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MAPPING PROPERTIES OF A GENERAL INTEGRAL
OPERATOR DEFINED BY THE HADAMARD PRODUCT

SAURABH PORWAL - MANOJ KUMAR SINGH

In the present paper, we introduce a general integral operator defined
by Hadamard product and study mapping properties on some subclasses
of analytic univalent functions. Relevant connections of the results pre-
sented here with various known results are briefly indicated.

1. Introduction

Let A denote the class of the functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1)

which are analytic in the open unit disk U = {z : z ∈C and |z|< 1}, and satisfy
the normalisation condition f (0) = f ′(0)−1 = 0.

Further, we denote by S the subclass of A consisting of functions of the form
(1) which are also univalent in U .

For β > 1 and z ∈U , let

M(β ) =

{
f ∈ A : Re

z f ′(z)
f (z)

< β

}
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and

N(β ) =

{
f ∈ A : Re{1+ z f ′′(z)

f ′(z)
}< β

}
.

These classes were extensively studied by Uralegaddi et al. in [16], (see also
Owa and Srivastava [9], Porwal and Dixit [14]).

Very recently Dixit and Chandra [4] generalizes these classes by introduc-
ing a new subclass Sn

k(β ) of analytic functions in the unit disk satisfying the
condition

Re
{

Dn+1 f (z)
Dn f (z)

}
< β , n ∈ N0, z ∈U,1 < β ≤ 4/3, (2)

where Dn stands for the Salagean-derivative introduced by Salagean in [15] and
f (z) of the form

f (z) = z+
∞

∑
j=k+1

a jz j. (3)

It can be easily seen that S0
1(β ) = M(β ), S1

1(β ) = N(β ).
Further, we denote by Sn

1(β )≡ Sn(β ).

Definition 1.1 (Hadamard product or convolutions). Given two functions f and
g in the class A, where f is given by (1) and g is given by

g(z) = z+
∞

∑
n=2

bnzn,

the Hadamard product (or convolution) ( f ∗g) is defined by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn, (z ∈U). (4)

Now, we denote the class S(n,g,β ) for which f ∗g ∈ Sn(β ).

Breaz [2] studied the mapping properties of the two integral operators on
the classes M(β ) and N(β ). Recently, these results were generalized by Porwal
[12].

In the present paper, we generalized and unified these results by introducing
an interesting integral operator as follows

Fm,n,α(z) =∫ z

0

(
Dm( f1 ∗g1)(t)

t

)α1
(

Dm( f2 ∗g2)(t)
t

)α2

. . .

(
Dm( fn ∗gn)(t)

t

)αn

dt (5)

where fi(z) ∈ A, αi > 0, ∀i ∈ {1,2, . . .n} and m ∈ N0.
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Remark 1.2. For gi(z)= z+
∞

∑
n=2

zn, fi(z)∈A, αi > 0, ∀i∈{1,2, . . .n} and m∈N0

the above operator becomes

Fm,n,α(z) =
∫ z

0

(
Dm f1(t)

t

)α1
(

Dm f2(t)
t

)α2

. . .

(
Dm fn(t)

t

)αn

dt (6)

studied by Porwal [12].

Remark 1.3. For m = 0,n = 1,α1 = 1,α2 = . . .= αn = 0, gi(z) = z+
∞

∑
n=2

zn and

f (z) ∈ A, we obtain Alexander integral operator introduced in 1915 in [1]

I(z) =
∫ z

0

f (t)
t

dt, z ∈U.

Remark 1.4. For m = 0,n = 1,α1 = α,α2 = . . . = αn = 0, gi(z) = z+
∞

∑
n=2

zn

and f (z) ∈ A, we obtain the integral operator

Iα(z) =
∫ z

0

[
f (t)
t

]α

dt, z ∈U,

studied in [8], (see also ([5], [7], [13]).

Remark 1.5. For m = 1,n = 1,α1 = 1,α2 = . . .= αn = 0, gi(z) = z+
∞

∑
n=2

zn and

f (z) ∈ A, we obtain the integral operator

I(z) =
∫ z

0
f ′(t)dt

studied by various authors in ([6], [11]).

Remark 1.6. For m = 1,n = 1,α1 = α,α2 = . . . = αn = 0, gi(z) = z+
∞

∑
n=2

zn

and f (z) ∈ A, we obtain the integral operator

Iα(z) =
∫ z

0

[
f ′(t)

]α dt, z ∈U

studied in [10].

Remark 1.7. For m= 0,αi > 0, i∈ {1,2, . . . ,n}, and gi(z) = z+
∞

∑
n=2

zn we obtain

the integral operator

In(z) =
∫ z

0

[
f1(t)

t

]α1

. . .

[
fn(t)

t

]αn

dt

studied in ([2], [3]).
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Remark 1.8. For m = 1,αi > 0, ∀i ∈ {1,2, . . . ,n} and gi(z) = z+
∞

∑
n=2

zn, we

obtain the integral operator

Iα1,α2,...,αn(z) =
∫ z

0

[
f ′1(t)

]α1 . . .
[

f ′n(t)
]αn dt

studied in [2].

2. Main Results

We study the condition for the integral operator defined in (5) which map Sm(α1)
×Sm(α2)×·· ·×Sm(αn) into N(µ).

Theorem 2.1. Let fi ∈ S(m,βi,gi) where gi ∈ A for each i = 1,2, . . . ,n with
βi > 1,m ∈ N0. Then Fm,n,α(z) ∈ N(µ) where

µ = 1+
n

∑
i=1

αi(βi−1) and αi > 0.

Proof. Let

Fm,n,α(z) =
∫ z

0

(
Dm( f1∗g1)(t)

t

)α1
(

Dm( f2∗g2)(t)
t

)α2
. . .
(

Dm( fn∗gn)(t)
t

)αn
dt.

Differentiating it, we have

F ′m,n,α(z) =
(

Dm( f1 ∗g1)(t)
t

)α1
(

Dm( f2 ∗g2)(t)
t

)α2

. . .

(
Dm( fn ∗gn)(t)

t

)αn

(7)
this equality implies that

F ′m,n,α(z) = α1ln Dm( f1∗g1)(t)
t +α2ln Dm( f2∗g2)(t)

t + . . .+αnln Dm( fn∗gn)(t)
t .

By differentiating the above equality, we get

zF ′′m,n,α(z)
F ′m,n,α(z)

=α1

[
(Dm+1( f1 ∗g1)(z))

Dm( f1 ∗g1)(z)
− 1

z

]
+. . .+αn

[
(Dm+1( fn ∗gn)(z))

Dm( fn ∗gn)(z)
− 1

z

]
We obtain from this equality that

zF ′′m,n,α(z)
F ′m,n,α(z)

=
n

∑
i=1

αi

[
(zDm+1( fi ∗gi)(z))

Dm( fi ∗gi)(z)
−1
]

or, equivalently

Re
{

1+
zF ′′m,n,α(z)
F ′m,n,α(z)

}
=

n

∑
i=1

αiRe
{
(zDm+1( fi ∗gi)(z))

Dm( fi ∗gi)(z)

}
−

n

∑
i=1

αi +1

<
n

∑
i=1

αiβi−
n

∑
i=1

αi +1 =
n

∑
i=1

αi(βi−1)+1.
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Now, since ∑
n
i=1 αi(βi− 1) > 0, we obtain Fm,n(z) ∈ N(µ), where µ = 1+

∑
n
i=1 α1(β1−1).

If we put m = 0 and gi(z) = z
1−z in Theorem 2.1, we obtain the following

result obtained by Porwal in [12].

Corollary 2.2. Let fi ∈ Sm(βi) for each i = 1,2, . . . ,n with βi > 1,m ∈ N0. Then
Fm,n,α(z) ∈ N(µ) where

µ = 1+
n

∑
i=1

αi(βi−1) and αi > 0.

If we put m = 0 and gi(z) = z
1−z in Theorem 2.1, we obtain the following

result obtained by Breaz in [2].

Corollary 2.3. Let fi ∈M(βi) with βi > 1, for each i = 1,2, . . . ,n. Then In(z) ∈
N(µ), where µ = 1+∑

n
i=1 αi(βi−1) and αi > 0, (∀i = 1,2, . . . ,n).

If we put m = 1 and gi(z) = z
1−z in Theorem 2.1 we obtain the following

result obtained by Breaz in [2].

Corollary 2.4. Let fi ∈M(βi),and gi(z) = z
1−z for each i = 1,2, . . . ,n with βi >

1. Then Iα1,...,αn(z) ∈ N(µ) with µ = 1 + ∑
n
i=1 αi(βi − 1) and αi > 0, (∀i =

1,2, . . . ,n).
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