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EQUIVALENCE OF THE CONVERGENCES OF T -PICARD,
T -MANN AND T -ISHIKAWA ITERATIONS FOR THE CLASS

OF T -ZAMFIRESCU OPERATORS

PRIYA RAPHAEL - SHAINI PULICKAKUNNEL

In this paper, we prove the equivalence between the convergences
of T -Picard iteration, T -Mann iteration and T -Ishikawa iteration for the
class of T -Zamfirescu operators in normed linear spaces. Our results ex-
tend and improve the results of Şoltuz [17] and Zhiqun [20].

1. Introduction and Preliminary Definitions

In 2009, Beiranvand et al. [1] introduced the concepts of T -Banach contrac-
tion and T -contractive mappings and then they extended Banach’s contraction
principle [2] and Edelstein’s fixed point theorem [4]. T -Kannan contractive
mappings were introduced by Moradi [6] which extended Kannan’s fixed point
theorem [5]. Followed by this, Morales and Rojas [7] introduced the notion of
T -Chatterjea mapping and obtained sufficient conditions for the existence of a
unique fixed point of these mappings in the framework of complete cone met-
ric spaces. The same authors [9], then introduced the concept of T -Zamfirescu
operators and obtained sufficient conditions for the existence of a unique fixed
point of T -Zamfirescu operators in the setting of complete cone metric spaces.
A new iteration scheme, namely T -Picard iteration was introduced by Morales
and Rojas [8] in 2009 which is defined as follows:
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Let E be a normed linear space. Let T,S : E → E be two mappings and let
p0 ∈ E. The sequence {T pn}∞

n=0 ∈ E defined by

T pn+1 = T Spn, n = 0,1,2, ..., (1)

is called the T -Picard iteration associated to S.
Here we note that when we take T = I, the identity map, (1) reduces to

pn+1 = Spn, n = 0,1,2, ..., (2)

which is Picard iteration.
Morales and Rojas [8] studied the existence of fixed points for T -Zamfirescu

operators in complete metric spaces and proved the convegence of T -Picard
iteration for the class of T -Zamfirescu operators. Inspired and motivated by the
above said facts, the authors have introduced T -Mann iteration scheme and T -
Ishikawa iteration scheme [10] and proved the convergence of these iteration
procedures for the class of T -Zamfirescu operators in real Banach spaces. The
new schemes are given as follows:
Let E be a normed linear space. Let T,S : E → E be two mappings and let
u0,x0 ∈ E. The sequence {Tun}∞

n=0 ∈ E given by

Tun+1 = (1−αn)Tun +αnT Sun, n = 0,1,2, ..., (3)

where {αn}∞

n=0 ∈ (0,1) is called the T -Mann iteration associated to S.
When we substitute T = I, the identity map in (3), we get the definition of Mann
iteration which is given by

un+1 = (1−αn)un +αnSun, n = 0,1,2, ..., (4)

where {αn}∞

n=0 ∈ (0,1).

The T -Ishikawa iteration associated to S is defined by

T xn+1 = (1−αn)T xn +αnSTyn (5)

Tyn = (1−βn)T xn +βnT Sxn, n = 0,1,2, ...,

where {αn}∞

n=0 ,{βn}∞

n=0 ∈ (0,1).
If we take T = I, the identity map in (5), we get the definition of Ishikawa
iteration which is given as

xn+1 = (1−αn)xn +αnSyn (6)

yn = (1−βn)xn +βnSxn, n = 0,1,2, ...,
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where {αn}∞

n=0 ,{βn}∞

n=0 ∈ (0,1).

The following conjecture has been given by Rhoades and Şoltuz [11]: ”When-
ever T is a function for which Mann iteration converges, so does the Ishikawa
iteration”. They further remarked that, given the large variety of functions and
spaces, such a global statement is, of course, not provable. In a series of papers,
like [12], [13], [14], [15] and [16] the same authors have given a positive answer
to this conjecture, showing the equivalence between Mann and Ishikawa itera-
tions for strongly pseudocontractive maps, uniformly pseudocontractive maps
and asymptotically nonexpansive maps in normed linear spaces. In 2005, Şoltuz
[17] studied the equivalence of the convergences of Picard, Mann and Ishikawa
iterations when applied to Zamfirescu operators and proved the following re-
sults:

Theorem 1.1 ([17], Theorem 1). Let X be a normed space, D a nonempty,
closed, convex subset of X and T : D→ D be a Zamfirescu operator. Suppose
that x∗ is a fixed point of T . If u0 = x0 ∈ D, let {un}∞

n=0 be defined by (4)
for u0 ∈ D, and let {xn}∞

n=0 be defined by (6) for x0 ∈ D with {αn}∞

n=0 ∈ (0,1)

satisfying
∞

∑
n=0

αn = ∞. Then the following are equivalent:

(i) the Mann iteration (4) converges to x∗ ;
(ii) the Ishikawa iteration (6) converges to x∗.

Theorem 1.2 ([17], Theorem 2). Let X be a normed space, D a nonempty,
closed, convex subset of X and T : D→ D be a Zamfirescu operator. Suppose
that x∗ is a fixed point of T . If u0 = p0 ∈ D, let {pn}∞

n=0 be defined by (2) for
p0 ∈ D, and let {un}∞

n=0 be defined by (4) for u0 ∈ D with {αn}∞

n=0 ∈ (0,1)

satisfying
∞

∑
n=0

αn = ∞. Then the following are equivalent:

(i) if the Mann iteration (4) converges to x∗ and lim
n→∞

‖un+1−un‖
αn

= 0, then the

Picard iteration (2) converges to x∗;

(ii) the Picard iteration (2) converges to x∗ and lim
n→∞

‖pn+1− pn‖
αn

= 0, then the

Mann iteration (4) converges to x∗.

In 2007, Zhiqun [20] studied the equivalence between the convergences of
Picard iteration and Mann iteration for Zamfirescu operators in normed linear
spaces and improved the result of Şoltuz [17, Theorem 2] in the following sense:

(i) Both hypotheses lim
n→∞

‖un+1−un‖
αn

= 0 and lim
n→∞

‖pn+1− pn‖
αn

= 0 have been

removed.
(ii) The assumption that u0 = p0 was found to be superfluous.
More precisely, he proved the following results:



60 PRIYA RAPHAEL - SHAINI PULICKAKUNNEL

Theorem 1.3 ([20] Theor. 2.1). Let E be a normed linear space, D a nonempty,
closed, convex subset of E, and T : D→ D a Zamfirescu operator. Suppose
that T has a fixed point in D. Let {pn}∞

n=0 be defined by (2) for p0 ∈ D and let

{un}∞

n=0 be defined by (4) for u0 ∈D with {αn}∞

n=0 ∈ [0,1] satisfying
∞

∑
n=0

αn = ∞.

Then the following are equivalent:
(i) the Picard iteration (2) converges to the fixed point of T;
(ii) the Mann iteration (4) converges to the fixed point of T.

Theorem 1.4 ([20], Theor. 2.3). Let E be a normed linear space, D a nonempty,
closed, convex subset of E, and T : D→ D a Zamfirescu operator. Suppose that
T has a fixed point in D. Let {pn}∞

n=0 be defined by (2) for p0 ∈ D and let
{xn}∞

n=0 be defined by (6) for x0 ∈ D with {αn}∞

n=0 ,{βn}∞

n=0 ∈ [0,1] satisfying
∞

∑
n=0

αn = ∞. Then the following are equivalent:

(i) the Picard iteration (2) converges to the fixed point of T;
(ii) the Ishikawa iteration (6) converges to the fixed point of T.

Here we recall the definitions of the following classes of generalized T -
contraction type mappings as given by Morales and Rojas [8]:

Definition 1.5. Let (M,d) be a metric space and T,S : M→M be two functions.
A mapping S is said to be T -Banach contraction (T B contraction) if there exists
a ∈ [0,1) such that

d(T Sx,T Sy)≤ ad(T x,Ty), for all x,y ∈M.

When we substitute T = I, the identity map, in the above definition we
obtain the definition of Banach’s contraction [2].

Definition 1.6. Let (M,d) be a metric space and T,S : M→M be two functions.
A mapping S is said to be T -Kannan contraction (T K contraction) if there exists

b ∈ [0,
1
2
) such that

d(T Sx,T Sy)≤ b[d(T x,T Sx)+d(Ty,T Sy)], for all x,y ∈M.

In Definition 1.6, if we take T = I, the identity map, then we get the defini-
tion of Kannan operator [5].

Definition 1.7. Let (M,d) be a metric space and T,S : M→M be two functions.
A mapping S is said to be T -Chatterjea contraction (TC contraction) if there

exists c ∈ [0,
1
2
) such that

d(T Sx,T Sy)≤ c[d(T x,T Sy)+d(Ty,T Sx)] for all x,y ∈M.
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If we substitute T = I, the identity map, in Definition 1.7 we obtain the
definition of Chatterjea operator [3].

Definition 1.8. Let (M,d) be a metric space and T,S : M→M be two functions.
A mapping S is said to be T -Zamfirescu operator (T Z operator) if there are real

numbers 0≤ a < 1,0≤ b <
1
2
,0≤ c <

1
2

such that for all x,y ∈M at least one
of the conditions is true:
(T Z1) : d(T Sx,T Sy)≤ ad(T x,Ty),
(T Z2) : d(T Sx,T Sy)≤ b[d(T x,T Sx)+d(Ty,T Sy)],
(T Z3) : d(T Sx,T Sy)≤ c[d(T x,T Sy)+d(Ty,T Sx)].

When we take T = I, the identity map, in the above definition we obtain the
definition of Zamfirescu operator [19].

In this paper, we prove that convergences of T -Picard iteration, T -Mann
iteration and T -Ishikawa iteration are equivalent for the class of T Z-operators
in normed linear spaces. Our results extend the results of Şoltuz [17] and Zhiqun
[20].

In the sequel, we need the following lemmas:

Lemma 1.9 ([8]). Let (M,d) be a complete metric space and T,S : M→M be
two functions. If S is a T Z-operator, then there is 0≤ δ < 1 such that

d(T Sx,T Sy)≤ δd(T x,Ty)+2δd(T x,T Sx), for all x,y ∈M.

Lemma 1.10 ([2]). Let {an}∞

n=0 ,{bn}∞

n=0 be sequences of nonnegative numbers
and 0≤ q < 1 , so that an+1 ≤ qan +bn, for all n≥ 0.

(i) If lim
n→∞

bn = 0, then lim
n→∞

an = 0,

(ii) If
∞

∑
n=0

bn < ∞, then
∞

∑
n=0

an < ∞.

Lemma 1.11 ([20]). Let {an} and {σn} be nonnegative real sequences satisfy-
ing the following inequality:

an+1 ≤ (1−λn)an +σn,

where λn ∈ (0,1) for all n≥ n0,
∞

∑
n=1

λn = ∞ and σn = O(λn). Then lim
n→∞

an = 0.

2. Main Results

Theorem 2.1. Let E be a normed linear space, K a nonempty, closed, convex
subset of E and T,S : K → K be two mappings such that S is a T Z-operator.
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Suppose that S has a fixed point x∗ in K. Let the T -Picard iteration be defined
by (1) for p0 ∈ K and let the T - Mann iteration be defined by (3) for u0 ∈ K ∈

with {αn} ∈ (0,1) satisfying
∞

∑
n=0

αn = ∞. Then the following are equivalent:

(i) The T -Picard iteration converges to T x∗;
(ii) The T -Mann iteration converges to T x∗.

Proof. Since S is a T Z-operator, by Lemma 1.9 there is 0≤ δ < 1 such that

‖T Sx−T Sy‖ ≤ δ ‖T x−Ty‖+2δ ‖T x−T Sx‖ , for all x,y ∈ K. (7)

First, we shall prove that (ii)⇒ (i). Assume that

‖Tun−T x∗‖→ 0 as n→ ∞.

Now,

‖Tun+1−T pn+1‖= ‖(1−αn)Tun +αnT Sun−T Spn‖
≤ (1−αn)‖Tun−T Spn‖+αn ‖T Sun−T Spn‖
≤ (1−αn)‖Tun−T Sun‖+‖T Sun−T Spn‖ . (8)

Taking x = un and y = pn in (7) we get,

‖T Sun−T Spn‖ ≤ δ ‖Tun−T pn‖+2δ ‖Tun−T Sun‖ .

Using the above inequality, (8) becomes

‖Tun+1−T pn+1‖
≤ δ ‖Tun−T pn‖+(1−αn +2δ )‖Tun−T Sun‖
≤ δ ‖Tun−T pn‖+(1−αn +2δ )(‖Tun−T x∗‖+‖T Sun−T Sx∗‖)
≤ δ ‖Tun−T pn‖+(1−αn +2δ )(1+δ )‖Tun−T x∗‖ .

Denote

an = ‖Tun−T pn‖ ,
q = δ ∈ [0,1),

bn = (1−αn +2δ )(1+δ )‖Tun−T x∗‖ .

Now, by applying Lemma 1.10 we get that

‖Tun−T pn‖→ 0 as n→ ∞.
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Thus,

‖T pn−T x∗‖ ≤ ‖Tun−T pn‖+‖Tun−T x∗‖→ 0 as n→ ∞.

To prove that (i)⇒ (ii), assume that

‖T pn−T x∗‖→ 0 as n→ ∞.

Consider

‖Tun+1−T pn+1‖
≤ (1−αn)‖Tun−T Spn‖+αn ‖T Sun−T Spn‖
≤ (1−αn)‖Tun−T pn‖+(1−αn)‖T pn−T Spn‖+αn ‖T Sun−T Spn‖
≤ (1−αn)‖Tun−T pn‖+(1−αn)(‖T pn−T x∗‖+‖T Spn−T x∗‖)

+αn ‖T Sun−T Spn‖ . (9)

By taking x = pn and y = un in (7) we get

‖T Spn−T Sun‖ ≤ δ ‖T pn−Tun‖+2δ ‖T pn−T Spn‖ ,

which gives

αn ‖T Sun−T Spn‖ ≤ αnδ ‖Tun−T pn‖+2αnδ ‖T pn−T Spn‖
≤ αnδ ‖Tun−T pn‖
+2αnδ (‖T pn−T x∗‖+‖T Spn−T Sx∗‖). (10)

Now using (7) with x = x∗ and y = pn, we obtain

‖T Sx∗−T Spn‖ ≤ δ ‖T x∗−T pn‖ . (11)

Using (10) and (11), (9) becomes

‖Tun+1−T pn+1‖
≤ [1− (1−δ )αn]‖Tun−T pn‖+(1−αn +2αnδ )(1+δ )‖T pn−T x∗‖
≤ [1− (1−δ )αn]‖Tun−T x∗‖
+[(1−αn +2αnδ )(1+δ )+(1−αn(1−δ ))]‖T pn−T x∗‖
≤ [1− (1−δ )αn]‖Tun−T x∗‖
+(1−αn +2αnδ )(2+δ )‖T pn−T x∗‖ ≤
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≤ (1−λαn) [(1−αn−1)‖Tun−1−T x∗‖+αn−1 ‖T Sun−1−T Sx∗‖]
+ (1−αn +2αnδ )(2+δ )‖T pn−T x∗‖
≤ (1−λαn) [1− (1−δ )αn−1]‖Tun−1−T x∗‖
+(1−αn +2αnδ )(2+δ )‖T pn−T x∗‖
≤ (1−λαn)(1−λαn−1)...(1−λα0)‖Tu0−T x∗‖
+(1−αn +2αnδ )(2+δ )‖T pn−T x∗‖

≤ exp

(
−λ

n

∑
i=0

αi

)
‖Tu0−T x∗‖+(1−αn +2αnδ )(2+δ )‖T pn−T x∗‖ ,

where 1−δ = λ . Since
∞

∑
n=0

αn = ∞ and ‖T pn−T x∗‖→ 0 as n→ ∞,

we get ‖Tun−T pn‖→ 0 as n→ ∞.
Hence,

‖Tun−T x∗‖ ≤ ‖Tun−T pn‖+‖T pn−T x∗‖→ 0 as n→ ∞.

Corollary 2.2 ([20], Theor. 2.1). Let E be a normed linear space, K a nonempty
closed, convex subset of E and T : K→ K be a Z-operator. Suppose that T has
a fixed point x∗ in K. Let the Picard iteration be defined by (2) for p0 ∈ K and
let the Mann iteration be defined by (4) for u0 ∈ K with {αn} ∈ (0,1) satisfying

∞

∑
n=0

αn = ∞. Then the following are equivalent:

(i) The Picard iteration converges to x∗;
(ii) The Mann iteration converges to x∗.

Theorem 2.3. Let E be a normed linear space, K a nonempty, closed, convex
subset of E and T,S : K→ K be two commuting mappings such that S is a T Z-
operator. Suppose that S has a fixed point x∗ in K. Let the T -Mann iteration
for u0 ∈ K be defined by (3) and the T -Ishikawa iteration for x0 ∈ K be defined

by (5) with {αn} ,{βn} ∈ (0,1) satisfying
∞

∑
n=0

αn = ∞. Then the following are

equivalent:
(i) The T -Mann iteration converges to T x∗;
(ii) The T -Ishikawa iteration converges to T x∗.

Proof. As in the proof of Theorem 2.1, since S is a T Z-operator, by applying
Lemma 1.9 there is 0≤ δ < 1 such that (7) holds for all x,y ∈ K.
First we will prove (i)⇒ (ii). Now, suppose that

‖Tun−T x∗‖→ 0 as n→ ∞.
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Consider

‖Tun+1−T xn+1‖= ‖(1−αn)(Tun−T xn)+αn(T Sun−T Syn)‖
≤ (1−αn)‖Tun−T xn‖+αn ‖T Sun−T Syn‖ . (12)

Using (7) with x = un and y = yn, we have

‖T Sun−T Syn‖ ≤ δ ‖Tun−Tyn‖+2δ ‖Tun−T Sun‖ .

Using the above inequality in (12), we get

‖Tun+1−T xn+1‖ ≤ (1−αn)‖Tun−T xn‖
+αnδ ‖Tun−Tyn‖+2αnδ ‖Tun−T Sun‖ . (13)

Now applying (5) and (7), we have

‖Tun−Tyn‖= ‖(1−βn)(Tun−T xn)+βn(Tun−T Sxn)‖
≤ (1−βn)‖Tun−T xn‖+βn ‖Tun−T Sun‖+βn ‖T Sun−T Sxn‖
≤ (1−βn)‖Tun−T xn‖+βn ‖Tun−T Sun‖
+βnδ ‖Tun−T xn‖+2βnδ ‖Tun−T Sun‖
= (1−βn(1−δ ))‖Tun−T xn‖+βn(1+2δ )‖Tun−T Sun‖ .

(14)

Combining (13) and (14), we obtain

‖Tun+1−T xn+1‖ ≤ (1−αn)‖Tun−T xn‖+αnδ (1−βn(1−δ ))‖Tun−T xn‖
+αnβnδ (1+2δ )‖Tun−T Sun‖+2αnδ ‖Tun−T Sun‖
= (1−αn(1−δ (1−βn(1−δ ))))‖Tun−T xn‖
+αnδ (βn(1+2δ )+2)‖Tun−T Sun‖ .

Denote by

an = ‖Tun−T xn‖ ,
λn = αn(1−δ (1−βn(1−δ )))⊂ (0,1),

σn = αnδ (βn(1+2δ )+2)‖Tun−T Sun‖ .

Since lim
n→∞
‖Tun−T x∗‖= 0 and x∗ ∈ F(S), from (7) we obtain

‖Tun−T Sun‖ ≤ ‖Tun−T x∗‖+‖T Sx∗−T Sun‖
≤ ‖Tun−T x∗‖+δ ‖T x∗−Tun‖+2δ ‖T x∗−T Sx∗‖
= (δ +1)‖Tun−T x∗‖→ 0 as n→ ∞,
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which gives σn = O(λn).
Hence, from Lemma 1.11 it follows that

lim
n→∞
‖Tun−T xn‖= 0.

Thus,

‖T x∗−T xn‖ ≤ ‖Tun−T x∗‖+‖Tun−T xn‖→ 0 as n→ ∞.

Next, we will prove that (ii)⇒ (i). Suppose that

‖T xn−T x∗‖→ 0 as n→ ∞.

Consider

‖T xn+1−Tun+1‖= ‖(1−αn)(T xn−Tun)+αn(T Syn−T Sun)‖
≤ (1−αn)‖T xn−Tun‖+αn ‖T Syn−T Sun‖ . (15)

Using (7) with x = yn and y = un, we obtain

‖T Syn−T Sun‖ ≤ δ ‖Tyn−Tun‖+2δ ‖Tyn−T Syn‖ .

Using the above inequality in (15), we get

‖T xn+1−Tun+1‖
≤ (1−αn)‖T xn−Tun‖+αnδ ‖Tyn−Tun‖+2αnδ ‖Tyn−T Syn‖ . (16)

Consider

‖Tyn−Tun‖
= ‖(1−βn)(T xn−Tun)+βn(T Sxn−Tun)‖
≤ (1−βn)‖T xn−Tun‖+βn ‖T Sxn−T xn‖+βn ‖T xn−Tun‖
= ‖T xn−Tun‖+βn ‖T Sxn−T xn‖ . (17)

Now, from (16) and (17) it results that

‖T xn+1−Tun+1‖
≤ (1−αn)‖T xn−Tun‖+αnδ (‖T xn−Tun‖+βn ‖T Sxn−T xn‖)
+2αnδ ‖Tyn−T Syn‖
= (1−αn(1−δ ))‖T xn−Tun‖+αnβnδ ‖T Sxn−T xn‖
+2αnδ ‖Tyn−T Syn‖ .
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Denote by

an = ‖T xn−Tun‖ ,
λn = αn(1−δ )⊂ (0,1),

σn = αnβnδ ‖T Sxn−T xn‖+2αnδ ‖Tyn−T Syn‖ .

Since lim
n→∞
‖T xn−T x∗‖= 0 and x∗ ∈ F(S), from (7) we get

‖T xn−T Sxn‖ ≤ ‖T xn−T x∗‖+‖T Sx∗−T Sxn‖
≤ (δ +1)‖T xn−T x∗‖→ 0 as n→ ∞. (18)

Again since lim
n→∞
‖T xn−T x∗‖= 0 and x∗ ∈ F(S), from (5) and (7) we get

‖Tyn−T Syn‖ ≤ ‖Tyn−T x∗‖+‖T x∗−T Syn‖
≤ (δ +1)‖Tyn−T x∗‖
≤ (δ +1)[(1−βn)‖T xn−T x∗‖+βn ‖T Sxn−T x∗‖]
≤ (δ +1)[(1−βn)‖T xn−T x∗‖+βnδ ‖T xn−T x∗‖]
= (δ +1)(1−βn(1−δ ))‖T xn−T x∗‖→ 0 as n→ ∞. (19)

From (18) and (19), it follows that σn = O(λn). Now, by applying Lemma 1.11
we get

lim
n→∞
‖T xn−Tun‖= 0.

Hence

‖T x∗−Tun‖ ≤ ‖T xn−Tun‖+‖T xn−T x∗‖→ 0 as n→ ∞.

Since the condition u0 = x0 is superfluous, taking T = I, the identity map in
Theorem 2.3 we get the result proved by Şoltuz [[17], Theorem 1] as a corollary
to our result.

Corollary 2.4. Let E be a normed linear space, K a nonempty, closed, convex
subset of E and T : K → K be a Z-operator. Suppose that T has a fixed point
x∗ in K. Let the Mann iteration for u0 ∈ K be defined by (4) and the Ishikawa

iteration for x0 ∈K be defined by (6) with {αn} ,{βn}∈ (0,1) satisfying
∞

∑
n=0

αn =

∞. Then the following are equivalent:
(i) The Mann iteration converges to x∗;
(ii) The Ishikawa iteration converges to x∗.
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