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DECAY ESTIMATES OF VISCOSITY SOLUTIONS
OF NONLINEAR PARABOLIC PDES AND APPLICATIONS

SILVANA MARCHI

The aim of this paper is to establish decay estimates for viscosity solu-
tions of nonlinear parabolic PDEs. As an application we prove existence
and uniqueness for time almost periodic viscosity solutions.

1. Background and motivation

In this paper we shall deal with viscosity solutions of the Cauchy problem{
(E) ut +H(t,x,u,Du,D2u) = f (t,x), (t,x) ∈ (0,T )×RN

(IC) u(0,x) = uo(x), x ∈ RN (1)

in which T is a given positive number, H is a real-valued function defined on
[0,T )×RN ×R×RN ×S(N), where S(N) denotes the set of real N×N matri-
ces, uo and f are given real-valued continuous functions defined on RN , and on
[0,T )×RN respectively; u is the real-valued unknown function and ut , Du and
D2u denote the partial derivative with respect to t, the gradient with respect to x
and the Hessian matrix with respect to x respectively.

We recall that the notion of viscosity solution was introduced by Crandall
and Lions [9] in the case of first-order PDEs. This generalized solution need
not be differentiable anywhere, as the only regularity required in the definition
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is continuity. The authors (see also [7]) studied existence and uniqueness of
viscosity solutions, the uniqueness following from comparison theorems. The
method was improved by several authors (see among others Souganidis [18] and
Barles [2]).

The generalization of the comparison results to the case of second order
PDEs was first done by Lions [16] and Jensen [15] and then improved by sev-
eral authors, in particular by Crandall, Ishii, Lions, see [8]. See also Ishii and
Kobayasi [11] using a Osgood type condition and Bieske [3] in the case of
vector fields. A uniqueness statement obviously follows from the comparison
principle.

Our purpose in this paper is to exploit the comparison result as stated in [8]
on a bounded domain to prove it for an unbounded domain and, consequently, to
prove decay estimates for viscosity sub/super solutions of (E), that is estimates
of the difference between a subsolution and a supersolution in terms of the data
of the related problems and the time (see §3).

In §4 we refer to [11] for an existence statement, based on the Perron’s
method, as regards to the solutions of (1).

Quite possibly more general theorems about existence or/and uniqueness of
the solutions of (1) could be established using some refinements from [8], [11]
or the results performed by other authors, but this is enough for our aim in this
paper.

In §5 we apply the above decay estimates and the above existence results
to establish an existence and uniqueness result of time almost periodic (briefly
a.p.), or periodic, viscosity solutions of (E) in R×RN in case f = f (t) is in-
dependent of x and a.p. in t, and H is independent of t. We establish also the
Lipschitz continuity of the solution. Moreover we state the equivalence between
the solvability of the same equation (E) on R×RN and that of the stationary
equation H(x,u,Du,D2u) =< f > on RN , where < f > is the average on R of
the a.p. function f .

In this last section we extend to the second order PDEs the results, regarding
first order evolution equations, of Bostan and Namah [5], using similar proofs.

It is worthwhile mentioning that part of the results of the present paper are
obtained in [20] but for a bounded domain and different proofs.

2. Notations and Preliminaries

Let us start by listing the usual hypothesis used for the existence and/or unique-
ness results.

(H0 ) H ∈C([0,T )×RN×R×RN×S(N)).
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(H1 ) (H is proper)
H(t,x,r, p,X)≥ H(t,x,s, p,Y )

whenever r ≥ s and X ≤ Y , for arbitrary t, x and p. Let us recall that
X ≤ Y when < Xh,h >≤< Y h,h > for every h ∈ RN .

(H2 )
H(t,x,r, p,X)−H(t,x,s, p,X)≥ γ(r− s)

where γ is a suitable positive constant, for any r ≥ s, and arbitrary t, x, p,
X .

(H3 ) There is a continuous and nondecreasing function ω : [0,+∞)→ [0,+∞)
such that ω(0) = 0 and

H(t,x,r, p,X)−H(t,y,r,q,Y )≤ ω(|x− y|+ |p−q|+‖X−Y‖)

for arbitrary t, x, y, r p, q, X , Y .

For a set E, C(E) denotes the set of real valued continuous functions on E
and UC(E) denotes the subspace of C(E) consisting of the uniformly continu-
ous functions on E. Let USC(E) (or LSC(E)) denote the sets of the real valued
upper (or lower) semicontinuous functions on E. Denote QT = (0,T )×RN and
RT = [0,T )×RN for T > 0.

3. Comparison principle and decay estimate

There are equivalent definitions of viscosity subsolutions or supersolutions. We
briefly recall here the ones we will use in the following, referring the reader to
[8] for more details on the subject.

Definition 3.1. A function u ∈USC(QT ) is a viscosity subsolution of the equa-
tion (E) in QT if for all (to,xo) ∈ QT and for all φ ∈C2(QT ), if

u(t,x)−φ(t,x)≤ u(to,xo)−φ(to,xo)

for every (t,x) ∈ QT , then

φt(to,xo)+H(to,xo,u(to,xo),Dφ(to,xo),D2
φ(to,xo))≤ f (to,xo)

We say that u ∈USC(RT ) is a viscosity subsolution of the problem (1) if u is
a viscosity subsolution of the equation (E) on QT such that u(0,x) ≤ uo(x) for
x ∈ RN . A function v ∈ LSC(RT ) is a viscosity supersolution of the equation
(E) on QT or of the problem (1) if u = −v is a viscosity subsolution of the
equation (E) on QT or of the problem (1) respectively. A viscosity solution of
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the equation (E) on QT or of the problem (1) is a function u ∈C(RT ) which is
both viscosity subsolution and supersolution of the equation (E) on QT or of the
problem (1) respectively.

As in the following we will deal only with viscosity sub(super)solutions or
solutions we will omit the term “viscosity” for sake of simplicity.

The following comparison principle can be proved following the outline of
[8, Theorem 8.2] but taking into account that, due to the unboundedness of the
domain (RN), we must add to the penalization function a term which goes to
infinity when x or y go to infinity, see for examples [2], [4] or [17].

Proposition 3.2 (Comparison principle). Let H satisfy (H0), (H1), (H3) and
let f uniformly continuous on x ∈ RN uniformly w.r.t. t ∈ [0,T ). Let u, v be
subsolution and respectively supersolution of (1) such that u− v is bounded
above. Then u≤ v on RT .

Proof. As in [8, Theorem 8.2] we easily recognize that it will simply suffice to
prove the comparison under the additional assumptions

(i) ut +H(t,x,u,Du,D2u)≤ f (t,x)− ε

T 2 ,

(ii) lim
t↑T

u(t,x) =−∞ uniformly on RN . (2)

Let us suppose by contradiction that there exists (to,xo) ∈ [0,T )×RN such that

u(to,xo)− v(to,xo) = δ > 0 (3)

For any α , β > 0 let

wα,β (t,x,y) = u(t,x)− v(t,y)− α

2
|x− y|2− β

2
(|x|2 + |y|2)

and let

Mα,β = max
[0,T )×RN×RN

wα,β (t,x,y) = wα,β (tα,β ,xα,β ,yα,β ).

Such a maximum exists because wα,β (t,x,y)→−∞ if |x|+ |y| →+∞ or t ↑ T .
Moreover u− v is bounded above and upper semicontinuous. By (3), Mα,β ≥
δ −β |xo|2. Let β be so small that δ −β |xo|2 ≥ σ > 0

Using [2, Lemma 2.9] we have for α →+∞ and β → 0

α

2
|xα,β − yα,β |2 +

β

2
(|xα,β |2 + |yα,β |2)→ 0. (4)
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If tα,β = 0 for α→+∞ and β → 0 (or this holds for a subsequence of tα,β ) then
we have

0 < σ ≤Mα,β

≤ sup
RN×RN

uo(xα,β )−uo(yα,β )−
α

2
|xα,β − yα,β |2−

β

2
(|xα,β |2 + |yα,β |2) (5)

and we obtain a contradiction for α →+∞ and β → 0 in virtue of (4).
Then tα,β > 0 for α → +∞ and β → 0. Applying [8, Theorem 8.3] at

(tα,β ,xα,β ,yα,β ) we obtain the relations (if C = ε

T 2 )

a+H(tα,β ,xα,β ,u(tα,β ,xα,β ),α(xα,β − yα,β )+βxα,β ,X)≤−C+ f (tα,β ,xα,β )

a+H(tα,β ,yα,β ,v(tα,β ,yα,β ),α(xα,β − yα,β )−βyα,β ,Y )≥ f (tα,β ,yα,β ) (6)

for suitable a ∈ R and X , Y ∈ S(N) satisfying the condition X ≤ Y +O(β ) for
β → 0. Let us observe that

u(tα,β ,xα,β )≥ v(tα,β ,yα,β ) (7)

because otherwise Mα,β < 0. From (6), (7) and taking into account the assump-
tions (H1) and (H3) we obtain

C+ f (tα,β ,yα,β )− f (tα,β ,xα,β )

≤ H(tα,β ,yα,β ,v(tα,β ,yα,β ),α(xα,β − yα,β )−βyα,β ,Y )

−H(tα,β ,xα,β ,u(tα,β ,xα,β ),α(xα,β − yα,β )+βxα,β ,X)

≤ H(tα,β ,yα,β ,u(tα,β ,xα,β ),α(xα,β − yα,β )−βyα,β ,X +O(β )) (8)

−H(tα,β ,xα,β ,u(tα,β ,xα,β ),α(xα,β − yα,β )+βxα,β ,X)

≤ ω(|xα,β − yα,β |+β |xα,β + yα,β |+‖O(β )‖)→ 0

if α→+∞ and β → 0. As f (tα,β ,yα,β )− f (tα,β ,xα,β )→ 0 when α→+∞ and
β → 0 we have again a contradiction. This completes the proof.

Theorem 3.3 (Decay estimate). Let H satisfy (H0), . . . , (H3). Let f 1, f 2 ∈
C([0,T ) ×RN) be bounded and uniformly continuous in x ∈ RN uniformly w.r.t.
t ∈ [0,T ). Let u be a bounded subsolution of

ut +H(t,x,u,Du,D2u) = f 1(t,x), (t,x) ∈ QT

and let v be a bounded supersolution of

vt +H(t,x,v,Dv,D2v) = f 2(t,x), (t,x) ∈ QT .
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Then for every t ∈ [0,T ) we have

eγt sup
x∈RN

(u(t,x)− v(t,x))+ ≤ ‖(u(0, ·)− v(0, ·))+ ‖L∞(RN) (9)

+
∫ t

0
eγs‖

(
f 1(s, ·)− f 2(s, ·)

)
+
‖L∞(RN) ds.

Proof. For (t,x) ∈ QT , set w1(t,x) := eγtu(t,x) and w2(t,x) := eγtv(t,x)+A(t),
where

A(t) := ‖(u(0, ·)− v(0, ·))+ ‖L∞(RN)+
∫ t

0
eγs‖

(
f 1(s, ·)− f 2(s, ·)

)
+
‖L∞(RN) ds

It is not hard to see that w1 and w2 are a subsolution and resp. a supersolution
of the equation

ϕt(t,x)+ H̃(t,x,ϕ,Dϕ,D2
ϕ) = eγt f 1(t,x)

in (0,T )×RN , where H̃(t,x,ϕ,Dϕ,D2ϕ) = eγtH(t,x,e−γtϕ,e−γtDϕ,e−γtD2ϕ)
−γϕ and where H̃(t,x,ϕ, p,X) = eγtH(t,x,e−γtϕ,e−γt p,e−γtX)− γϕ satisfies
(H0), (H1) and (H3).

In fact, about w1, let (to,xo) be a maximum point for w1−ψ , where ψ ∈
C2(QT ). We can suppose ψ(t,x) = eγtα(t,x) where α ∈C2(QT ). So w1−ψ =
eγt(u−α). Let ψo(t,x) =ψ(t,x)+L where L=w1(to,xo)−ψ(to,xo). So (to,xo)
is a maximum point for w1−ψo and (w1−ψo)(t,x) ≤ (w1−ψo)(to,xo) = 0.
Let αo = α +Le−γt . Then w1−ψo = (u−αo)eγt and (u−αo)(t,x) = e−γt(w1−
ψo)(t,x)≤ 0≤ e−γto(w1−ψo)(to,xo) = (u−αo)(to,xo), that is (to,xo) is a max-
imum point also for (u−αo). The definition of subsolution implies that

(αo)t(to,xo)+H(to,xo,u(to,xo),Dαo(to,xo),D2
αo(to,xo))≤ f 1(to,xo)

that is, as αo = e−γtψo,

ψt(to,xo)+ eγtoH(to,xo,e−γtow1(to,xo),e−γtoDψ(to,xo),e−γtoD2
ψ(to,xo))

−γw1(to,xo)≤ eγto f 1(to,xo).

With regard to w2 take into account that, in virtue of (H2), we have

eγtoH(to,xo,e−γto(w2(to,xo)−A(to)),e−γtoDψ(to,xo),e−γtoD2
ψ(to,xo))

≤ eγtoH(to,xo,e−γtow2(to,xo),e−γtoDψ(to,xo),e−γtoD2
ψ(to,xo))− γA(to)

where (to,xo) is a minimum point for (w2− A)−ψ , i.e. for w2− ϕ , where
ϕ = ψ +A.
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Let us observe that Dψ = Dϕ , D2ψ = D2ϕ , ψt = ϕt − At and, as At ≥
eγt‖

(
f 1(t, ·)− f 2(t, ·)

)
+
‖L∞(RN), then

eγto f 2(to,xo)+At(to)≥ eγto f 1(to,xo).

It is also clear that w1(0,x) ≤ w2(0,x) on RN . By the comparison principle,
Proposition 3.2, we get

w1(t,x)≤ w2(t,x) on RT ,

and the conclusion follows.

Corollary 3.4. Let the hypothesis of Theorem 3.3 be in force. Then for all
t ∈ [0,T )

sup
x∈RN

(u(t,x)− v(t,x))≤ e−γt‖(u(0, ·)− v(0, ·))+ ‖L∞(RN)

+ sup
0≤s≤t

∫ t

s
sup

x∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
dσ . (10)

Proof. Let us fix t ∈ [0,T ). We denote by h : [0,T )→ R the function h(σ) :=
supx∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
. Consider the function w : [0,T )×RN→R given

by

w(s,x) := v(s,x)+
∫ s

0
h(σ)dσ + sup

0≤τ≤t

(
−
∫

τ

0
h(σ)dσ

)
.

Let us denote for s ∈ [0,T )

A(s) :=
∫ s

0
h(σ)dσ + sup

0≤τ≤t

(
−
∫

τ

0
h(σ)dσ

)
.

It is easily seen that w is bounded because v and A are bounded. Moreover as in
the proof of Theorem 3.3 we can prove that w is a supersolution of ∂s+H = f 1,
(s,x)∈ (0, t)×RN . In fact if (so,xo)∈ (0, t)×RN is a minimum point for w−ϕ ,
where ϕ is a regular function in (0, t)×RN , i.e. for (w−A)− (ϕ−A) = v−ψ ,
where ψ = ϕ−A, then (as v is a supersolution) we give

ψs(so,xo)+H(so,xo,v(so,xo),Dψ(so,xo),D2
ψ(so,xo))≥ f 2(so,xo)

As v = w−A, in virtue of (H2) and being ψs = ϕs−As, Dψ = Dϕ , D2ψ = D2ϕ

we obtain

ϕs(so,xo)+H(so,xo,w(so,xo),Dϕ(so,xo),D2
ϕ(so,xo))

≥ γA(so)+As(so)+ f 2(so,xo)≥ f 1(so,xo).
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We deduce from Theorem 3.3 that for any (s,x) ∈ (0, t)×RN

eγs (u(s,x)−w(s,x))≤ sup
x∈RN

(u(0,x)−w(0,x))+ ≤ sup
x∈RN

(u(0,x)− v(0,x))+

implying that

u(s,x)− v(s,x)≤ e−γs sup
x∈RN

(u(0,x)− v(0,x))++
∫ s

0
h(σ)dσ

+ sup
0≤τ≤t

(
−
∫

τ

0
h(σ)dσ

)
.

In particular (eventually changing t with t + ε for a small ε) for s = t one gets
for any x ∈ RN

u(t,x)− v(t,x)≤ e−γt sup
x∈RN

(u(0,x)− v(0,x))+

+ sup
0≤τ≤t

(∫ t

τ

sup
x∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
dσ

)
.

Note that in the right hand side term of (10) we have now supx∈RN

(
f 1(σ ,x)

− f 2(σ ,x)
)

and not supx∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
+

.

Corollary 3.5. Let H satisfy (H0), . . . , (H3). Let f 1, f 2 ∈C(R×RN) bounded
and uniformly continuous on x uniformly w.r.t. t. Let u be a bounded subsolution
of

ut +H(t,x,u,Du,D2u) = f 1(t,x)

in R×RN , and let v be a bounded supersolution of

vt +H(t,x,v,Du,D2v) = f 2(t,x)

in R×RN . Then for every t ∈ R we have

sup
x∈RN

(u(t,x)− v(t,x))≤ e−γt
∫ t

−∞

eγs‖
(

f 1(s, ·)− f 2(s, ·)
)
+
‖L∞(RN) ds. (11)

Proof. Take to, t ∈ R, to ≤ t and using the proof of Theorem 3.3 write for all
x ∈ RN

u(t,x)− v(t,x)≤ e−γ(t−to) · (‖u‖∞ +‖v‖∞)

+ e−γt
∫ t

to
eγs‖

(
f 1(s, ·)− f 2(s, ·)

)
+
‖L∞(RN) ds.

The conclusion follows by letting to→−∞.
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Corollary 3.6. Let the hypothesis of Corollary 3.5 be in force. Then for every
t ∈ R

sup
x∈RN

(u(t,x)− v(t,x))≤ sup
s≤t

∫ t

s
sup

x∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
dσ . (12)

Proof. Take to, t ∈R, to ≤ t. Repeating the proof of Corollary 3.4 in [to, t]×RN

we obtain

u(t,x)− v(t,x)≤ e−γ(t−to) sup
x∈RN

(u(to,x)− v(to,x))+

+ sup
to≤τ≤t

(∫ t

τ

sup
x∈RN

(
f 1(σ ,x)− f 2(σ ,x)

)
dσ

)
.

The conclusion follows by letting to→−∞.

4. Existence

We say that a continuous nondecreasing function m : [0,+∞)→ [0,+∞) is a
modulus if m(0) = 0 and m(r+s)≤m(r)+m(s) for any r, s≥ 0. Let T > 0 and
let UCs(RT ) denote the space of those u ∈C(RT ) for which there is a modulus
m and r > 0 such that

|u(t,x)−u(t,y)| ≤ m(|x− y|)

for (t,x), (t,y) ∈ RT with |x− y| ≤ r.
The following propositions establishes conditions under which the equation

(E) or the problem (1) admits a solution. We refer here to the results of [11] for
any proof pointing out that the assumptions (H0), . . . ,(H3) and the request that
f ∈C(RT ) is Lipschitz continuous in x uniformly w.r.t. t, imply the assumptions
(F0), . . . ,(F4) of [11]. We limit ourselves to remark that the proofs of [11] are
based on the Perron’s method (see to this end also the papers [12], [13], [14],
[8] ).

Proposition 4.1 ([11], Theorem 1, (ii)). Let H satisfy (H0), . . . ,(H3) where ω

in (H3) is a modulus, and let f ∈C(RT ) be Lipschitz continuous in x uniformly
w.r.t. t. Let u and ū be respectively a subsolution and a supersolution of the
equation (E) such that

u , ū ∈UCs(RT ), u≤ ū in QT .

Then there exists a solution u of the equation (E) such that u≤ u≤ ū in QT .
If we suppose also u(0,x) = ū(0,x) for every x ∈ RN , then there exists a

unique viscosity solution u ∈UCs(RT ) of the equation (E) which satisfies u ≤
u≤ ū in QT and u(0,x) = u(0,x) for every x ∈ RN .
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Proposition 4.2 ([11], Corollary 2). Let H and f satisfy the assumptions of the
above Proposition 4.1, and let uo ∈UC(RN). Then the Cauchy problem (1) has
a unique solution u ∈UCs(RT ).

Remark 4.3. In virtue of the Proposition 3.2 we can also affirm that, if u and
ū are respectively a subsolution and a supersolution of the equation (E) such
that u, ū ∈UCs(RT ) and u≤ u0 ≤ ū on {0}×RN where uo ∈UC(RN), then the
unique solution u of the problem (1) stated in Proposition 4.2 satisfies u≤ u≤ ū
on RT .

Remark 4.4. Let H be defined for t ∈ [0,+∞) with the properties required
in Proposition 4.2. Taking into account the arbitrariness of T > 0, in virtue
of Proposition 4.2 we can affirm the existence and uniqueness of a solution
u ∈UCs([0,T )×RN) for any T > 0, of the problem{

ut +H(t,x,u,Du,D2u) = f (t,x), (t,x) ∈ (0,+∞)×RN

u(0,x) = uo(x), x ∈ RN .
(13)

under the conditions uo ∈UC(RN) and f ∈C((0,+∞)×RN) Lipschitz contin-
uous in x uniformly w.r.t. t.

5. Application : existence of almost periodic viscosity solutions

We are now in a position to state the existence and uniqueness of almost periodic
(periodic) viscosity solutions of the equation

ut +H(x,u,Du,D2u) = f (t) , (t,x) ∈ R×RN (14)

where H is independent of t and f is continuous and almost periodic (briefly
a.p.) or periodic.

5.1. Almost periodic functions

In this subsection we recall the definition and some fundamental properties of
almost periodic functions. For more details one can refer to [6], [10].

Definition 5.1. Let f : R→R be a continuous function. We say that f is almost
periodic if it satisfies the following condition

∀ε > 0∃ l(ε)> 0 such that ∀a ∈ R∃τ ∈ [a,a+ l(ε)) satisfying

| f (t + τ)− f (t)|< ε , ∀t ∈ R (15)

A number τ verifying (15) is called ε almost period.
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Proposition 5.2. Assume that f : R→ R is almost periodic. Then

i) f is bounded and uniformly continuous in R.

ii) (1/T )
∫ a+T

a f (t)dt converges as T → +∞ uniformly with respect to a ∈ R.
The limit is called the average of f and denoted

< f >:= lim
T→+∞

1
T

∫ a+T

a
f (t)dt , uni f ormly w.r.t. a ∈ R

If f is periodic then < f > denotes the usual definition of mean of f over
one period.

iii) If F denotes a primitive of f , then F is almost periodic if and only if F is
bounded.

The following definition extends the notion of almost periodicity in order to
apply it to differential equations [19].

Definition 5.3. We say that u : R×RN → R is almost periodic in t uniformly
with respect to x if u is continuous in t uniformly with respect to x and

∀ε > 0∃ l(ε)> 0 such that ∀a ∈ R∃τ ∈ [a,a+ l(ε)) satisfying

|u(t + τ,x)−u(t,x)|< ε ∀(t,x) ∈ R×RN .

5.2. Existence of a.p. (periodic) solutions

For any interval I ⊆ R we will denote by BUC(I×RN) the set of all real func-
tions which are bounded and uniformly continuous on I×RN , equipped with
the uniform norm.

Theorem 5.4. Assume that H : RN×R×RN×S(N)→R (H is independent of
t) satisfies (H0), . . . ,(H3) where ω in (H3) is a modulus. Assume that f : R→R
is a continuous a.p. (periodic) function and assume that there exists a constant
M > 0 such that

H(x,−M,0,0)≤ f (t)≤ H(x,M,0,0) (16)

for every (t,x) ∈ R×RN .
Then there is a unique solution u ∈ BUC(R×RN) of (14) which is a.p.

(periodic) in t ∈ R uniformly w.r.t. x ∈ RN .
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Proof. First we prove the existence of the solution. For any integer n≥ 0 let un

be the solution un ∈UCs([−n,T )×RN) for any T >−n of the problem{
ut +H(x,u,Du,D2u) = f (t) , (t,x) ∈ (−n,+∞)×RN

u(−n,x) = 0 , x ∈ RN (17)

Let us observe that by virtue of hypothesis (16), on account of (17), Remark 4.3
and Remark 4.4, we have

−M ≤ un(t,x)≤M, (t,x) ∈ [−n,+∞)×RN .

Take t ∈ R and, for m ≥ n large enough, by Corollary 3.4 we can write for all
x ∈ RN and t ≥ to ≥−n

|un(t,x)−um(t,x)| ≤ e−γ(t−to) (‖un‖∞ +‖um‖∞)≤ 2Me−γ(t−to)

For to =−n we deduce |un(t,x)−um(t,x)| ≤ 2Me−γte−γn and thus there exists

lim
n→+∞

un(t,x) = u(t,x) , for every (t,x) ∈ R×RN .

Moreover (un)n converges uniformly on [a,+∞)×RN for every a ∈ R.
By using the stability result for continuous viscosity solutions [2], [8], we

deduce that u verifies (14) in the viscosity sense.
As un ∈UCs([−n,T )×RN), for any T > −n, then un(t.·) ∈UC(RN) uni-

formly w.r.t. t ∈ [−n,T ). Then for every a, b ∈ R, with a < b, for n large
enough, un(t, ·) ∈ UC(RN) uniformly w.r.t. t ∈ [a,b]. So for every a, b ∈ R,
with a < b, u(t, ·) ∈UC(RN) uniformly w.r.t. t ∈ [a,b]. Moreover we will prove
that u(·,x) is a.p. (periodic) in t ∈R (then uniformly continuous in t) uniformly
w.r.t. x ∈ RN . So u ∈ BUC([a,b]×RN) for every a, b ∈ R, with a < b, and by
almost periodicity, u ∈ BUC(R×RN).

To prove the almost periodicity fix an arbitrary ε > 0 and consider l(γε)
such that any interval of length l(εγ) contains a γε almost period of f . We will
show that any interval of length l(εγ) contains a number τ which is an ε-almost
period for u(·,x), for every x ∈ RN .

Indeed, consider an interval of length l(εγ), take τ a γε-almost period of
f and let us fix t̃ ∈ R. Observe that the function vn : [−n− τ,+∞)×RN → R,
vn(t,x) := un(t + τ,x) solves in the viscosity sense

∂tvn +H(x,vn,Dvn,D2vn) = f (t + τ) , (t,x) ∈ (−n− τ,+∞)×RN

By Theorem 3.3 we have for all t ≥ tn = max{−n,−n− τ}

|un(t,x)− vn(t,x)| ≤ e−γ(t−tn) (‖un‖∞ +‖vn‖∞)

+ e−γ(t−tn)
∫ t

tn
eγσ | f (σ + τ)− f (σ)|dσ (18)
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In particular, for t = t̃ and n large enough, we obtain

|un(t̃,x)−un(t̃ + τ,x)| ≤ 2Me−γ(t̃−tn)+ e−γ t̃
∫ t̃

tn
eγσ

γε dσ ≤ 2Me−γ(t̃−tn)+ ε.

By letting n→+∞ we have tn→−∞ and therefore

|u(t̃,x)−u(t̃ + τ,x)| ≤ ε , (t̃,x) ∈ R×RN .

In case of f periodic of period T > 0 the same calculations give

|un(t,x)−un(t +T,x)| ≤ 2Me−γ(t+nT )

for any x ∈ RN and t ≥ tn =−nT , in place of (18), and the result follows again
by letting n→+∞.

Theorem 5.5. Let the assumptions of Theorem 5.4 be in force. Assume also that

(H4 ) lim|p|→+∞ H(x,r, p,X) = +∞

uniformly w.r.t. x, r, X. Then the solution u of (14) is also Lipschitz continuous
on R×RN .

Proof. Let un be the solution of (17) and let h ∈ R. Observe that, from the
autonomous character of the Hamiltonian H, vn(t,x) := un(t+h,x) solves in the
viscosity sense

∂tvn +H(x,vn,Dvn,D2vn) = f (t +h) , (t,x) ∈ [−n−h,+∞)×RN

By Corollary 3.4 we have, for all t ≥ tn = max{−n,−n−h}, x ∈ RN

|un(t,x)−un(t +h,x)| ≤ 2Me−γ(t−tn)+ sup
s∈[tn,t]

∫ t

s
[ f (σ +h)− f (σ)]dσ

where

sup
s∈[tn,t]

∫ t

s
[ f (σ +h)− f (σ)]dσ = sup

s∈[tn,t]
{
∫ (t+h)

t
f (σ)dσ −

∫ (s+h)

s
f (σ)dσ}

≤ 2|h|‖ f‖∞

and then
|un(t,x)−un(t +h,x)| ≤ 2Me−γ(t−tn)+2|h|‖ f‖∞

If n→+∞, then we obtain |un(t,x)−un(t +h,x)| ≤ 2|h|‖ f‖∞ for every (t,x) ∈
R×RN and h ∈ R. So u is Lipschitz continuous w.r.t. t ∈ R uniformly w.r.t.
x ∈ RN , and then ut is bounded in the viscosity sense. But u solves (14). So, by
assumption (H4) we obtain that Du is bounded in the viscosity sense and then u
is also Lipschitz w.r.t. x ∈ RN uniformly w.r.t. t ∈ R (ref [4], Proposition 3.6).
It follows that u is Lipschitz continuous in R×RN .
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The following theorem establishes a close relation between the existence of
time almost periodic (periodic) viscosity solutions of (14) and that of stationary
viscosity solutions for the time averaged equation

H(x,u,Du,D2u) =< f > in RN (19)

Theorem 5.6. Assume that H satisfies (H0), (H1), (H3), (H4) (the assumption
(H2) is unnecessary in this case) and sup{|H(x,0,0,0)| : x ∈ RN}=C <+∞.
Assume that f : R → R is an almost periodic (periodic) function such that
F(t) :=

∫ t
0{ f (σ)− < f >}dσ is bounded on R. Then there is a bounded Lip-

schitz time almost periodic (periodic) viscosity solution of (14) if and only if
there is a bounded Lipschitz viscosity solution of (19).

Proof. The proof is substantially the same of [5, Theorem 8], and uses Proposi-
tion 5.2 and Corollary 3.6.
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