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ON SOME INTERESTING PROPERTIES OF MULTIVALENT
ANALYTIC FUNCTIONS INVOLVING A LIU-OWA OPERATOR

ALI MUHAMMAD

In this paper, we introduce some new subclasses of multivalent ana-
lytic functions in the unit disc E, and investigate a number of inclusion
relationships, radius problem, and some other interesting properties of
p-valent functions which are defined here by means of a certain integral
operator Qα

β ,p f (z).

1. Introduction

Let A(p)denote the class of functions f (z) normalized by

f (z) = zp +
∞

∑
k=1

ak+pzk+p, (p ∈ N= {1,2, . . .}), (1)

which are analytic and p-valent in the open unit disc E = {z : |z|< 1}.
Let Pk(ρ) be the class of functions p(z) analytic in E with p(0) = 1 and

2π∫
0

∣∣∣∣ℜp(z)−ρ

1−ρ

∣∣∣∣dθ ≤ kπ, z = reiθ , (2)
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where k > 2 and 0 ≤ ρ < 1. This class was introduced by Padmanabhan et al,
see [6]. We note that Pk(0) = Pk (see Pinchuk [7]), P2( ρ) = P(ρ), the class
of analytic functions with positive real part greater than ρ and P2(0) = P, the
class of functions with positive real part. From (2) we can easily deduce that
p(z) ∈ Pk(ρ) if and only if there exists p1(z), p2(z) ∈ P(ρ) such that for z ∈ E,

p(z) =
(

k
4
+

1
2

)
p1(z)−

(
k
4
− 1

2

)
p2(z). (3)

For functions f j(z) ∈ A(p), given by

f j(z) = zp +
∞

∑
k=1

ak+p, jzk+p ( j = 1,2) , (4)

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

( f1 ? f2)(z) = zp +
∞

∑
k=1

ak+p,1ak+p,2zk+p = ( f2 ? f1)(z) (z ∈ E) . (5)

Motivated by Jung et al. [2] Liu and Owa [3] considered the linear operator
Qα

β ,p :A(p)−→A(p) defined as follows:

Qα

β ,p f (z) =
(

p+α +β −1
p+β −1

)
α

zβ

z∫
0

(
1− t

z

)α−1

tβ−1 f (t)dt

for α > 0, β >−1, (6)

and
Q0

β ,p f (z) = f (z) for α = 0, β >−1. (7)

We note that if f ∈ A(p) then, from (6) and (7), it follows that

Qα

β ,p f (z) = zp +
Γ(p+α +β )

Γ(p+β )

∞

∑
k=p+1

Γ(k+β )

Γ(k+α +β )
akzk,

whenever α ≥ 0 and β >−1. Using the above relation, it is easy to verify that

z(Qα

β ,p f (z))′ = (p+α +β −1)Qα−1
β ,P f (z)− (α +β −1)Qα

β ,P f (z). (8)

For the interested readers we refer to the work done by the authors [1,3].
Using the operator Qα

β ,p, we now define a subclass of A(p) as follows ([9–
11]):
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Definition 1.1. Let α ≥ 0, β > −1, µ > 0, λ ∈ C∗ = C\{0}, p ∈ N, we say
that a function f (z) ∈ A(p) is in the class T α

β ,p,k(λ ,µ,ρ) if it satisfies:(1−λ )

(
Qα

β ,p f (z)

Qα

β ,pg(z)

)µ

+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)(
Qα

β ,p f (z)

Qα

β ,pg(z)

)µ−1
 ∈ Pk(ρ),z ∈ E,

(9)
where k ≥ 2, 0≤ ρ < 1 and g ∈ A(p) satisfies the condition(

Qα−1
β ,p g(z)

Qα

β ,p g(z)

)
∈ P(η),z ∈ E, with 0≤ η < 1. (10)

In the present paper, we investigate a number of inclusion relationships, ra-
dius problem, and some other interesting properties of p-valent functions which
are defined here by means of a certain integral operator Qα

β ,p f (z).

2. Preliminaries

In this section we recall some known results.

Lemma 2.1 ([4]). Let u= u1+ iu2, v= v1+ iv2 and Ψ(u,v) be a complex valued
function satisfying the conditions:
(i) Ψ(u,v) is continuous in a domain D⊂ C2,
(ii) (1,0) ∈ D and ℜΨ(1,0)> 0,
(iii) ℜΨ(iu2,v1)≤ 0, whenever (iu2,v1) ∈ D and v1 ≤−1

2

(
1+u2

2
)
.

If h(z) = 1+ c1z+ · · · is a function analytic in E such that (h(z),zh′(z)) ∈ D
and ℜΨ(h(z),zh′(z))> 0 for z ∈ E, then ℜh(z)> 0 in E.

Lemma 2.2 ([8]). If p(z) is analytic in E with p(0) = 1 and if λ1 is a complex
number satisfying ℜ(λ1)≥ 0 (λ1 6= 0), then

ℜ

{
p(z)+λ1zp

′
(z)
}
> σ (0≤ σ < 1).

Implies
ℜp(z)> σ +(1−σ)(2γ1−1),

where γ1 is given by

γ1 = γ1(ℜλ1) =

1∫
0

(i+ tℜλ1)dt,

which is an increasing function of ℜλ1 and 1
2 ≤ γ1 < 1. The estimate is sharp

in the sense that the bound cannot be improved.
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Lemma 2.3 ([1]). If q(z) be analytic in E with q(0) = 1 and ℜq(z)> 0, z ∈ E.
Then, for |z|= r, z ∈ E,

(i) 1−r
1+r ≤ℜq(z)≤ |q(z)| ≤ 1+r

1−r ,

(ii) |q′(z)| ≤ 2ℜq(z)
1−r2 .

3. Main Results

Theorem 3.1. Let f ∈ T α

β ,p,k(λ ,µ,ρ) and ℜλ > 0. Then
(

Qα

β ,p f (z)
Qα

β ,p g(z)

)µ

∈ Pk(γ),

where

γ =
2µ(p+α +β −1)ρ +λδ

2µ(p+α +β −1)+λδ
, (11)

and g ∈ A(p) satisfies the condition (10) and

δ =
ℜh0(z)

|h0(z)|2
, h0(z) =

(
Qα−1

β ,p g(z)

Qα−1
β ,p g(z)

)
.

Proof. Set (
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

= (1− γ)h(z)+ γ, (12)

h(0) = 1, and h(z) is analytic in E and we can write

h(z) = (
k
4
+

1
2
)h1(z)− (

k
4
− 1

2
)h2(z). (13)

Differentiating (12) with respect to z and using the identity (8), we have(1−λ )

(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ−1


= (
k
4
+

1
2
)

{
(1− γ)h1(z)+ γ−ρ +

λ (1− γ)zh′1(z)
µ(p+α +β −1)h0(z)

}
− (

k
4
− 1

2
)

{
(1− γ)h2(z)+ γ−ρ +

λ (1− γ)zh′2(z)
µ(p+α +β −1)h0(z)

}
.

Now, we form the functional Ψ(u,v) by choosing u = hi(z) = u1 + iu2 and v =
zh′i(z) = v1 + iv2. Thus

Ψ(u,v) =
{
(1− γ)u+ γ−ρ +

λ (1− γ)v
µ(p+α +β −1)h0(z)

}
.
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The first two conditions of Lemma 2.1 are clearly satisfied. We verify the con-
dition (iii) as follows:

Ψ(iu2,v1) = γ−ρ +
λ (1− γ)v1ℜh0(z)

µ(p+α +β −1) |h0(z)|2

= γ−ρ +
λ (1− γ)v1δ

µ(p+α +β −1)
, where δ =

ℜh0(z)

|h0(z)|2
.

Now, for v1 ≤−1
2(1+u2

2), we have

ℜΨ(iu2,v1)≤ γ−ρ− 1
2

λ (1− γ)(1+u2
2)δ

µ(p+α +β −1)

=
2µ(p+α +β −1)(γ−ρ)−λδ (1− γ)−λδ (1− γ)u2

2
2µ(p+α +β −1)

=
A+Bu2

2
2C

, C > 0,

A = 2µ(p+α +β −1)(γ−ρ)−λδ (1− γ),

B =−λδ (1− γ)≤ 0.

Now, ℜΨ(iu2,v1) ≤ 0 if A ≤ 0 and this gives us γ as defined by (11). We now
applying Lemma 2.1 to conclude that hi ∈ P for z ∈ E and thus h ∈ Pk which
gives us the required result.

We note that γ = ρ when η = 0.

Theorem 3.2. For λ ≥ 1, let f ∈ T α

β ,p,k(λ ,µ,ρ). Then

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)
∈ Pk(ρ), for z ∈ E.

Proof. We can write, for λ ≥ 1,

λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)
=

{
(1−λ )

(
Qα

β ,p f (z)

Qα

β ,pg(z)

)
+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)}

+(λ −1)

(
Qα

β ,p f (z)

Qα

β ,pg(z)

)
.
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This implies that(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)
=

1
λ

{
(1−λ )

(
Qα

β ,p f (z)

Qα

β ,pg(z)

)
+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)}

+(1− 1
λ
)

(
Qα

β ,p f (z)

Qα

β ,pg(z)

)
=

1
λ

H1(z)+(1− 1
λ
)H2(z).

Since H1(z), H2(z) ∈ Pk(ρ), by Theorem 3.1, Definition 1.1 and since Pk(ρ) is
a convex set (see [5]), we obtain the required result.

Theorem 3.3. Let λ ∈ C\{0} with ℜλ > 0. If f ∈ A(p) satisfies the following
condition:(1−λ )

(
Qα

β ,p f (z)

zp

)µ

+λ

(
Qα−1

β ,p f (z)

zp

)(
Qα

β ,p f (z)

zp

)µ−1
 ∈ Pk(ρ),

for µ > 0 (z ∈ E), then (
Qα

β ,p f (z)

zp

)µ

∈ Pk(σ),

where

σ = ρ +(1−ρ)(2σ1−1) with σ1 =

1∫
0

(1+ tℜ
λ

µ(p+α+β−1) )dt.

The value of σ is the best possible and cannot be improved.

Proof. We set(
Qα

β ,p f (z)

zp

)µ

= h(z) = (
k
4
+

1
2
)h1(z)− (

k
4
− 1

2
)h2(z),

where h(0) = 1 and h is analytic in E. Then by simple computations together
with (8), we have(1−λ )

(
Qα

β ,p f (z)

zp

)µ

+λ

(
Qα−1

β ,p f (z)

zp

)(
Qα

β ,p f (z)

zp

)µ−1


=

{
h(z)+

λ zh′(z)
µ(p+α +β −1)

}
∈ Pk(ρ), z ∈ E.
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Using Lemma 2.2, we note that hi(z) ∈ P(σ), where

σ = ρ +(1−ρ)(2σ1−1), σ1 =

1∫
0

(1+ tℜ
λ

µ(p+α+β−1) )dt, (14)

and consequently h(z) ∈ Pk(σ) and this gives the required result.

We note that σ1 given by (14) can be expressed in terms of hypergeometric
function as

σ1 =

1∫
0

(1+ tℜ
λ

µ(p+α+β−1) )dt

=
µ(p+α +β −1)

λ1

1∫
0

u
µ(p+α+β−1)

λ1
−1
(1+u)−1du, (λ1 = ℜλ > 0)

= 2F1(1,
µ(p+α +β −1)

λ1
;1+

µ(p+α +β −1)
λ1

;−1)

= 2F1(1,1;1+
µ(p+α +β −1)

λ1
;
1
2
).

Consider the operator defined by

Fc =

 pµ + c
zc

z∫
0

tc−1 ( f (t))µ dt

 1
µ

z ∈ E. (15)

It is clear that the function Fc ∈ A(p) and

zc(Qα

β ,p f (z))µ = (pµ + c)
z∫

0

tc−1
(

Qα

β ,P f (t)
)µ

dt, z ∈ E. (16)

Theorem 3.4. Let λ > 0, µ > 0 and c>−pµ. If f ∈A(p) satisfies the following
condition:(1−λ )

(
Qα

β ,p f (z)

zp

)µ

+λ
(Qα

β ,p f (z))′

pzp−1

(
Qα

β ,p f (z)

zp

)µ−1
 ∈ Pk(ρ),

for µ > 0 (z ∈ E), (17)
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then the function defined by(1−λ )

(
Qα

β ,p Fc(z)

zp

)µ

+λ
(Qα

β ,p Fc(z))′

pzp−1

(
Qα

β ,p Fc(z)

zp

)µ−1
 ∈ Pk(α1),

(18)
where

α1 = ρ +(1−ρ)(2σ2−1) with σ2 =

1∫
0

(1+ tℜ
1

pµ+c )dt.

The value of α1 is best possible and cannot be improved.

Proof. It is clear that Fc ∈A(p) and differentiating both sides of (16), we obtain

(pµ+c)

(
Qα

β ,p f (z)

zp

)µ

= c

(
Qα

β ,p f (z)

zp

)µ

+µ
(Qα

β ,pFc(z))′

pzp−1

(
Qα

β ,pFc(z)

zp

)µ−1

.

(19)
Letting

G(z) =

(1−λ )

(
Qα

β ,pFc(z)

zp

)µ

+λ
(Qα

β ,pFc(z))′

pzp−1

(
Qα

β ,pFc(z)

zp

)µ−1
 ,z ∈ E,

(20)
where

G(z) = (
k
4
+

1
2
)g1(z)− (

k
4
− 1

2
)g2(z).

Then G(z) is analytic in E with G(0) = 1. Again differentiating (20) and using
(19) in the resulting equation, we have(1−λ )

(
Qα

β ,p f (z)

zp

)µ

+λ
(Qα

β ,p f (z))′

pzp−1

(
Qα

β ,p f (z)

zp

)µ−1


=

{
G(z)+

zG′(z)
(pµ + c)

}
∈ Pk(ρ) z ∈ E.

Using Lemma 2.2, we note that gi(z) ∈ P(α1), where

α1 = ρ +(1−ρ)(2σ2−1), σ2 =

1∫
0

(1+ tℜ
1

pµ+c )dt, (21)

and consequently G(z) ∈ Pk(α1) and this gives the required result.
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In term of hypergeometric function σ2 can be written as

σ2 =2 F1(1,1; pµ + c+1;
1
2
).

Theorem 3.5. For 0≤ λ2 < λ1,

T α

β ,p,k(λ1,µ,ρ)⊂ T α

β ,p,k(λ2,µ,ρ).

Proof. If λ2 = 0, then the proof is immediate from Theorem 3.1. Let λ2 > 0
and f ∈ T α

β ,p,k(λ1,µ,ρ). Then there exist two functions H1, H2 ∈ Pk(ρ) such
that

(1−λ )

(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ−1

= H1(z),

and (
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

= H2(z).

Then

(1−λ2)

(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

+λ2

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ−1

=
λ2

λ1
H1(z)+(1− λ2

λ1
)H2(z), (22)

and since Pk(ρ) is a convex set, see [5] it follows that the right hand side of (22)
belongs to Pk(ρ) and this completes the proof.

We next take the converse case of Theorem 3.1 as follows:

Theorem 3.6. Let
(

Qα

β ,p f (z)
Qα

β ,p g(z)

)µ

∈ Pk(ρ) with
(

Qα−1
β ,p g(z)

Qα

β ,p g(z)

)
∈ P(η), for z ∈ E.

Then f ∈ T α

β ,p,k(λ ,µ,ρ) for |z|< r, where r is given by

r = µ(p+α +β −1)
/(
{(1−η)µ(p+α +β −1)+ |λ |}

+

√
ηµ(p+α +β −1)2 + |λ |2 +2 |λ |(1−η)µ(p+α +β −1).

)
(23)

Proof. Let (
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

= H,

(
Qα−1

β ,p g(z)

Qα

β ,p g(z)

)
= H0,
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then H ∈ Pk(ρ), H0 ∈ P(η).
Proceeding as in Theorem 3.1, for α ≥ 0, β >−1, µ > 0, k≥ 2, λ ∈C\{0},

0≤ ρ, η < 1, and

H = (1−ρ)h+ρ, H0 = (1−η)h0 +η , with h ∈ Pk, h0 ∈ P,

we have

1
1−ρ

(1−λ )

(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ

+λ

(
Qα−1

β ,p f (z)

Qα−1
β ,p g(z)

)(
Qα

β ,p f (z)

Qα

β ,p g(z)

)µ−1

−ρ


=

{
h(z)+

λ

µ(p+α +β −1)
zh′(z)

(1−η)h0(z)+η

}
=

(
k
4
+

1
2

)[
h1(z)+

λ

µ(p+α +β −1)
zh′1(z)

{(1−η)h0(z)+η}

]
−
(

k
4
− 1

2

)[
h2(z)+

λ

µ(p+α +β −1)
zh′2(z)

{(1−η)h0(z)+η}

]
.

Using well known estimates, see [2], for hi ∈ P,∣∣zh′i(z)
∣∣≤ 2rℜhi(z)

1− r2 ,
1− r
1+ r

≤ |hi(z)| ≤
1+ r
1− r

,

we have

ℜ

[
hi(z)+

λ

µ(p+α +β −1)
zh′i(z)

{(1−η)h0(z)+η}

]
≥ℜhi(z)

[
1− 2 |λ |r

µ(p+α +β −1)
1

1− r2

(
1+ r

(1− (1−2η)r)

)]
≥ℜhi(z)

[
1− 2 |λ |r

µ(p+α +β −1)
1

1− r

(
1+ r

(1− (1−2η)r)

)]
≥ℜhi(z)

[
µ(p+α +β −1)[(1− r− (1−2η)r+(1−2η)r2]−2 |λ |r

µ(p+α +β −1)(1− r){1− (1− (1−2η)r}

]
≥ℜhi(z)

[
µ(p+α +β −1)(1−2η)r2−2[(1−η)µ(p+α +β −1)

µ(p+α +β −1)(1− r){1− (1− (1−2η)r}

× + |λ |]r+µ(p+α +β −1)
µ(p+α +β −1)(1− r){1− (1− (1−2η)r}

]
. (24)

Right hand side of (24) is positive for |z|< r, where r is given by (23).

We note that , for p= 1= µ, α = 0, β >−1, η = 0 and λ = 1,
(

f
g

)
∈Pk(ρ),

for z ∈ E implies
(

f ′
g′

)
∈ Pk(ρ) for |z|< R = 1

2+
√

3
.
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