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PRIME INJECTIONS AND QUASIPOLARITIES

OCTAVIO A. AGUSTÍN-AQUINO

Let p be a prime number. Consider the injection

ι : Z/nZ→ Z/pnZ : x 7→ px,

and the elements eu.v := (u,v) ∈ Z/nZoZ/nZ× and ew.r := (w,r) ∈
Z/pnZoZ/pnZ×. Suppose that eu.v ∈ Z/nZoZ/nZ× is seen as an au-
tomorphism of Z/nZ defined by eu.v(x) = vx+u; then eu.v is a quasipo-
larity if it is an involution without fixed points. In this brief note we give
an explicit formula for the number of quasipolarities of Z/nZ in terms
of the prime decomposition of n, and we prove sufficient conditions such
that (ew.r)◦ ι = ι ◦ (eu.v), where ew.r and eu.v are quasipolarities.

1. Some preliminaries

Before we can state and prove the results of this paper, a brief exposition of some
conventions, notions and notations taken from Guerino Mazzola’s monograph
on mathematical musicology [5] is in order. First of all, the ring (or Z-module)
Z/nZ is a good model of the n-tone equally tempered scale modulo octaves [5,
Chapter 6, Section 4]. We now consider the group

Aff(Z/nZ) := (Z/nZ)o (Z/nZ)×
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and let us denote an element (u,v) ∈ Aff(Z/nZ) by eu.v. We have an action of
Aff(Z/nZ) on Z/nZ defined in the following way:

eu.v(x) = vx+u.

These notations are meant to exhibit the importance of the actions of affine
groups on musical objects. In particular, the exponential notation eu was cho-
sen because the composition of two translations (or transpositions, musically
speaking) is eu ◦ ev = eu+v. The linear part v is also musically meaningful: the
best example is perhaps v =−1, which corresponds to the inversion of intervals
and melodies (but similar interpretations are possible with the rest of the linear
parts).

The aforementioned action of Aff(Z/nZ) on Z/nZ extends naturally to an
action on the powerset of Z/2kZ in a pointwise manner. A marked strong di-
chotomy is a subset D⊆Z/2kZ such that there is a unique π = eu.v that satisfies

π(D) = (Z/2kZ)\D.

Marked strong dichotomies are important abstractions for the mathematical
theory of counterpoint as conceived by Mazzola, because they generalize the
notion of consonance and dissonance in the standard 12-tone equal tuning. See
[5, Part VII], [1] and [2] for further details.

2. Polarities and quasipolarities

The unique element π that interchanges a marked strong dichotomy D and its
complement is called the polarity of D. This nomenclature was chosen by Maz-
zola because:

[T]he traditional consonance/dissonance concept is not a polar one,
since intervals are more or less consonant, for example in Euler the-
ory and Helmholtz theory. But in musical theory, they are strictly
separated into one or another category. So what is more or less
in the acoustical or number[. . . ] theories is now compressed into
two bags, or poles. That is the reason. (Guerino Mazzola, personal
communication, September 25th, 2013).

We observe that if we regard π as a automorphism of Z/2kZ, we have π2 =
IdZ/2kZ and it has no fixed points. Thus, any π = eu.v with these two properties
is called a quasipolarity.

Remark 2.1. From the definition, it is easy to see that the notion of quasipo-
larity makes sense for Z/nZ only when n is even: if π is an involution, then its
cycles (regarding it as a permutation) have cardinality at most 2, and none can
actually be of cardinality 1, because otherwise π would have a fixed point.
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Let ω(2k) be the number of distinct prime factors of 2k, with k ≥ 1, such
that

2k = 2α

ω(2k)−1

∏
i=1

pαi
i

is its prime decomposition. Suppose that 2k = 2αab with a coprime with b. It
is known [7, p. 191] that the solutions of v2 ≡ 1 (mod 2k) are given by the
simultaneous solutions of the pair of congruences

x≡ 1 (mod 2a), x≡−1 (mod 2b) (1)

if α = 1,2, or the two pairs

x≡ 1 (mod 2α−1a), x≡−1 (mod 2b),

x≡ 1 (mod 2a), x≡−1 (mod 2α−1b),
(2)

if α > 2. Moreover, in [3, Theorem 3.1] it is proved that the number of affine
parts eu available for an involution v such that eu.v is a quasipolarity is

2k
gcd(v−1,2k)

,

whenever

2
2k

gcd(v+1,2k)
= gcd(v−1,2k). (3)

With this information, we can easily compute some values of the number
Q(2k) of quasipolarities of Z/2kZ for small values of 2k, see Table 1.

The sequence Q(2k) appears in the On-Line Encyclopedia of Integer Se-
quences (OEIS) as entry A034448 [6], in relation with a different concept in
number theory that we now explain.

Definition 2.2. A divisor d of n is said to be unitary if gcd(d, n
d ) = 1, and we

write d||n.

We have the following result that relates unitary divisors and quasipolarities.

Proposition 2.3. Let σ∗1 (n) := ∑d||n d be the sum of the unitary divisors of n.
We have

Q(2k) = σ
∗
1 (k).

Proof. Suppose first that α = 1. We have that v satisfies (1),

v≡ 1 (mod 2a), v≡−1 (mod 2b),
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thus 2a | (v−1) and 2b | (v+1). Now

gcd(v−1,2k) = 2a and gcd(v+1,2k) = 2b

because 2k is divisible by 2 only once. This means that

2
2k

gcd(v+1,2k)
= 2

2ab
2b

= 2a = gcd(v−1,2k),

which implies that there are exactly

2k
gcd(v−1,2k)

=
2ab
2a

= b

quasipolarities of the form eu.v. From this it is evident that each involution v is
in bijective correspondence with a unitary divisor b of k, thus

Q(2k) = ∑
v2≡1 (mod 2k)

2k
gcd(v−1,2k)

= ∑
b||k

b = σ
∗
1 (k).

If α = 2 the same reasoning works mutatis mutandis as long as gcd(v−
1,2k) = 4a. Otherwise, gcd(v−1,2k) = 2a, which means that v−1 = 2q with q
odd. Then v+1= 2(q+1) = 4q′, hence gcd(v+1,2k) = 4b, which rehabilitates
the argument because 2b is a unitary divisor of k.

The case α ≥ 3 is slightly more difficult. The symmetry of the systems of
congruences (2) enable us to suppose, without loss of generality, that gcd(v−
1,2k) = 2β a, with β ≥ α−1. If gcd(v−1,2k) = 2αa, then necessarily gcd(v+
1,2k) = 2b, for v ≡ −1 (mod 2b) and gcd(v− 1,v+ 1) = 2, and therefore the
proof goes as before. If gcd(v−1,2k) = 2α−1a, then v does not define quasipo-
larities, but w = v+ k does (we note, in passing, that only one of v and w is
divisible by 2α , for otherwise k = w− v would be divisible by 2α ). Indeed,

w2 = (v+ k)2 = v2 +2vk+ k2 = v2 +2kv+2αkab≡ v2 ≡ 1 (mod 2k),

and since v−1 = 2α−1aq for some odd q then

w−1 = 2α−1aq+ k = 2α−1aq+2α−1ab = 2α−1a(q+b)

where q+ b is even (it is the sum of two odd integers). Thus gcd(w− 1,2k) =
2αa and gcd(w+1,2k) = 2b, which yields the summand for b anew.

Remark 2.4. If the prime decomposition of k is known, we can calculate σ∗1 (k)
in a more direct way [4]:

σ
∗
1 (k) = ∏

pu||k
(1+ pu).
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3. Quasipolarities and injections

In [2, Chapter 4] it is proved that, whenever

1. there is a marked strong dichotomy D in Z/2kZ with polarity π and

2. there is a quasipolarity π ′ ∈ Aff(Z/4kZ) such that ι ◦π = π ′ ◦ ι (where
ι : Z/2kZ→ Z/4kZ is the injection given by ι(x) = 2x),

then π ′ is the polarity of a marked strong dichotomy D′ that contains 2D = {2x :
x ∈ D} in Z/4kZ. This means that the notion of consonance (and dissonance)
can be meaningfully extended from a 2k-tone equal tuning to a 4k-equal tuning;
in other words, it is possible to “lift” the original consonances of a 2k-tone scale
to the 4k-tone scale, in the sense that the lifted polarity restricts to the original
polarity in the 2k-tone scale.

If we were to generalize this result for injections of the form

ι : Z/nZ→ Z/pnZ,
x 7→ px,

where p is a prime number, we would need first to find the conditions such that
ι ◦ p = p′ ◦ ι , which are the aim of this section.

Suppose that eu.v is a quasipolarity. As it was noted above, in [3] it is proved
that u can be taken as 2k

gcd(v+1,n) . Our interest now is to find the conditions
such that there exists a quasipolarity ew.r : Z/pnZ→ Z/pnZ which renders
commutative the following square:

Z/nZ ι−−−−→ Z/pnZ

eu.v

y yew.r

Z/nZ −−−−→
ι

Z/pnZ.

(4)

We have the following result.

Theorem 3.1. Let n be an even number, v ∈ Z/nZ× an involution, k = v2−1
n

and u = n
gcd(v+1,n) . If either gcd(p,2v) | k or p - n, then there exists t such that

r = v+nt is an involution in Z/pnZ×. If, additionally, r2−1
pn is even, then ew.r is

a quasipolarity with w = pu and the diagram (4) commutes.

Proof. We begin by noting that the square (4) is commutative if and only if

w≡ pu (mod pn) and pr ≡ pv (mod pn).



164 OCTAVIO A. AGUSTÍN-AQUINO

The second congruence is equivalent to p(r− v) = pnt for some integer t.
Hence r− v = nt and

r = v+nt.

Let v be an involution in Z/nZ. We want r to be an involution. We see that

(v+nt)2 = v2 +2vnt +n2t2

= 1+ kn+2vnt +n2t2

= 1+(k+2vt +nt2)n,

so, to verify that (v + nt) is an involution, it is necessary and sufficient that
p | (k+2vt +nt2). In other words, t is the solution of the quadratic congruence

nt2 +2vt + k ≡ 0 (mod p). (5)

We distinguish two cases. If p | n, then it is enough to solve for t the linear
congruence

2vt ≡−k (mod p).

Such a congruence is solvable if and only if gcd(p,2v) | −k. We note that if
p = 2, this condition simply means that k must be a multiple of 2.

If p - n, the quadratic congruence is unavoidable. Fortunately, gcd(2n, p)= 1
so, in order to solve it, we rewrite (5) to obtain

(2nt +2v)2 ≡ 4v2−4nk (mod p)

which reduces to

(nt + v)2 ≡ v2−nk ≡ 1+nk−nk ≡ 1 (mod p).

Since 1 is always a quadratic residue, we deduce that t = n−1(±1−v), where
n−1 is the inverse of n modulo p.

Suppose now that we have found a t such that r = v+ tn is an involution.
For there exists w such that ew.r is a quasipolarity, it is necessary and sufficient
to check that

2
pn

gcd(v+nt +1, pn)
= gcd(v+nt−1, pn). (6)

If (6) is true, we can choose

w =
pn

gcd(v+nt +1, pn)
. (7)

Let us begin. We note that

gcd
(

v+nt−1
2

,
v+nt +1

2

)
= 1
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and

gcd(v+nt±1, pn) = 2gcd
(

v+nt±1
2

, p
n
2

)
,

thus

gcd(v+nt +1, pn)gcd(v+nt−1, pn) = 4gcd
(
(v+nt)2−1

4
, p

n
2

)
= 4gcd

(
1+ k′pn−1

4
, p

n
2

)
= 2gcd

(
k′pn

2
, pn
)

= 2pgcd
(

k′
n
2
,n
)
.

By observing that
gcd
(

k′
n
2
,n
)
= n

holds if and only if 2 | k′, we conclude that (6) holds if and only if 2 | k′, where
k′ = r2−1

pn .
To finish the proof, we show that once ew.r is an involution such that rp≡ vp

(mod pn) and w is given by (7), it is true that w equals pu and thus the diagram
(4) commutes. If p - (v+ tn+1), then

gcd(v+ tn+1, pn) = gcd(v+ tn+1,n) = gcd(v+1,n),

which means that

w =
pn

gcd(v+ tn+1, pn)
=

pn
gcd(v+1,n)

= pu. (8)

We assume now the alternative case p | (v+ tn+ 1). Then any common
divisor d of v+tn+1

p and n is also a divisor of v+ 1, because v+ 1 is a linear
combination of them:

v+1 = p
v+ tn+1

p
− tn.

It follows that

gcd
(

v+ tn+1
p

,n
)
| gcd(v+1,n)

or, equivalently,

gcd(v+1,n) = gcd
(

v+ tn+1
p

,n
)

p = gcd(v+ tn+1, pn) .
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The missing factor is p because any common factor d of v+1 and n divides
the linear combination (v+1)+ tn and also (v+1)+tn

p , as long as gcd(d, p) = 1 or
d = pλ−1, where pλ is the greatest power of p that divides both v+ tn+1 and
n. In conclusion, equation (8) is true again, and the proof concludes.

2k Q(2k) Quasipolarities
2 1 e1.1
4 3 e2.1,e1.3,e3.3
6 4 e3.1,e1.5,e3.5,e5.5
8 5 e4.1,e1.7,e3.7,e5.7,e7.7

10 6 e5.1,e1.5,e3.5,e5.5,e7.5,e9.5
12 12 e6.1,e2.5,e6.5,e10.5,e3.7,e9.7,

e1.11,e3.11,e5.11,e7.11,e9.11,e11.11
14 8 e7.1,e1.13,e3.13,e5.13,e7.13,e9.13,e11.13,e13.13
16 9 e8.1,

e1.15,e3.15,e5.15,e7.15,e9.15,e11.15,e13.15,e15.15
18 10 e9.1,

e1.17,e3.17,e5.17,e7.17,
e9.17,e11.17,e13.17,e15.17,e17.17

20 18 e10.1,e2.9,e6.9,e10.9,e14.9,e18.9,e5.11,e15.11,
e1.19,e3.19,e5.19,e7.19,e9.19,

e11.19,e13.19,e15.19,e17.19,e19.19
22 12 e11.1,

e1.21,e3.21,e5.21,e7.21,e9.21,e11.21,
e13.21,e15.21,e17.21,e19.21,e21.21

24 20 e12.1,e3.7,e9.7,e15.7,e21.7,e4.17,e12.17,e20.17,
e1.23,e3.23,e5.23,e7.23,e9.23,e11.23,

e13.23,e15.23,e17.23,e19.23,e21.23,e23.23

Table 1: The number Q(2k) of quasipolarities in Z/2kZ for 1 ≤ k ≤ 12, and
their explicit enumeration.

Example 3.2. The affine map e2.5 : Z/12Z→ Z/12Z is a quasipolarity. Let
p = 2 and k = 52−1

12 = 2. Since 2 | k, there exists a t such that 5+ 12t is an
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involution in Z/24Z. Using the proof of the theorem, t is the solution of

0≡ 2 · vt ≡−k ≡−2≡ 0 (mod 2),

thus t can be chosen arbitrarily. If we choose t = 0, k′ = 52−1
24 = 1 is not even. If

t = 1, then r = 5+12 = 17 and k′ = 172−1
24 = 12 is even and w = pu = 2 ·2 = 4.

Hence e4.17 : Z/24Z→ Z/24Z is a quasipolarity such that (4) commutes.
If now we take p = 5, we have 5 - 12, so t = 3(±1−5) mod 5 =±3. If we

choose t = 3, we get r = 5+2 ·12 = 29 and it is such that r2−1
60 = 14 is even, so

e10.29 : Z/60Z→ Z/60Z satisfies (4).
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