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SOBOLEV TYPE SPACES ASSOCIATED
WITH THE q-RUBIN’S OPERATOR

M. MOKHTAR CHAFFAR - NÉJI BETTAIBI - AHMED FITOUHI

In this paper, we introduce and study some q-Sobolev type spaces
by using the harmonic analysis associated with the q-Rubin operator. In
particular, embedding theorems for these spaces are established. Next, we
introduce the q-Rubin potential spaces and study some of its properties.

1. Introduction

In classical analysis, Sobolev spaces are vector spaces whose elements are func-
tions defined on domains in n-dimensional Euclidean space Rn and whose par-
tial derivatives satisfy certain integrability conditions. Their uses and the study
of their properties were facilitated by the theory of distributions and Fourier
analysis. For instance, the Sobolev space W s(R), s ∈ R, is defined by the use
of the classical Fourier transform as the set of all tempered distributions u with
classical Fourier transform F(u) satisfying

(1+ |ξ |2)
s
2F(u) ∈ L2(R).

Generalization of the Sobolev spaces have been studied by replacing the classi-
cal Fourier transform by a generalized one. As far as we know, in the literature,
except [7], there is no paper concerning generalizations of Sobolev spaces in the

Entrato in redazione: 17 gennaio 2013

AMS 2010 Subject Classification: 33D15, 46E35, 43A32, 33D60.
Keywords: q-Sobolev spaces, q-Fourier analysis, Rubin’s operator.
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context of q-differential-difference operators. This paper is an attempt to fill this
gap by studying the generalized Sobolev spaces associated with the q-Rubin’s
operator. The main tools in this study are some elements of the q-Rubin-Fourier
harmonic analysis. Next, we introduce and study the q-Rubin potential spaces.

The present paper is organized as follows: In Section 2, we present some
preliminary results and notations that will be useful in the sequel. In Section
3, we establish some results associated with q-Rubin Fourier analysis and we
state some useful result about q-tempered distributions. Section 4 is devoted to
introduce and study the Sobolev type spaces associated with q-Rubin operator
by using some elements of harmonic analysis associated with q-Rubin operator.
Some embedding theorem are established. Finally, in Section 5, we introduce
the q-Rubin potential spaces and study some of their properties.

2. Notations and preliminaries

Throughout this paper, we assume 0 < q < 1 and we refer to the general refer-
ences [3] and [5] for the definitions and properties of the basic hypergeometric
functions. In what follows, we will fix some notations and recall some prelimi-
nary results.

2.1. Basic symbols.

We put Rq = {±qn : n ∈ Z}, R̃q = Rq∪{0} and
Rq,+ = {qn : n ∈ Z}.
For a ∈ C, the q-shifted factorials are defined by

(a;q)0 = 1; (a;q)n =
n−1

∏
k=0

(1−aqk), n = 1,2, . . . ; (a;q)∞ =
∞

∏
k=0

(1−aqk).

We also denote

[x]q =
1−qx

1−q
, x ∈ C and [n]q! =

(q;q)n

(1−q)n , n ∈ N.

2.2. Operators and elementary special functions.

A q-analogue of the classical exponential function is given by (see [8, 9])

e(z;q2) = cos(−iz;q2)+ isin(−iz;q2), (1)

where

cos(x;q2) =
∞

∑
n=0

(−1)nqn(n+1) x2n

[2n]q!
, sin(x;q2) =

∞

∑
n=0

(−1)nqn(n+1) x2n+1

[2n+1]q!
.

(2)
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These three functions are entire on C and when q tends to 1, they tend to the
corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all x ∈ Rq (see [8])

|cos(x;q2)| ≤ 1
(q;q)∞

, |sin(x;q2)| ≤ 1
(q;q)∞

and

| e(ix;q2)| ≤ 2
(q;q)∞

. (3)

The q2-analogue differential operators is defined as ( see [8, 9])

∂q( f )(z) =


f
(
q−1z

)
+ f

(
−q−1z

)
− f (qz)+ f (−qz)−2 f (−z)

2(1−q)z
i f z 6= 0

lim
x→0

∂q( f )(x) (in Rq) i f z = 0.

A repeated application of the q2-analogue differential operator n times is de-
noted by:

∂
0
q f = f , ∂

n+1
q f = ∂q(∂

n
q f ).

The following lemma lists some useful computational properties of ∂q and
reflects its sensitivity to parity of its argument.

Lemma 2.1.
1) ∂q sin(x;q2) = cos(x;q2), ∂q cos(x;q2) =−sin(x;q2) and

∂qe(x;q2) = e(x;q2).

2) For all function f on Rq, ∂q f (z) =
fe(q−1z)− fe(z)

(1−q)z
+

fo(z)− fo(qz)
(1−q)z

.

3) For two functions f and g on Rq, we have

∂q( f g)(z) = q−1(∂q fo)(q−1z)go(q−1z)+q−1 fo(z)(∂qgo)(q−1z)

+(∂q fo)(z)ge(z)+q fo(qz)(∂qge)(qz)+ fe(z)(∂qgo)(z) (4)

+q(∂q fe)(qz)go(qz)+(∂q fe)(z)ge(q−1z)+ fe(z)(∂qge)(z).

Here, for a function f defined on Rq, fe and fo are respectively, its even and
odd parts.

The q-Jackson integrals are defined by (see [4])∫ a

0
f (x)dqx = (1−q)a

∞

∑
n=0

qn f (aqn),
∫ b

a
f (x)dqx = (1−q)

∞

∑
n=0

qn (b f (bqn)−a f (aqn))
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and ∫
∞

−∞

f (x)dqx = (1−q)
∞

∑
n=−∞

f (qn)qn +(1−q)
∞

∑
n=−∞

f (−qn)qn,

provided the sums converge absolutely.
The following simple result, giving q-analogues of the integration by parts

theorem, can be verified by direct calculation.

Lemma 2.2.
1) For a > 0, if

∫ a

−a
(∂q f )(x)g(x)dqx exists, then

∫ a

−a
(∂q f )(x)g(x)dqx = 2

[
fe(q−1a)go(a)+ fo(a)ge(q−1a)

]
−
∫ a

−a
f (x)(∂qg)(x)dqx.

(5)

2) If
∫

∞

−∞

(∂q f )(x)g(x)dqx exists,

∫
∞

−∞

(∂q f )(x)g(x)dqx =−
∫

∞

−∞

f (x)(∂qg)(x)dqx. (6)

3. Elements of q-harmonic analysis related to the operator ∂q

In what follows, we need the following sets and spaces:
• Cp

q (Rq) the space of functions f p times q-differentiable on R̃q such that for
all 0≤ n≤ p, ∂

p
q f is continuous on R̃q.

• Dq(Rq) the space of functions defined on Rq with compact supports.
• Sq(Rq) the space of functions f defined on Rq satisfying, for all m,n non-
negative integers,

Pn,m,q( f ) = sup
x∈Rq

| xm
∂

n
q f (x) |< ∞

and

lim
x→0

∂
n
q f (x) (in Rq) exists.

• S ′q(Rq) the space of tempered distributions on Rq. It is the topological dual
of Sq(R).

• Lp
q(Rq) =

{
f : ‖ f‖p,q =

(∫
∞

−∞

| f (x)|pdqx
) 1

p

< ∞

}
.

• L∞
q (Rq) =

{
f : ‖ f‖∞,q = sup

x∈Rq

| f (x)|< ∞

}
.



SOBOLEV TYPE SPACES ASSOCIATED WITH THE q-RUBIN’S OPERATOR 41

4. Elements of harmonic analysis associated with the q-Rubin operator

In [9], R. L. Rubin defined the q-Rubin-Fourier transform as

Fq( f )(x) = K
∫

∞

−∞

f (t)e(−itx;q2)dqt,

where K =
(1+q)

1
2

2Γq2

(1
2

) and Γq(x) =
(q;q)∞

(qx;q)∞

(1−q)1−x is the q-Gamma function.

Note that letting q ↑ 1 subject to the condition

Log(1−q)
Log(q)

∈ 2Z, (7)

gives, at least formally, the classical Fourier transform (see [6]). In the remain-
der of this paper, we assume that the condition (7) holds.

It was shown in [9] that the q-Rubin-Fourier transform Fq verifies the fol-
lowing properties:
1) If f (u), u f (u) ∈ L1

q(Rq), then

∂q (Fq( f ))(x) = Fq(−iu f (u))(x).

2) If f , ∂q f ∈ L1
q(Rq), then

Fq(∂q f )(x) = ixFq( f )(x). (8)

In the following theorem, we give some useful result.

Theorem 4.1. For f ∈ L1
q(Rq), we have

i) Fq( f ) is continuous on R̃q.
ii) Fq( f ) is bounded on Rq and we have

‖Fq( f )‖∞,q ≤
(1+q)

1
2

Γq2

(1
2

)
(q;q)∞

‖ f‖1,q. (9)

iii) We have the following reciprocity theorem

∀t ∈ Rq, f (t) = K
∫

∞

−∞

Fq( f )(x)e(itx;q2)dqx. (10)

Theorem 4.2. The q-Rubin Fourier transform Fq is an isomorphism from
Sq(Rq) onto itself. Moreover, for all f ∈ Sq(Rq), we have

Fq
−1( f )(x) = Fq( f )(−x) = Fq( f )(x), x ∈ Rq. (11)
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Proof. We begin by proving that Fq leaves Sq(Rq) invariant.
From the definition of Sq(Rq) and the properties of the operator ∂q (Lemma
2.1), one can easily see that Sq(Rq) is also the set of all functions defined on
Rq, such that for all k, l ∈ N, we have

sup
x∈Rq

∣∣∣∂ k
q

(
xl f (x)

)∣∣∣< ∞ and lim
x→0

∂
k
q f (x) exists.

Now, let f ∈ Sq(Rq) and k, l ∈ N. On the one hand, from the properties of the
operator ∂q, we have for all n ∈ N, ∂ n

q f ∈ Sq(Rq)⊂ L1
q(Rq).

On the other hand, from the relation (8), we have

λ
lF( f )(λ ) = (−i)lFq(∂

l
q f )(λ )

= (−i)lK
∫

∞

−∞

∂
l
q f (x)e(−iλx;q2)dqx.

So, using the relation (3), we obtain for all λ ∈ Rq,

|∂ k
q (λ

lFq( f )(λ ))|=
∣∣∣∣(−i)l cα,q

2

∫
∞

−∞

∂
l
q f (x)∂ k

q e(−iλx;q2)dqx
∣∣∣∣

≤
2cα,q

(q;q)∞

∫
∞

−∞

|∂ l
q f (x)|dqx < ∞.

This together with the Lebesgue theorem prove that Fq( f ) belongs to Sq(Rq).
By Theorem 4.1, we deduce that Fq is an isomorphism of Sq(Rq) onto itself
and for f ∈ Sq(Rq), we have (Fq)

−1( f )(x) = Fq( f )(−x), x ∈ Rq.

In [8], we find the following Plancherel theorem.

Theorem 4.3. Fq is an isomorphism from L2
q(Rq) onto itself. For f ∈ L2

q(Rq),

‖Fq( f )‖2,q = ‖ f‖2,q (12)

and
∀t ∈ Rq, f (t) = K

∫
∞

−∞

Fq( f )(x)e(itx;q2)dqx. (13)

The q-translation operator τq,x, x ∈ R̃q is defined (see [8]) on L1
q(Rq) by

τq,x( f )(y) = K
∫

∞

−∞

Fq( f )(t)e(itx;q2)e(ity;q2)dqt, y ∈ Rq, (14)

τq,0( f )(y) = f (y). (15)

It was shown in [8] that the q-translation operator can be also defined on L2
q(Rq)

and we have the following result.
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Proposition 4.4. For all f ∈ L2
q(Rq), we have τq,x f ∈ L2

q(Rq) and

‖τq,x f‖2,q =
2

(q;q)∞

≤ ‖ f‖2,q, x ∈ R̃q.

Furthermore, it verifies the following properties.

Proposition 4.5. For f ,g ∈ L1
q(Rq), we have

i) τq,x( f )(y) = τq,y( f )(x), x, y ∈ Rq.
ii)
∫

∞

−∞
τq,x( f )(−y)g(y)dqy =

∫
∞

−∞
f (y)τq,x(g)(−y)dqy, x ∈ R̃q.

iii)
Fq(τq,x f )(λ ) = e(iλx;q2)Fq( f )(λ ), x ∈ R̃q. (16)

iv) ∂qτq,x f = τq,x∂q f , x ∈ R̃q.

By using the q-translation operator, we define the generalized convolution
product f ∗q g of two functions f ,g ∈ Sq(Rq) as follows:

f ∗q g = K
∫

∞

−∞

τq,x f (y)g(y)dqy

Proposition 4.6. For f ,g ∈ Sq(Rq) we have

Fq( f ∗q g) = Fq( f )Fq(g).

We finish this section by stating some useful results about the q-tempered
space.

Definition 4.7. The q-Rubin transform of a q-distribution u in S ′q(Rq) is defined
by

〈Fq(u),ϕ〉= 〈u,Fq(ϕ)〉 u ∈ S ′q(Rq), ϕ ∈ Sq(Rq).

Proposition 4.8. The q-Rubin transform Fq is a topological isomorphism from
S ′q(Rq) onto itself.

Proof. The result is a consequence of Theorem 2.

For u ∈ S ′q(Rq), we define the distribution ∂qu, by

〈∂qu,ψ〉=−〈u,∂qψ〉, ψ ∈ Sq(Rq).

These distributions satisfy the following properties

∀p ∈ N,u ∈ S ′q(Rq), Fq(∂
p
q u) = (−iy)pFq(u). (17)
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5. q-Sobolev spaces

In this Section, we establish the main properties of the Sobolev spaces associ-
ated with the q-Rubin operator.

Definition 5.1. For s ∈ R, we define the Sobolev spaceWs
q(Rq) as

Ws
q(Rq) =

{
u ∈ S ′q(Rq) : (1+ |ξ |2)

s
2Fq(u) ∈ L2

q(Rq)
}
.

We provideWs
q(Rq) with the scalar product

〈u,v〉s =
∫

∞

−∞

(1+ |ξ |2)sFq(u)(ξ )Fq(v)(ξ )dqξ

and the norm

‖u‖Ws
q(Rq) :=

(∫
∞

−∞

(1+ |ξ |2)s|Fq(u)(ξ )|2dqξ

) 1
2

. (18)

Remark 5.2. Let u ∈Ws
q(Rq). Then, using the relations (11) and (18), and the

change of variables ξ =−t, we obtain∫
∞

−∞

(1+ |ξ |2)s|Fq(u)(ξ )|2dqξ =
∫

∞

−∞

(1+ |t|2)s|Fq(u)(t)|2dqt.

Then, u ∈Ws
q(Rq) and ‖u‖Ws

q(Rq) = ‖u‖Ws
q(Rq).

Proposition 5.3. i) For all s ∈ R, we have

Sq(Rq)⊂Ws
q(Rq).

ii) We have
W0

q (Rq) = L2
q(Rq).

iii) For all s1, s2 in R, such that s1 ≥ s2, the space Ws1
q (Rq) is continuously

contained inWs2
q (Rq).

Proof. i) and ii) are immediately from the definition of the generalized Sobolev
space.
iii) Let s1,s2 ∈ R such that s1 > s2 and u ∈Ws1

q (Rq).
Then,

∀ξ ∈ Rq, (1+ |ξ |2)s2 ≤ (1+ |ξ |2)s1

and∫
∞

−∞

∣∣(1+ |ξ |2)s2Fq(u)(ξ )
∣∣2 dqξ ≤

∫
∞

−∞

∣∣(1+ |ξ |2)s1Fq(u)(ξ )
∣∣2 dqξ < ∞.

So, u ∈Ws2
q (Rq) and ‖u‖Ws2

q (Rq)
≤ ‖u‖Ws1

q (Rq)
.

Then, the spaceWs1
q (Rq) is continuously contained inWs2

q (Rq).
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Proposition 5.4. The spaceWs
q(Rq) provided with the norm ‖.‖Ws

q(Rq) is a Ba-
nach space.

Proof. Let (un)n∈N be a Cauchy sequence inWs
q(Rq). Then, from the definition

of the norm ‖.‖Ws
q(Rq), it is easy to see that (Fq(un))n is a Cauchy sequence in

L2(Rq,(1+ |ξ |2)sdqξ ).
But L2(Rq,(1+ |ξ |2)sdqξ ) is complete, then there exists a function u in
L2(Rq,(1+ |ξ |2)sdqξ ) such that

lim
n→+∞

‖Fq(un)−u‖L2(Rq,(1+|ξ |2)sdqξ ) = 0. (19)

Then u ∈ S ′q(Rq) and from Proposition 4.8, we obtain

v = (Fq)
−1 (u) ∈ S ′q(Rq).

So, Fq(v) = u ∈ L2(Rq,(1+ |ξ |2)sdqξ ), which proves that v ∈Ws
q(Rq).

Furthermore, using the relation (19), we get:

lim
n→+∞

‖un− v‖Ws
q(Rq) = lim

n→+∞
‖Fq(un)−u‖L2(Rq,(1+|ξ |2)sdqξ ) = 0.

Hence,Ws
q(Rq) is complete.

Lemma 5.5 (Convexity). Let s1,s2 ∈R, such that s1 < s2 and s= (1−t)s1+ts2,
t ∈]0,1[. Then we have

∀ u ∈Ws2
q (Rq), ‖u‖Ws

q(Rq) ≤ ‖u‖
1−t
Ws1

q (Rq)
×‖u‖t

Ws2
q (Rq)

Proof. Let s1,s2 ∈ R, such that s1 < s2 and s = (1− t)s1 + ts2, t ∈]0,1[.
Let u ∈Ws2

q (Rq). Then,

‖u‖2
Ws

q(Rq)
=
∫

∞

−∞

∣∣(1+ |ξ |2)sFq(u)(ξ )
∣∣2 dqξ

=
∫

∞

−∞

∣∣∣(1+ |ξ |2)s1(1−t)Fq(u)(ξ )
∣∣∣2(1−t) ∣∣(1+ |ξ |2)s2tFq(u)(ξ )

∣∣2t
dqξ .

Then, using the Hölder’s inequality, we get

‖u‖2
Ws

q(Rq)
≤
[∫

∞

−∞

|(1+ |ξ |2)s1Fq(u)(ξ )|2dqξ

]1−t

×
[∫

∞

−∞

|(1+ |ξ |2)s2Fq(u)(ξ )|2dqξ

]t

≤ ‖u‖2(1−t)
Ws1

q (Rq)
×‖u‖2t

Ws2
q (Rq)

.
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Proposition 5.6. Let s1,s,s2 be three real numbers, satisfying s1 < s < s2.
Then, for all ε > 0, there exists a nonnegative constant Cε such that for all
u ∈Ws

q(Rq), we have

‖u‖Ws
q(Rq) ≤Cε‖u‖Ws1

q (Rq)
+ ε‖u‖Ws2

q (Rq)
.

Proof. Let s1,s,s2 ∈ R, s1 < s2 and s ∈]s1,s2[. Then there exists t ∈]0,1[ such
that s = (1− t)s1 + ts2.

From the previous lemma and using
(

ε
−t
1−t

)1−t
.ε t = 1, we get for u ∈Ws

q(Rq),

‖u‖Ws
q(Rq) ≤ ‖u‖

1−t
Ws1

q (Rq)
‖u‖t

Ws2
q (Rq)

=
(

ε
− t

1−t ‖u‖Ws1
q (Rq)

)1−t (
ε‖u‖Ws2

q (Rq)

)t
.

So from the fact,
∀a,b > 0, atb1−t ≤ a+b,

we obtain
‖u‖Ws

q(Rq) ≤ ε
− t

1−t ‖u‖Ws1
q (Rq)

+ ε‖u‖Ws2
q (Rq)

.

This completes the proof by taking Cε = ε
− t

1−t = ε

s−s1
s−s2 .

A characterization ofWs
q(Rq), for s = m, a positive integer, is given below.

Proposition 5.7. Let m ∈ N. Then

Wm
q (Rq) =

{
u ∈ S ′q(Rq) : Fq(∂

j
q u) ∈ L2

q(Rq), 0≤ j ≤ m
}
.

Proof. Let u ∈Wm
q (Rq). Then, using the formula (17), we obtain

Fq(∂
j

q u) = (−iλ ) jFq(u), 0≤ j ≤ m (20)

and

∀ 0≤ j ≤ m,
∫

∞

−∞

|Fq(∂
j

q u)(ξ )|2dqξ =
∫

∞

−∞

|(−iξ ) jFq(u)(ξ )|2dqξ

≤
∫

∞

−∞

(1+ |ξ |2)
j
2 |Fq(u)(ξ )|2dqξ

≤
∫

∞

−∞

(1+ |ξ |2)
m
2 |Fq(u)(ξ )|2dqξ

< ∞.

So,
Fq(∂

j
q u) ∈ L2

q(Rq), 0≤ j ≤ m.
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Hence,

Wm
q (Rq)⊂

{
u ∈ S ′q(Rq) : Fq(∂

j
q u) ∈ L2

q(Rq), 0≤ j ≤ m
}
.

Conversely, assume that

Fq(∂
j

q u) ∈ L2
q(Rq),0≤ j ≤ m.

It is easy to see that there exists a positive constant C such that

(1+ |ξ |2)
m
2 ≤C

m

∑
j=0
|ξ | j.

Then using the formula (20), we obtain∫
∞

−∞

|(1+ |ξ |2)
m
2 Fq(u)(ξ )|2dqξ ≤C

m

∑
k=0

∫
∞

−∞

|(−iξ ) jFq(u)(ξ )|2dqξ

=C
m

∑
k=0

∫
∞

−∞

|Fq(∂
j

q u)(ξ )|2dqξ < ∞.

Hence
u ∈Wm

q (Rq).

Finally, we obtain{
u ∈ S ′q(Rq) : Fq(∂

j
q u) ∈ L2

q(Rq), 0≤ j ≤ m
}
⊂Wm

q (Rq).

This leads to the result.

Using the q-Plancherel theorem, we obtain the following result.

Corollary 5.8. For m ∈ N, we have

Wm
q (Rq) =

{
f ∈ L2

q(Rq) : ∂
j

q f ∈ L2
q(Rq) j = 0, . . . ,m.

}
Proposition 5.9. Let s ∈ Rq and p ∈ N such that s > 1

2 + p. Then, we have
Ws

q(Rq)⊂Cp
q (Rq).

Proof. Let s ∈ R such that s > 1
2 + p and u ∈Ws

q(Rq). Then, for 0≤ n≤ p, we
have∫

∞

−∞

|λ nFq(u)(λ )|dqλ =
∫

∞

−∞

|λ n(1+ |λ |2)−
s
2 (1+ |λ |2)

s
2Fq(u)(λ )|dqλ .
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Using the Cauchy-Schwarz inequality, we deduce that

∫
∞

−∞

|λ nFq(u)(λ )|dqλ ≤
(∫

∞

−∞

(
λ

n(1+ |λ |2)−
s
2

)2
dqλ

) 1
2

×
(∫

∞

−∞

[
(1+ |λ |2)

s
2
∣∣Fq(u)(λ )

∣∣]2
dqλ

) 1
2

. (21)

Since s > 1
2 + p and u ∈Ws

q(Rq), then for all 0≤ n≤ p, we have

Cq,n =

(∫
∞

−∞

(
λ

n(1+ |λ |2)−
s
2

)2
dqλ

) 1
2

< ∞

and ∫
∞

−∞

|λ nFq(u)(λ )|dqλ < ∞.

So,
λ

nFq(u)(λ ) ∈ L1
q(Rq) for all 0≤ n≤ p.

In particular Fq(u) ∈ L1
q(Rq). Then, from (13), we have

u(x) = K
∫

∞

−∞

Fq(u)(λ )e(ixλ ;q2)dqλ , x ∈ Rq. (22)

The q-derivation under the q-integral sign gives

∀ 0≤ n≤ p, ∀x ∈ Rq, ∂
n
q u(x) = K

∫
∞

−∞

(iλ )nFq(u)(λ )e(ixλ ;q2)dqλ . (23)

Then since λ nFq(u) ∈ L1
q(Rq), the inequality (3), the Lebesgue theorem and

Theorem 4.1 show that ∂ n
q u is continuous on R̃q for all 0≤ n≤ p.

So u ∈CP
q (Rq). This shows thatWs

q(Rq)⊂Cp
q (Rq), which completes the proof.

Theorem 5.10. For all s ∈ (0,1), we have

Ws
q(Rq) =

{
f ∈ L2

q(Rq) :
∫

∞

−∞

(∫
∞

−∞

|( f − τq,x f )(ξ )|2

|x|1+2s dqx
)

dqξ < ∞

}
,

where τq,x is the q-translation operator defined by (14).

Proof. Since 0 < s < 1, then

∀ξ ∈ R, max(1, |ξ |s)≤ (1+ |ξ |2)
s
2 ≤ 1+ |ξ |s.
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So,
Ws

q(Rq) =
{

f ∈ L2
q(Rq) : |ξ |sFq( f ) ∈ L2

q(Rq)
}
.

Put,

Iq,s =
∫

∞

−∞

|1− e(it;q2)|2

|t|1+2s dqt.

Since s ∈ (0,1), then the relation (3) and the fact that

0 <
|1− e(it;q2)|2

|t|1+2s ∼
t→0

1
|t|2s−1

imply that
0 < Iq,s < ∞.

Using the change of variables t = ξ x, we get

Iq,s = |ξ |−2s
∫

∞

−∞

|1− e(ixξ ;q2)|2

|x|1+2s dqx. (24)

Now, let f ∈ L2
q(Rq), then by the relation (24), we get for all ξ ∈ Rq,

|ξ |2s|Fq( f )(ξ )|2 = 1
Iq,s

∫
∞

−∞

|Fq( f )(ξ )−Fq( f )(ξ )e(ixξ ;q2)|2

|x|1+2s dqx.

Then, form the relation (16), we deduce that

|ξ |2s|Fq( f )(ξ )|2 = 1
Iq,s

∫
∞

−∞

|Fq( f − τq,x f )(ξ )|2

|x|1+2s dqx.

So, by q-integration, we obtain∫
∞

−∞

|ξ |2s|Fq( f )(ξ )|2dqξ =
1

Iq,s

∫
∞

−∞

∫
∞

−∞

|Fq( f − τq,x f )(ξ )|2

|x|1+2s dqxdqξ .

Hence, by Fubini’s theorem and Plancherel formula, we obtain∫
∞

−∞

|ξ |2s|Fq( f )(ξ )|2dqξ =
1

Iq,s

∫
∞

−∞

1
|x|1+2s

(∫
∞

−∞

|Fq( f − τq,x f )(ξ )|2dqξ

)
dqx

=
1

Iq,s

∫
∞

−∞

1
|x|1+2s

(∫
∞

−∞

|( f − τq,x f )(ξ )|2dqξ

)
dqx

=
1

Iq,s

∫
∞

−∞

(∫
∞

−∞

∣∣( f − τq,x f )(ξ )
∣∣2

|x|1+2s dqx

)
dqξ .

This leads to the desired result.



50 M. MOKHTAR CHAFFAR - NÉJI BETTAIBI - AHMED FITOUHI

Notation. For all s ∈ R, we denote by
(
Ws

q(Rq)
)′ the topological dual of

Ws
q(Rq).

Theorem 5.11. Let s ∈ R. Then, every tempered distribution u ∈ Ws
q(Rq) ex-

tends uniquely to a continuous linear form Lu on
(
W−s

q (Rq),‖.‖W−s
q (Rq)

)
.

Proof. For all ϕ ∈ Sq (Rq) and u ∈Ws
q(Rq), we have

〈u,ϕ〉=
〈
Fq(u),F−1

q (ϕ)
〉

=
∫

∞

−∞

Fq(u)(λ )Fq(ϕ)(−λ )dqλ

=
∫

∞

−∞

(
1+ |λ |2

) s
2 Fq(u)(λ )

(
1+ |λ |2

)− s
2 Fq(ϕ)(−λ )dqλ .

By using Cauchy-Schwarz’s inequality, we obtain for all ϕ ∈ Sq (Rq)

|〈u,ϕ〉| ≤
(∫

∞

−∞

(
1+ |λ |2

)s ∣∣Fq(u)(λ )
∣∣2 dqλ

) 1
2

×
(∫

∞

−∞

(
1+ |λ |2

)−s ∣∣Fq(ϕ)(λ )
∣∣2 dqλ

) 1
2

≤ ‖u‖Ws
q(Rq)
‖ϕ‖W−s

q (Rq)
.

Since Sq (Rq) is a subspace ofW−s
q (Rq), we deduce by the Hahn-Banach the-

orem [2] that u extends uniquely to a continuous linear form Lu on W−s
q (Rq).

Moreover, we have

‖Lu‖(W−s
q (Rq))

′ ≤ ‖u‖Ws
q(Rq)

.

Theorem 5.12. Let s ∈ R. Then the map

χ :W−s
q (Rq)−→

(
Ws

q(Rq)
)′

u 7−→ Lu

is an isometric isomorphism.

Proof. The linearity of χ is a direct consequence of the uniqueness of the ex-
tension of each u ∈W−s

q (Rq) in a continuous linear form

Lu = χ(u) ∈
(
Ws

q(Rq)
)′
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It remains to show that χ is a bijective isometry.
Let L ∈

(
Ws

q(Rq)
)′ be a continuous linear form onWs

q(Rq), then by the Riesz
theorem [2], there exists a unique v ∈Ws

q(Rq) such that

‖v‖Ws
q(Rq)

= ‖L‖(Ws
q(Rq))

′ (25)

and

∀φ ∈Ws
q(Rq),L(φ) = 〈φ ,υ〉s

=
∫

∞

−∞

(
1+ |λ |2

)s
Fq(φ)(λ )Fq(υ)(λ )dqλ (26)

=
〈(

1+ |λ |2
)s
Fq(υ),Fq(φ)

〉
.

In particular, for all ϕ ∈ Sq (Rq), we get

L(ϕ) =
〈(

1+ |λ |2
)s
Fq(υ),Fq(ϕ)

〉
=
〈
Fq

((
1+ |λ |2

)s
Fq(υ)

)
,ϕ
〉

= 〈u,ϕ〉,

where
u = Fq

((
1+ |λ |2

)s
Fq(υ)

)
.

Using (11), we get(
1+ |λ |2

)−s
2 Fq(u) =

(
1+ |λ |2

) s
2 Fq(υ).

So, since v ∈Ws
q(Rq), we deduce that u ∈W−s

q (Rq) and by using the relation
(15), we get

‖u‖W−s
q (Rq)

= ‖v‖Ws
q(Rq)

= ‖L‖(Ws
q(Rq))

′ .

Hence, from Remark 5.2, we obtain u ∈W−s
q (Rq) and

‖u‖W−s
q (Rq)

= ‖u‖W−s
q (Rq)

= ‖L‖(Ws
q(Rq))

′ .

This proves that χ is effectively an isometric isomorphism fromW−s
q (Rq) onto(

Ws
q(Rq)

)′. Its inverse is given by

χ
−1 (L) = Fq

((
1+ |λ |2

)s
Fq(υ)

)
,

where υ is the unique q-tempered distribution inWs
q(Rq) satisfying the relation

(15) and (26).
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6. Generalized Potential spaces

Definition 6.1. For s ∈ R, we define the generalized q-potential of order s, as
follows

Ps
q(u) = (Fq)

−1
[
(λ 2 +1)−s/2Fq(u)(λ )

]
, u ∈ S ′q(Rq).

Lemma 6.2. Let f ∈ S ′q(Rq). Then

Ps
qP t

q( f ) = Ps+t
q ( f ), s, t ∈ R

and
P0

q ( f ) = f .

Proof. By definition,

(P t
q f )(x) = (Fq)

−1
[
(λ 2 +1)−t/2Fq( f )(λ )

]
(x).

Then,

Ps
qP t

q f (x) = (Fq)
−1
[
(λ 2 +1)−s/2(λ 2 +1)−t/2Fq( f )(λ )

]
(x)

= (Fq)
−1
[
(λ 2 +1)−(s+t)/2Fq( f )(λ )

]
(x)

= (Ps+t
q ) f (x)

On the other hand, P0
q f (x) = (Fq)

−1 (Fq( f ))(x) = f (x).

Remark 6.3. From the lemma, it is clear that for all s ∈ R, Ps
q is bijective on

S ′q(Rq) and (Ps
q)
−1 = P−s

q .

Definition 6.4. For s ∈ R, we define the generalized potential space as

Cs
q(Rq) := {φ ∈ S ′q(Rq) : P−s

q (φ) ∈ L2
q(Rq)}.

The norm on Cs
q(Rq) is given by

‖φ‖Cs
q(Rq) = ‖P

−s
q (φ)‖2,q.

Lemma 6.5. The generalized q-potential P t
q is an isometry of Cs

q(Rq) onto
Cs+t

q (Rq), satisfying

‖P t
qφ‖Cs+t

q (Rq)
= ‖φ‖Cs

q(Rq), φ ∈ Cs
q(Rq).
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Proof. Let φ ∈ Cs
q(Rq). By Definition 6.1 and Lemma 6.2, we have

‖P t
qφ‖Cs+t

q (Rq)
= ‖P−s−t

q P t
qφ‖2,q = ‖P−s

q φ‖2,q = ‖φ‖Cs
q(Rq).

Now, let f ∈ Cs+t
q (Rq). Then, P−t

q f ∈ Cs
q(Rq) and P t

qP−t
q f = f . This achieves

the proof.

Proposition 6.6. For s ∈ R, Cs
q(Rq) is a Banach space.

Proof. Let (φn)n be a Cauchy sequence in Cs
q(Rq). By the definition of Cs

q(Rq)

the sequence {P−s
q φn} is a Cauchy sequence in L2

q(Rq). As L2
q(Rq) is complete,

it follows that there exists a function f in L2
q(Rq) such that {P−s

q φn} converges
to f in L2

q(Rq). Thus, it is easy to see that (φn)n converges to φ = Ps
q( f ) in

Cs
q(Rq).

Proposition 6.7. For s ∈ R, Sq(Rq) is dense in Cs
q(Rq).

Proof. Let f ∈Cs
q(Rq). Then,P−s

q f ∈ L2
q(Rq). Since Sq(Rq) is dense in L2

q(Rq),
there exists a sequence (φ j) j in Sq(Rq) such that

φ j→P−s
q f in L2

q(Rq). (27)

From Theorem 4.3, we deduce that,

Fq(φ j)(λ ) ∈ Sq(Rq)

and then
(λ 2 +1)−s/2Fq(φ j)(λ ) ∈ Sq(Rq).

Now, define

g j = Ps
qφ j = (Fq)

−1
[
(λ 2 +1)−s/2Fq(φ j)(λ )

]
j ∈ N.

So, Theorem 4.3 leads to

g j = (Fq)
−1
[
(λ 2 +1)−s/2Fq(φ j)(λ )

]
∈ Sq(Rq), j ∈ N.

Hence, by (27), we obtain

‖ f −g j‖Cs
q(Rq) =

(∫
∞

−∞

|P−s
q f (x)−P−s

q g j(x)|2dqx
)1/2

=

(∫
∞

−∞

|P−s
q f (x)−φ j(x)|2dqx

)1/2

→ 0, as j→ ∞.
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Proposition 6.8. For s> 1, P−s
q maps L2

q(Rq) into L2
q(Rq). More precisely there

exists g ∈ L2
q(Rq)∩L∞

q (Rq) such that for all f ∈ L2
q(Rq), we have

P−s
q ( f ) = f ∗q g

and there exists a positive constant C such that

‖P−s
q f‖2,q ≤C‖ f‖2,q.

Proof. As s > 1, the function λ 7→ (1+ λ 2)−
s
2 belongs to L2

q(Rq)∩ L∞
q (Rq).

Then, using the inversion theorem for the q-Rubin-Fourier transform, we deduce
that there exists a function g ∈ L2

q(Rq), such that

(1+λ
2)−

s
2 = Fq(g)(λ ).

But Fq(g) ∈ L∞
q (Rq), then for all f ∈ L2

q(Rq), Fq(g)Fq( f ) ∈ L2
q(Rq).

So, for all f ∈ L2
q(Rq), we have g∗q f ∈ L2

q(Rq) and

Fq(g∗q f )(λ ) = Fq(g)(λ )Fq( f )(λ ) = (1+λ
2)−

s
2Fq( f )(λ ).

On the other hand, we have

Fq(P−s
q f )(λ ) = (1+λ

2)−
s
2Fq( f )(λ ).

We conclude by using Proposition 4.8 that

P−s
q f = f ∗q g.

Finally, applying the Plancherel formula, we obtain

‖P−s
q f‖2,q = ‖Fq(P−s

q f )‖2,q = ‖Fq(g∗q f )‖2,q = ‖Fq(g)Fq( f )‖2,q

≤ ‖Fq(g)‖∞,q‖Fq( f )‖2,q = ‖Fq(g)‖∞,q‖ f‖2,q.

This completes the proof of the proposition.

Proposition 6.9. Let s, t ∈ R, such that t > 1+ s. Then, we have

Cs
q(Rq)⊂ Ct

q(Rq).

Moreover, there exits a positive constant C, such that for all u ∈ Cs
q(Rq)

‖u‖Ct
q(Rq) ≤C‖u‖Cs

q(Rq).
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Proof. Let u∈ Cs
q(Rq). Then, we have P−s

q (u) = f ∈ L2
q(Rq). From Lemma 6.5

and Proposition 6.8, we can write

P−t
q (u) = P−t+s

q
(
P−s

q (u)
)
= P−t+s

q ( f ) = f ∗q g ∈ L2
q(Rq),

where g is such that
(1+λ

2)−
t−s

2 = Fq(g).

So u ∈ Ct
q(Rq). Furthermore, we have

‖u‖Ct
q(Rq) = ‖ f ∗q g‖2,q ≤C‖ f‖2,q =C‖u‖Cs

q(Rq).

Acknowledgements

The authors are very grateful to the referee for the constructive and valuable
comments and recommendations, and for making us pay attention to certain
references.

REFERENCES

[1] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, 65. A Series of
Monographs and Textbooks, New York-San Francisco-London: Academic Press,
Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers. XVIII, 1975.
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