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SOME PROPERTIES OF THE k-GAMMA FUNCTION

CHRYSI G. KOKOLOGIANNAKI - VALMIR KRASNIQI

We give completely monotonicity properties and inequalities for func-
tions involving the Γk functions and their logarithmic derivatives ψk func-
tions. We introduce a k-analogue of the Riemann Zeta function ζk as an
integral and using Schwarz’s and Holder’s inequalities we obtain some
inequalities relating ζk and Γk functions. The obtained results are the k-
anologues of known results concerning functions involving the Gamma
and psi functions.

1. Introduction

The Euler Gamma function Γ(x) is defined [1] by Γ(x) =
∫

∞

0 tx−1e−tdt for x ∈C
with ℜx > 0 and

Γ(x) = lim
n→∞

n!nx

x(x+1) . . .(x+n)
,x ∈C \Z−. (1)

The digamma (or psi) function is defined as the logarithmic derivative of Eu-
ler’s Gamma function, that is ψ(x) = d

dx lnΓ(x) = Γ′(x)
Γ(x) . The following integral

and series representations are valid (see [1]):

ψ(x) =−γ +
∫

∞

0

e−t − e−xt

1− e−t dt, (2)
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ψ(x) =−γ− 1
x
+ ∑

n≥1

x
n(n+ x)

,x 6= 0,−1,−2, · · · , (3)

where γ = 0.57721 · · · denotes Euler’s constant.
For k > 0, the Γk function is defined [5] by

Γk(x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
,x ∈C \ kZ−, (4)

where (x)n,k = x(x+ k)(x+2k)...(x+(n−1)k).
The above definiton is a generalization of the definition of Γ(x) function.

For x ∈C with ℜ(x)> 0, the function Γk(x) is given by the integral [5]

Γk(x) =
∞∫

0

tx−1e−
tk
k dt. (5)

and satisfies [6] the following properties:

(i) Γk(x+ k) = xΓk(x)

(ii) (x)n,k =
Γk(x+nk)

Γk(x)

(iii) Γk(k) = 1

(iv) Γk(x) is logarithmically convex, for x ∈ R

(v) Γk(x) = a
x
k

∞∫
0

tx−1e−
tk
k adt, for a ∈ R

(vi) 1
Γk(x)

= xk−
x
k e

x
k γ

∞

∏
n=1

((
1+ x

nk

)
e−

x
nk

)
.

It is obvious that: Γk→ Γ as k→ 1.
Let ψk(x) be the k-analogue of the psi function, that is the logarithmic

derivative of the Γk function:

ψk(x) =
d
dx

lnΓk(x) =
Γ
′
k(x)

Γk(x)
, k > 0. (6)

The function ψk(x) has the following series representation (see [5,8,9])

ψk(x) =
lnk− γ

k
− 1

x
+

∞

∑
n=1

x
nk(x+nk)

(7)

ψ
(p)
k (x) = (−1)p+1 p!

∞

∑
n=0

1
(x+nk)p+1 , p≥ 1. (8)
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The motivation to introduce the function Γk(x) is its connection with the symbol
(x)n,k which appears in a variety of contexts see [5] and references there in.
In the recent years there is a increasing interest about the function Γk(x) see
[5,6,8,9,11].

We recall the definition of completely and logarithmically completely mo-
notonic functions, as well as two results given in [2,3] which we mention as
Lemmas and are basic for the proof of our theorems.

A function f (x) is said to be completely monotonic on an interval I, if it has
derivatives of all orders on I and satisfies

(−1)n f (n)(x)≥ 0,(x ∈ I,n = 0,1,2, . . .). (9)

If the inequality (9) is strict, then f (x) is said to be strictly completely mono-
tonic on I. A theorem of Bernstein (see for example, [13]) states that f (x) is
completely monotonic if and only if f (x) =

∫
∞

0 e−xtdµ(t), where µ is a nonneg-
ative measure on [0,∞) such that for all x > 0 the integral converges. A positive
function f (x) is said to be logarithmically completely monotonic on an interval
I, if it satisfies

(−1)n[ln f (x)](n) ≥ 0,(x ∈ I,n = 1,2, . . .). (10)

If the inequality (10) is strict, then f (x) is said to be strictly logarithmically
completely monotonic.

Lemma 1.1. [3] Let f ′′ be completely monotonic on (0,∞), then for 0≤ s≤ 1,
the functions

x 7→ exp
(
−
(

f (x+1)− f (x+ s)− (1− s) f ′
(

x+
1+ s

2

)))
x 7→ exp

(
f (x+1)− f (x+ s)− 1− s

2
( f ′(x+1)+ f ′(x+ s))

)
are logarithmically completely monotonic on (0,∞).

Lemma 1.2. [2] If h′ is completely monotonic on (0,∞), then exp(−h) is also
completely monotonic on (0,∞).

We also introduce the definition of the k-Riemann zeta function as an inte-
gral:

Definition 1.3. We define the function ζk as

ζk(s) =
1

Γk(s)

∫
∞

0

ts−k

et −1
dt, s > k. (11)
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Note that when k tends to 1 we obtain the known Riemann Zeta function
ζ (s).

In this paper we prove the completely monotonicity or the logarithmically
completely monotonicity of some functions involving the functions Γk(x) as
well as inequalities for Γk(x) and the k-Riemann zeta function. The obtained
results are the k-analogues of results given by other authors see [2,3,4,7,10,12].

2. Main results for k -Gamma functions

Theorem 2.1. For 0≤ s≤ 1, the functions

x 7→ Γk(x+ s)
Γk(x+1)

exp
(
(1− s)ψk

(
x+

1+ s
2

))
and

x 7→ Γk(x+1)
Γk(x+ s)

exp
(
− 1− s

2

(
ψk(x+1)+ψk(x+ s)

))
are logarithmically completely monotonic on (0,∞).

Proof. Applying Lemma 1.1 to f (x) = lnΓk(x), and using the fact that f ′′(x) =
ψ ′k(x) is completely monotonic on (0,∞) (see [8,9]), we obtain the desired re-
sult.

Remark 2.2. Theorem 2.1 is the analogue of Corollary 2.4 proved in [3] for the
function Γq(x).

Theorem 2.3. For positive x and 0≤ s≤ 1,

exp
(1− s

2

(
ψk(x+1)+ψk(x+ s)

))
≤ Γk(x+1)

Γk(x+ s)

≤ exp
(
(1− s)ψk

(
x+

1+ s
2

))
.

Proof. Let fk(x) =
Γk(x+s)
Γk(x+1) exp

(
(1− s)ψk

(
x+ 1+s

2

))
and

gk(x) =
Γk(x+1)
Γk(x+ s)

exp
(
− 1− s

2

(
ψk(x+1)+ψk(x+ s)

))
.

We know [8] that Γk(x) = k
x
k−1Γ( x

k ) and ψk(x) = 1
k lnk+ψ( x

k ), where ψ( x
k ) =

∂x(lnΓ( x
k )). For x > 0 and 0 ≤ s ≤ 1, using Stirling’s formula we are able to

show that lim
x→∞

fk(x) = lim
x→∞

gk(x) = 1 so the functions fk(x),gk(x) decrease with
respect to x and using Theorem 2.1 we obtain the desired inequalities.
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Remark 2.4. Theorem 2.3 is the analogue of Theorem 3.5 proved in [3] for the
function Γq(x).

For the proof of the following theorem it is necessary the following lemma
which is mentioned in [2].

Lemma 2.5. Let ai and bi (i = 1,2, . . . ,n) be real numbers such that 0 < a1 ≤
·· · ≤ an, 0 < b1 ≤ ·· · ≤ bn and ∑

k
i=1 ai ≤ ∑

k
i=1 bi for k = 1,2, . . . ,n. If f is a

decreasing and convex function on R then

n

∑
i=1

f (bi)≤
n

∑
i=1

f (ai).

Theorem 2.6. Let ai and bi (i = 1,2, . . . ,n) be real numbers such that 0 < a1 ≤
·· · ≤ an, 0 < b1 ≤ ·· · ≤ bn and ∑

k
i=1 ai ≤ ∑

k
i=1 bi for k = 1,2, . . . ,n. Then the

function

x 7→
n

∏
i=1

Γk(x+ai)

Γk(x+bi)

is completely monotonic on (0,∞).

Proof. Let h(x) = ∑
n
i=1(logΓk(x+bi)− logΓk(x+ai)). Then for p≥ 0 we have

(−1)p(h′(x))(p) =
n

∑
i=1

(ψ
(p)
k (x+bi)−ψ

(p)
k (x+ai))

= (−1)p
n

∑
i=1

(−1)p+1
∞

∑
n=0

p!
(x+bi +nk)p+1 − (−1)p+1

∞

∑
n=0

p!
(x+ai +nk)p+1

= (−1)2p+1 p!
n

∑
i=1

∞

∑
n=0

( 1
(x+bi +nk)p+1 −

1
(x+ai +nk)p+1

)
.

Since the function x 7→ 1
xp+1 , p ≥ 0 is decreasing and convex on R, and using

Lemma 2.5 we conclude that

n

∑
i=1

(
1

(x+bi +nk)p+1 −
1

(x+ai +nk)p+1

)
≤ 0

and that implies that (−1)p(h′(x))(p) ≥ 0 for p ≥ 0. Hence h′ is completely
monotonic on (0,∞). By Lemma 1.2 we obtain that

exp(−h(x)) =
n

∏
i=1

Γk(x+ai)

Γk(x+bi)

is also completely monotonic on (0,∞).
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Remark 2.7. Theorem 2.6 is the k-analogue of Theorem 10 proved in [2].

Theorem 2.8. The function f (x) = 1
[Γk(x+1)]

1
x

is logarithmically completely mo-

notonic on (k−1,∞) for k−1 > 0.

Proof. Using Leibniz’ rule

[u(x)v(x)](n) =
n

∑
p=0

(
n
p

)
u(p)(x)v(n−p)(x),

we obtain

[ln f (x)](n) =
n

∑
p=0

(
n
p

)(1
x

)(p)(
− lnΓk(x+1)

)(n−p)

=− 1
xn+1

n

∑
p=0

(
n
p

)
(−1)p p!xn−p

ψ
(n−p−1)
k (x+1)

,− 1
xn+1 g(x)

g
′
(x) =

n

∑
p=0

(
n
p

)
(−1)p p!(n− p)xn−p−1

ψ
(n−p−1)
k (x+1)+

+
n

∑
p=0

(
n
p

)
(−1)p p!xn−p

ψ
(n−p)
k (x+1)

=
n−1

∑
p=0

(
n
p

)
(−1)p p!(n− p)xn−p−1

ψ
(n−p−1)
k (x+1)+

+
n

∑
p=0

(
n
p

)
(−1)p p!xn−p

ψ
(n−p)
k (x+1)

=
n−1

∑
p=0

(
n
p

)
(−1)p p!(n− p)xn−p−1

ψ
(n−p−1)
k (x+1)+

+ xn
ψ

(n)
k (x+1)+

n−1

∑
p=0

(
n

p+1

)
(−1)p+1(p+1)!xn−p−1

ψ
(n−p−1)
k (x+1)

=
n−1

∑
p=0

[(n
p

)
(n− p)−

(
n

p+1

)
(p+1)

]
(−1)p p!xn−p−1

ψ
(n−p−1)
k (x+1)

+ xn
ψ

(n)
k (x+1) = xn

ψ
(n)
k (x+1)

= xn(−1)n+1n!
∞

∑
p=0

1
(x+ pk)n+1
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We recall that the function g(x) includes the function lnΓk(x+1) and its deriva-
tives. Since Γk(k) = 1 it is obvious that g(k− 1) = 0. So, if n is odd, then for
x > k−1,

g
′
(x)> 0⇒ g(x)> g(k−1) = 0⇒ (ln f (x))(n) < 0⇒ (−1)n(ln f (x))(n) > 0.

If n is even, then for x > k−1,

g
′
(x)< 0⇒ g(x)< g(k−1) = 0⇒ (ln f (x))(n) > 0⇒ (−1)n(ln f (x))(n) > 0.

Hence,

(−1)n(ln f (x))(n) > 0

for all x ∈ (k−1,∞) and all integers n≥ 1, so the proof is complete.

Remark 2.9. The above theorem is the k-analogue of Lemma 2.1 of [4] and the
following theorem is k-analogue of Theorem 1.1 of [12].

Theorem 2.10. Let s and t be two real numbers with s 6= t,α = min{s, t} and
β ≥−α. For x ∈ (−α,∞), we define

hβ ,k(x) =


[

Γk(β+t)
Γk(β+s) ·

Γk(x+s)
Γk(x+t)

] 1
x−β

, x 6= β

exp[ψk(β + s)−ψk(β + t)], x = β

The function hβ ,k(x) is logarithmically completely monotonic on (−α,∞).

Proof. It is assumed s > t without loss the generality. For x 6= β , taking loga-
rithm of the function hβ ,k(x) gives

lnhβ ,q(x) =
1

x−β

[
ln

Γk(β + t)
Γk(β + s)

+ ln
Γk(x+ s)
Γk(x+ t)

]
=

lnΓk(x+ s)− lnΓk(β + s)
x−β

− lnΓk(x+ t)− lnΓk(β + t)
x−β

=
1

x−β

x∫
β

ψk(u+ s)du− 1
x−β

x∫
β

ψk(u+ t)du

=
1

x−β

x∫
β

[ψk(u+ s)−ψk(u+ t)]du =
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=
1

x−β

x∫
β

s∫
t

ψ
′
k(u+ v)dvdu

,
1

x−β

x∫
β

ϕk,s,t(u)du
1∫

0

ϕk,s,t((x−β )u+β )du

=

1∫
0

ϕk,s,t((x−β )u+β )du.

Hence

[lnhβ ,k(x)]
(p) =

1∫
0

up
ϕ
(p)
k,s,t((x−β )u+β )du, (12)

if x = β , formula (11) is also valid.
Since ψ

′
k is completely monotonic (see [8,9]), ϕk,s,t is completely monotonic

on (−t,∞). This means that (−1)i[ϕk,s,t(x)](i) ≥ 0 holds on (−t,∞) for any
nonnegative integer i.

Thus

(−1)(p)[lnhβ ,k(x)]
(p) =

1∫
0

up(−1)p
ϕ
(p)
k,s,t((x−β )u+β )du≥ 0

on (−t,∞) for k ∈ N. The proof is complete.

3. Main results for k-Riemann zeta function

Theorem 3.1. Let ζk(s) be the k-Riemann zeta function defined by (11).Then
the following inequality is valid

(s+ k) · ζk(s)
ζk(s+ k)

≥ s
ζk(s+ k)
ζk(s+2k)

, s > k. (13)

Proof. The proof of the theorem is based on the following consequence of
Schwarz’s inequality [10]: Let f ,g be two nonnegative functions of a real vari-
able and m,n real numbers such that integrals in (14) exist. Then∫ b

a
g(t)( f (t))mdt ·

∫ b

a
g(t)( f (t))ndt ≥

(∫ b

a
g(t)( f (t))

m+n
2 dt

)2
. (14)

So, applying inequality (14) with g(t) =
1

et −1
, f (t) = t, m = s− k, n = s+ k,

a = 0, b+∞, we obtain∫
∞

0

ts−k

et −1
dt ·

∫
∞

0

ts+k

et −1
dt ≥

(∫ ∞

0

ts

et −1
dt
)2

.
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Further, using (11) we have

ζk(s)Γk(s)ζk(s+2k)Γk(s+2k)≥ (ζk(s+ k))2(Γk(s+ k))2

and using the property Γk(s+ k) = s ·Γk(s) implies the desired result.

Remark 3.2. For k tends to 1 we obtain Theorem 2.3 of [10].

Theorem 3.3. Let ζk(u) be the k-Riemann zeta function. Then the inequality

Γk

(
u
p +

v
q

)
Γ

1
p
k (u) ·Γ

1
q
k (v)

≤
ζ

1
p

k (u) ·ζ
1
q

k (v)

ζk

(
u
p +

v
q

)
holds, where u > k, v > k,

1
p
+

1
q
= 1 and

u
p
+

v
q
> k.

Proof. Using Holder’s inequality for p > 1∣∣∣∫ ∞

0
f (t) ·g(t)dt

∣∣∣≤ (∫ ∞

0
| f (t)|pdt

) 1
p
(∫ ∞

0
|g(t)|qdt

) 1
q
, (15)

with f (t) =
t

u−k
p

(et −1)
1
p

and g(t) =
t

u−k
q

(et −1)
1
q

. Using definition 1.3 we obtain the

inequality

Γk

(u
p
+

v
q

)
·ζk

(u
p
+

v
q

)
≤ Γ

1
p
k (u) ·Γ

1
q
k (v) ·ζ

1
p

k (u) ·ζ
1
q

k (v),

which completes the proof.
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