all £ € R,

elixE: 2\|2
|§|2s|f Iqs/ ’]: (f)(é) ( é’q )‘ dqx.

| x|T+2s
Then, form the relation (16), we deduce that

oS~ 2 )P
= [

2
P e

dgx.

So, by g-integration, we obtain

[ erEn@ras = [ [ PO e

Hence, by Fubini’s theorem and Plancherel formula, we obtain

[ @ rag = - [ ||1 (/17— @ P )
,qs [t (= @Pa ) a
Iqs [ (/_“’ |(f |T[|111f25(§)| x) dE.

This leads to the desired result. O
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Notation. For all s € R, we denote by (W; (Rq))/ the topological dual of
Wy (R,).

Theorem 5.11. Let s € R. Then, every tempered distribution u € W (Ry) ex-

tends uniquely to a continuous linear form L, on (ch (Rg), -y )
Proof. Forall ¢ € S;(R,) and u € Wy(R;), we have
(1,0) = (Fy(w), 7, (9))
— [ A () F(0)(-2)d,2
= [T (4 1R) Fw) (14 132) 7 Fil@)(-A)d

By using Cauchy-Schwarz’s inequality, we obtain for all ¢ € S, (R,)

)] < ( | (1+p) !awxwﬁmf

1

x </°; (1+12) " \fq(qa)(z)yqux)z

< ””Hw;(Rq) 1ol m,)

Since S, (R,) is a subspace of W, *(R,), we deduce by the Hahn-Banach the-
orem [2] that u extends uniquely to a continuous linear form L, on Wq_ S(Ry).
Moreover, we have

”LuH(Wq—s(Rq))’ < lulls )

Theorem 5.12. Let s € R. Then the map

X W, (Ry) — WER,))

ur—1L,

is an isometric isomorphism.

Proof. The linearity of y is a direct consequence of the uniqueness of the ex-
tension of each u € W, *(R,) in a continuous linear form

L= x(u) € (Wy(R,))’
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It remains to show that ¥ is a bijective isometry.
LetL e (W;(Rq))/ be a continuous linear form on Wy(R,), then by the Riesz
theorem [2], there exists a unique v € W;(R,) such that

HVHW(;(R,]) - HLH(Wg(Rq))' (25)

and

(1+|7L| ) Fo(0). Fo(0))

<
= (7 ((1+12P) 7)) )

where

Using (11), we get

(1+m|2)% F, i) = (1+|z|)% F,(v).

So, since v € W (R,), we deduce that € W, *(IR,) and by using the relation
(15), we get

1@l z,) = My, = 1L e,y

Hence, from Remark 5.2, we obtain u € W, *(R,) and
H”HW;S(Rq) = HEHW;S(R,,) = HL”(W;(Rq))’-

This proves that  is effectively an isometric isomorphism from W, *(R,) onto

(W;(Rq))/. Its inverse is given by

2 W= ((1+1A7) F),

where v is the unique g-tempered distribution in W;(]Rq) satisfying the relation
(15) and (26). O
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6. Generalized Potential spaces

Definition 6.1. For s € R, we define the generalized g-potential of order s, as
follows

Py(u) = (F) " [(R2+ )RR, ue SyR,).
Lemma 6.2. Let f € S;(R,). Then
PyPy(f) =Py (f), st€R

and

Py(f) = f-

Proof. By definition,

(PLA)) = (F) ™[R+ 1) 2F, (D) ().

Then,
PyPaf(x) = (F) A2+ )P4+ 1) 2F,(H(2)| (1)
= (F) W+ ) 2EAHM)] )
= (Py")f(x)
On the other hand, Py f(x) = (]—"q)_1 (F4(f) (x) = f(x). O

Remark 6.3. From the lemma, it is clear that for all s € R, 73; is bijective on

S;(R,) and (P5)~' =P,*.

Definition 6.4. For s € R, we define the generalized potential space as
E(Ry) = {9 € S)(R,) : P, (9) € L2(R,)}.
The norm on € (IR,) is given by
191y m,) = 1P (9)ll2.4-

Lemma 6.5. The generalized g-potential Py is an isometry of €,(R;) onto
& (Ry), satisfying

[P0 llesm,) = 19lles ), ¢ € C4(Ry).
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Proof. Let ¢ € €3 (R,). By Definition 6.1 and Lemma 6.2, we have
||,Pzt]¢”€f,+f(]Rq) = ”Pq * qu)HZ,KI = ||7Dq S‘P

Now, let f € €7 (R,). Then, P’ f € €}(R,) and PP, f = f. This achieves
the proof. O

24 = ||¢”€;(Rq)-

Proposition 6.6. Fors € R, € (R,) is a Banach space.

Proof. Let (¢,)n be a Cauchy sequence in &} (R;). By the definition of & (R,)
the sequence {P,*¢,} is a Cauchy sequence in ij(Rq). As Lg (R4) is complete,
it follows that there exists a function f in Ltzj(Rq) such that {P,*¢,} converges
to f in Lé(Rq). Thus, it is easy to see that (¢,), converges to ¢ = P;(f) in
@ (Ry). O

Proposition 6.7. Fors € R, S;(R) is dense in Cy(R,).

Proof. Let f € €3 (R,). Then, P, * f € LZ(R,). Since S,;(R,) is dense in L (R,).
there exists a sequence (¢;); in S;(R,) such that

0; = P, f in Lj(R,). (27)
From Theorem 4.3, we deduce that,
Fq(9;)(A) € S4(R,)

and then
A+ 1) (9))(A) € Sy(Ry).

Now, define
g =Pty = (F) ' [AP+ 1) PF(9)(M)]  jeN.
So, Theorem 4.3 leads to
= (F) T A2+ D) TRE(9)(A)| €Sy(R,y), jEN
gi=(Fy)  |(A°+1) 1(0)A)| € Sy(Ry), JjEN.

Hence, by (27), we obtain
w 12
I =eilesy = ([ P00 =, e )

~ 12
- </—°° Py f ()= ¢j(x)’2dqx> —0, as j—oo.
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Proposition 6.8. Fors> 1, P, maps LS(RL]) into Lfl (Ry). More precisely there
exists g € Lg(]Rq) NL7 (Ry) such that for all f € L?I(Rq), we have

P;S (f)=F*q8
and there exists a positive constant C such that
1Py fllzg < ClIfll2q-
Proof. As s > 1, the function A — (1+A%)"2 belongs to Lé(IR{q) NLY(Ry).

Then, using the inversion theorem for the g-Rubin-Fourier transform, we deduce
that there exists a function g € Lé(Rq), such that

(14+2%)73 = Fy(8) (D).

But F,(g) € L7 (R,), then for all f € L2( a) Fq(8)Fq(f) € Lé(Rq).
So, for all f € L;(R,), we have g+, f € LZ(R,) and

Fo(gxq F)A) = Fo(8) M) Fy(f)(A) = (14+A%) 2 Fy(f)(A).
On the other hand, we have
FoP 1)) = (1+A%) 3 F (D),
We conclude by using Proposition 4.8 that
P f=fxq8
Finally, applying the Plancherel formula, we obtain

1Py fllzg = 11F4(Py Pll2q = 1 Fa(8 %4 Fll24 = 1 Fa(&) Fa(f)ll24
< [[F4(&)le=g | Fa(Nll2.g = 174 (&) lleog £ 1| 2-

This completes the proof of the proposition. O
Proposition 6.9. Let s,t € R, such thatt > 1+ 5. Then, we have

¢ (Ry) C € (Ry).
Moreover, there exits a positive constant C, such that for all u € €, (R,)

lulle,®,) < Cllulle;w,
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Proof. Letu € €(R,). Then, we have P, *(u) = f € L3(R,). From Lemma 6.5
and Proposition 6.8, we can write

P () =P, (P (w) =P, (f) = fxq8 € Lo(Ry),

where g is such that
(14+2%)" 7 = F,(g).

So u € € (R,). Furthermore, we have

ulley ) = 1/ %4 8ll24 < Cllf 2.4 = Cllull ey e,)-
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