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THERMO-ELASTIC PLANE DEFORMATIONS
IN DOUBLY-CONNECTED DOMAINS WITH

TEMPERATURE AND PRESSURE WHICH DEPEND
ON THE THERMAL CONDUCTIVITY

GIOVANNI CIMATTI

We propose a new weak formulation for the plane problem of ther-
moelastic theory in multiply-connected domains. This permits to avoid
the difficulties connected with the Cesaro-Volterra boundary conditions
in the related elliptic boundary-value problem. In the second part we con-
sider a nonlinear version of the problem assuming that the thermal con-
ductivity depends not only on the temperature but also on the pressure.
Recent studies reveal that this situation can occur in practice. A theorem
of existence and uniqueness is proved for this problem.

1. Introduction

The thermal conductivity in elastic bodies is usually taken as dependent on the
temperature but not on the pressure [1]. This, however, is not always the case.
The accurate measurements made by Sundqvist and Bäckstöm [13] and by Ger-
lich [5] show a quite significant dependence of the thermal conductivity from the
pressure in aluminum and in insulators. In this paper we reconsider the prob-
lem of plane doubly-connected thermo-elasticity taking into consideration this
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effect. Whereas the classical boundary value problem of plane thermo-elasticity
is relatively simple since it is uncoupled [1], in the present case we have to deal
with a nonlinear coupled system of partial differential equations. We consider
a long cylinder of cross section Ω with a cylindrical hole of cross section Ω1,
Ω1 ⊂Ω and define Ω∗ = Ω\Ω1.
We denote with Γ1 the boundary of Ω and with Γ2 the boundary of Ω1, Γ1 ∩
Γ2 = /0. We assume the plane deformation theory [6], [1]. This permits the
introduction of the Airy’s stress function ϕ(x,y) which gives the non-vanishing
components of the stress tensor in the form

σxx =
∂ 2ϕ

∂y2 , τxy =−
∂ 2ϕ

∂x∂y
, σyy =

∂ 2ϕ

∂x2 . (1)

If u is the temperature we have

σzz = ν(σxx +σyy)−αEu (2)

and by (1)

σzz = ν∆ϕ−αEu

where α is the coefficient of linear thermal expansion, E the modulus of Young
and ν the Poisson’s ratio. For the mean pressure p= 1

3(σxx+σyy+σzz) we have,
in view of (1) and (2),

p =
1
3
(1+ν)∆ϕ− 1

3
αEu.

We assume that the inner and the outer surfaces are free from loads and kept
at a constant temperature u = 0. Moreover, an internal heat source of density
f (x,y) acts in the body. For shorthand we put k = 1−ν

αE , k is a positive constant in
view of the thermodynamical restrictions on ν . For the determination of ϕ(x,y)
and u(x,y) under steady condition of operation, we have the following boundary
problem

∆
2
ϕ =−k∆u in Ω

∗ (3)

∇ · (κ∇u) = f in Ω
∗ (4)

ϕ = 0,
∂ϕ

∂n
= 0 on Γ1 (5)

u = 0 on Γ1∪Γ2 (6)
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∫
Γ2

∂∆ϕ

∂n
ds =−k

∫
Γ2

∂u
∂n

ds (7)

∫
Γ2

(y
∂∆ϕ

∂n
− x

∂∆ϕ

∂ s
)ds =−k

∫
Γ2

(y
∂u
∂n
− x

∂u
∂ s

)ds (8)

∫
Γ2

(y
∂∆ϕ

∂ s
+ x

∂∆ϕ

∂n
)ds =−k

∫
Γ2

(y
∂u
∂ s

+ x
∂u
∂n

)ds. (9)

(3) is the only non-vanishing part of the Lamé compatibility equations, (4) is the
energy equation, (5) reflects the fact that Γ1 is free of loads. Finally (7), (8) and
(9) are the Cesaro-Volterra equations [14], [2] expressing the fact that the local
rotation and the components of the displacement are single-valued (we exclude
the presence of Volterra dislocations). If we take into account (6) the conditions
(8) and (9) can be restated in the following way

∫
Γ2

(y
∂∆ϕ

∂n
−∆ϕ

∂y
∂n

)ds =−k
∫

Γ2

y
∂u
∂n

ds (10)

∫
Γ2

(x
∂∆ϕ

∂n
−∆ϕ

∂x
∂n

)ds =−k
∫

Γ2

x
∂u
∂n

ds. (11)

For the boundary value problem (3), (4), (5), (6), (10) and (11) we consider four
cases: (i) κ = κ0 is a positive constant, (ii) the thermal conductivity is a given
function of the temperature, κ = κ(u), (iii) the thermal conductivity is a given
function of the temperature and of the space variable (x,y), (iv) the thermal con-
ductivity is a given function of the space variable (x,y), of the temperature and
of the pressure: κ = κ(x,y,u, p). This is the situation quoted in the introduction.
Boley and Weiner [1] prove a theorem of uniqueness for the case (iii) when Ω

and Ω1 are concentric circle. The case without thermal effects is treated in [12],
[10] and [11]. The study of case (iv) seems to be new. In Section 2 the difficulty
represented by the integral boundary conditions (7), (10) and (11) is dealt with a
weak formulation valid for all the four cases and in which the integral conditions
disappear. When the thermal effects are neglected a similar weak formulation
is used in [4]. For regular solutions we prove in Section 2 the equivalence of
the classical and weak formulation. In Section 3 we prove the existence and
uniqueness of solutions for the first three cases and a theorem of existence for
the fourth case.
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2. The weak formulation and the equivalence with the classical formula-
tion

Let us define the space E(Ω,Ω1) = E

E = {ϕ ∈ H2(Ω), ϕ = 0 on Γ1,
∂ϕ

∂n
= 0 on Γ1,

ϕ = ax+by+ c in Ω1, a,b,c ∈ R1}.

Let Q : H1
0 (Ω

∗)→ H1
0 (Ω), U = Qu be the linear and bounded operator which

extends the functions of H1
0 (Ω

∗) to functions of H1
0 (Ω) setting them equal to

zero in Ω1. Our weak formulation of problem (3), (4), (5), (6), (7), (10) and
(11) is: to find ϕ(x,y) and u(x,y) such that

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E (12)

u ∈ H1
0 (Ω

∗),
∫

Ω∗
κ∇u ·∇v dxdy =< f ,v >, for all v ∈ H1

0 (Ω
∗), (13)

where f ∈ H−1(Ω), U = Qu and the thermal conductivity κ corresponds to
any of the cases (i), (ii), (iii) or (iv). The next Lemma legitimizes this weak
formulation.

Lemma 2.1. Let (ϕ,u), ϕ ∈C3(Ω̄∗)∩C4(Ω∗), u ∈C0(Ω̄∗)∩C2(Ω∗) be a regu-
lar solution of problem (12), (13). Then (ϕ,u) is a solution of problem (3), (4),
(5), (6), (7), (10) and (11).

Proof. Let η ∈C∞
0 (Ω

∗) and extend η with zero in Ω1. Choosing w = η ∈ E in
(12) we find ∫

Ω∗
η∆

2
ϕ dxdy = k

∫
Ω∗

η∆u dxdy.

Since η is arbitrary we obtain (3). In a similar way we obtain (4). To prove (7)
we take as test function in (12) w ∈ E with w = 1 in Ω1. Thus w = 1 and ∂w

∂n = 0
on Γ2, and ∫

Ω∗
(∆ϕ∆w−w∆

2
ϕ)dxdy =

∫
Γ2

∂∆ϕ

∂n
ds (14)

by (3) ∫
Ω∗
(∆ϕ∆w+ kw∆u)dxdy =−

∫
Γ2

∂∆ϕ

∂n
ds. (15)
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From (12), since w = 1 in Ω1, we have∫
Ω∗

∆ϕ∆w dxdy = k
∫

Ω∗
∇u ·∇w dxdy. (16)

Substituting (16) in (15) we have

k
∫

Ω∗
(w∆u+∇u ·∇w)dxdy =−

∫
Γ2

∂∆ϕ

∂n
ds, (17)

but

k
∫

Ω∗
(w∆u+∇u ·∇w)dxdy = k

∫
Γ2

∂u
∂n

ds. (18)

and (7) follows. To prove (11) we take in (12) w = x in Ω1, (16) still holds, but
instead of (14) we now have∫

Ω∗
(∆ϕ∆w−w∆

2
ϕ)dxdy =

∫
Γ2

(
∆ϕ

∂x
∂n
− x

∂∆ϕ

∂n

)
ds. (19)

Plugging (16) and (18) in (19) we obtain

k
∫

Ω∗
(w∆u+∇u ·∇w)dxdy =

∫
Γ2

(
∆ϕ

∂x
∂n
− x

∂∆ϕ

∂n

)
ds. (20)

On the other hand,∫
Ω∗

∇u ·∇w dxdy =−
∫

Ω∗
w∆u dxdy+

∫
Γ2

x
∂u
∂n

ds. (21)

Plugging (21) in (20) we obtain (11). With similar calculations, choosing as test
function in (12) w ∈ E such that w = y in Ω1, we can prove (10).

3. Existence and uniqueness of weak and classical solutions

When the thermal conductivity is constant: κ = κ0 > 0 the system (12), (13) is
uncoupled and becomes

u ∈ H1
0 (Ω

∗),
∫

Ω∗
κ0∇u ·∇v dxdy =< f ,v > for all v ∈ H1

0 (Ω
∗) (22)

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E (23)

(22) is immediately solvable using the Lax-Milgram lemma. On the other hand,
the bilinear form
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a(ϕ,w) =
∫

Ω

∆ϕ∆w dxdy, ϕ ∈ E, w ∈ E

is coercive and continuous on E ×E which is a linear subspace of H2
0 (Ω)×

H2
0 (Ω). Thus, using again the Lax-Milgram lemma to solve (23), we obtain the

unique solution (ϕ,u) of (22), (23). If f , Γ1 and Γ2 are regular (ϕ,u) is also
regular and by Lemma 2.1 it is a classical solution of problem (3), (4), (5), (6),
(10) and (11). When the thermal conductivity depends only on the temperature:
κ = κ(u) and

κ(u)≥ κ̄ > 0 for all u ∈ R1 (24)

we can reduce problem (12), (13) to the case κ = κ0, a constant, with the aid of
the Kirchhoff’s transformation τ = F(u)

F(u) =
∫ u

0
κ(t)dt (25)

which is invertible in view of (24). If the body is not homogeneous the thermal
conductivity depends on both the temperature and the space variable i.e. κ =
κ(x,y,u). In this case we may still prove existence and uniqueness for problem
(12), (13) using the following theorem of M. Chipot [3] (page 99) and then
proceeding as in the previous case.

Theorem 3.1. Let A(x,u) : Ω×R1→ R1, x ∈Ω satisfy

for all u ∈ R1, x→ A(x,u) is measurable (26)

M ≥ A(x,u)≥ m > 0, a.e. x ∈Ω, for all u ∈ R1 (27)

u→ A(x,u) is Lipschitz continuous in R1, (28)

then the problem

∇ · (A(x,u)∇u) = f ∈ H−1(Ω) (29)

has a unique solution.

Hereafter we discuss the case κ = κ(x,y,u, p) where p = (1/3)(1+ν)∆ϕ−
(1/3)αEu. As weak formulation of problem (12), (13) we have

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E (30)
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U =Qu

u ∈ H1
0 (Ω

∗),
∫

Ω∗
κ(x,y,

1
3
((1+ν)∆ϕ−αEu)∇u ·∇v dxdy =< f ,v > (31)

for all v ∈ H1
0 (Ω

∗). We assume

|κ(x,y,u, p)−κ(x,y,u′, p′)| ≤ L1(|u−u′|+ |p− p′|). (32)

Setting ξ =∆ϕ and a(x,y,u,ξ ) = κ(x,y, 1
3((1+ν)ξ−αEu)) from (32) we have

|a(x,y,u,ξ )−a(x,y,u′,ξ ′)| ≤ L2(|u−u′|+ |ξ −ξ
′|). (33)

Therefore (30), (31) become

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E (34)

U =Qu

u ∈ H1
0 (Ω

∗),
∫

Ω∗
a(x,y,∆ϕ)∇u ·∇v dxdy =< f ,v >, for all v ∈ H1

0 (Ω
∗). (35)

We use the following classical “a priori” estimate [7] to prove that the problem
(34), (35) has a solution.

Theorem 3.2. Let O be an open and bounded subset of R2 with a regular
boundary ∂O. Let ζ (x,y) be the weak solution of the problem

ζ ∈ H2(O), ∆
2
ζ = f in O, ζ = g on ∂O, ∂ζ

∂n
= h on ∂O. (36)

Assume

f ∈ H−1(O), g ∈ H1(O), h ∈ H2(O). (37)

Then

‖ζ‖H3(O) ≤C
(
‖ f‖H−1(O)+‖g‖H1(O)+‖h‖H2(O)

)
. (38)

Theorem 3.3. Let a(x,y,u,ξ ) satisfy

|a(x,y,u,ξ )−a(x,y,u′,ξ ′)| ≤ L2(|u−u′|+ |ξ −ξ
′|), (39)

and
0 < m≤ a(x,y,u,ξ )≤M a.e in Ω and for all (u,ξ ) ∈ R2. (40)

Then there exists at least one solution to problem (34), (35).
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Proof. For applying (38), in view of the considerations which can be seen in the
Appendix , we define the space F = {ψ; ψ = ϕ|Ω∗ , ϕ ∈ E} with norm

‖ψ‖F = (
∫

Ω∗
|∆ψ|2 dxdy)1/2.

Let ϕ ∈ F , f ∈ H−1(Ω∗) and let us consider the operator G : F → H1
0 (Ω

∗),
u = G(ϕ) defined via the problem

u ∈ H1
0 (Ω

∗), ∇(a(x,y,u,∆ϕ)∇u) = f . (41)

The problem (41) has a unique solution: simply define

A(x,y,u) = a(x,y,u,∆ϕ)

and use Theorem 3.1. Hence G is well-defined. Let U =Qu and

H : H1
0 (Ω)→ E, ϕ =H(U)

be the operator defined by the problem

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E.

By the Lax-Milgram lemma H is well-defined. Taking as test function in (35)
v = u, using (40) and the Cauchy-Schwartz inequality, we obtain∫

Ω∗
|∇u|2 dxdy≤C1, (42)

where C1 does not depend on ϕ . Setting w = ϕ in (34) we have∫
Ω

|∆ϕ|2 dxdy = k
∫

Ω

∇U ·∇ϕ dxdy.

Using (42) and the inequality

ϕ ∈ E,
∫

Ω

|∇ϕ|2 dxdy≤C2

∫
Ω

|∆ϕ|2 dxdy, (43)

we infer ∫
Ω

|∆ϕ|2 dxdy≤C3. (44)

Thus, by the Sobolev’s embedding theorem,

sup
Ω̄

|ϕ| ≤C4. (45)
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Since ϕ ∈ E we have ϕ(x,y) = ax+by+c in Ω1 and by (45) the constants a,b,c
depend only on the data. Let ψ be the weak solution of the problem

∆
2
ψ =−k∆u in Ω

∗, ψ = 0 on Γ1,
∂ψ

∂n
= 0 on Γ1 (46)

ψ = ax+by+ c on Γ2,
∂ψ

∂n
=

∂

∂n
(ax+by+ c) on Γ2. (47)

Since ∆u ∈ H−1(Ω∗), we can apply the a-priori estimate (38) to the problem
(46), (47). Thus we have

‖ψ‖H3(Ω∗) ≤C5. (48)

Let P : E → F , ψ = Pϕ be the isometry Pϕ = ϕ|Ω∗ and consider the operator
S : F → F , Φ = S(ϕ) defined by

Φ = S(ϕ) = P(H(Q(G)))(ϕ).

We apply the Schauder fixed point theorem to the operator S. Let

B =
{

ϕ ∈ F,
∫

Ω∗
|∆ϕ|2 dxdy≤C3

}
.

By (44) we have S(B)⊆ B. Moreover, by (48) S is compact. It remains to prove
that S is continuous. Q and P are clearly continuous. H is also continuous. For,
let Un→U in H1

0 (Ω) and ϕn =H(Un) i.e.

ϕn ∈ E,
∫

Ω

∆ϕn∆w dxdy = k
∫

Ω

∇Un ·∇w dxdy, for all w ∈ E, (49)

and ϕ =H(U) i.e.

ϕ ∈ E,
∫

Ω

∆ϕ∆w dxdy = k
∫

Ω

∇U ·∇w dxdy, for all w ∈ E. (50)

By difference from (49) and (50), setting w = ϕn−ϕ ∈ E in the resulting equa-
tion and recalling (43), we have∫

Ω

|∆(ϕn−ϕ)|2 dxdy≤C2

∫
Ω

|∇(U −U)|2 dxdy.

Thus H is continuous. G : F → H1
0 (Ω

∗), u = G(ϕ) is also continuous. For, let
ϕn→ ϕ and ξn = ∆ϕn and un = G(ϕn) i.e.

un ∈H1
0 (Ω

∗),
∫

Ω∗
a(x,y,ξn)∇un ·∇v dxdy =< f ,v >, for all v∈H1

0 (Ω
∗). (51)
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Let ξ = ∆ϕ and u = G(ϕ) i.e.

u ∈ H1
0 (Ω

∗),
∫

Ω∗
a(x,y,ξ )∇u ·∇v dxdy =< f ,v >, for all v ∈ H1

0 (Ω
∗). (52)

We claim that un→ u in H1
0 (Ω

∗) strongly. Choose v = un in (51). We have∫
Ω∗
|∇un|2 dxdy≤C6.

Hence for a sub-sequence unk and for some u∞ ∈ H1
0 (Ω

∗) we have

unk → u∞ weakly in H1
0 (Ω

∗), unk → u∞ in L2(Ω∗), unk → u∞ a.e in Ω
∗.

Since ξnk → ξ in L2(Ω∗) we have, recalling (39) and (40)

a(x,y,unk ,ξnk)→ a(x,y,u∞,ξ ) in Lq(Ω∗) for all 1 < q < ∞. (53)

Moreover, for all v ∈C∞
0 (Ω

∗) we have

a(x,y,unk ,ξnk)∇v→ a(x,y,u∞,ξ )∇v in L2(Ω∗).

Therefore ∫
Ω∗

a(x,y,u∞,ξ )∇u∞ ·∇v dxdy =< f ,v >

for all v ∈C∞
0 (Ω

∗) and, by density, also for all v ∈H1
0 (Ω

∗). By Theorem 3.1 the
solution of problem (52) is unique, thus the entire sequence un converges weakly
to u∞ = u. It remains to prove that un→ u strongly in H1

0 (Ω
∗). Recalling (40)

and a result of N. Meyers [8] we have from (52)∫
Ω∗
|∇u|p dxdy≤C7, p > 2. (54)

Taking as test function v = un− u in (51) and in (52), by difference and using
(54), we obtain

m
∫

Ω∗
|∇(un−u)|2 dxdy≤

∫
Ω∗

a(x,y,un,ξn)|∇(un−u)|2 dxdy

=−
∫

Ω∗
[a(x,y,un,ξn)−a(x,y,un,ξ )]∇u ·∇(un−n) dxdy

−
∫

Ω∗
[a(x,y,un,ξ )−a(x,y,u,ξ )]∇u ·∇(un−n) dxdy≤



THERMO-ELASTIC PLANE DEFORMATIONS IN DOUBLY-CONNECTED DOMAINS195

≤
(∫

Ω∗
|∇(un−u)|2 dxdy

)1/2
×
∫

Ω∗
|∇u|p dxdy

)1/p

×
(∫

Ω∗
[a(x,y,un,ξn)−a(x,y,un,ξ )]

q dxdy
)1/q

+
(∫

Ω∗
|∇(un−u)|2 dxdy

)1/2
×
∫

Ω∗
|∇u|p dxdy

)1/p

×
(∫

Ω∗
[a(x,y,un,ξ )−a(x,y,u,ξ )]q dxdy

)1/q
, (1/p)+(1/q) = 1. (55)

Recalling (53) and (54) we conclude that un→ u in H1
0 (Ω

∗) strongly. Therefore
G is continuous and by the Schauder’s theorem, there exists a fixed point of S
which gives a solution to problem (34), (35).

4. Appendix

The “a-priori” estimate (38) does not hold in the framework of spaces like
E(Ω,Ω1). As an example, let us consider the weak solution of the problem

ϕ ∈ E(B,B1), ∆
2
ϕ = 1, (56)

where B = {(x,y);0 ≤
√

x2 + y2 < 1}, B1 = {(x,y);0 ≤
√

x2 + y2 < 1/2} and
E(B,B1) = {ϕ(x,y) ∈ H2(B), ϕ = 0, ∂ϕ

∂n = 0 on Γ1, ϕ = ax+ by+ c in B1},
Γ1 = {(x,y),x2 + y2 = 1}. In view of the uniqueness of the solution of prob-
lem (56) and of its rotational symmetry, we may consider the auxiliary one-
dimensional problem for the function ψ(ρ)

∆
2
ψ = 1 in B\B1, ψ(1) = 0, ψ

′(1) = 0, ψ(1/2) =C, ψ
′(1/2) = 0.

We have ψ(ρ) = (1/64)ρ4 +C1ρ2 +C2 log(ρ) +C3ρ2 logρ +C4. The con-
stants C1, C2, C3 and C4 are easily determined with the conditions ψ(1/2) =C,
ψ ′(1/2) = 0, ψ(1) = 0, ψ ′(1) = 0. We obtain ψ(ρ,C). The remaining constant
C is found minimizing the quadratic function

f (C) = 2π

∫ 1

1/2

[
(1/ρ)(ρψ

′(ρ,C))′
]2

dρ +4π

∫ 1

1/2
ψ(ρ,C) dρ.

If f ′(C̄) = 0, the solution of problem (56) is given by ϕ(ρ) = ψ(ρ,C̄) in B\B1,
ϕ(ρ) = C̄ in B1 and ϕ /∈ H3(B).
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