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SOME PROPERTIES OF THE k-GAMMA FUNCTION

CHRYSI G. KOKOLOGIANNAKI - VALMIR KRASNIQI

We give completely monotonicity properties and inequalities for func-
tions involving the I'y functions and their logarithmic derivatives y; func-
tions. We introduce a k-analogue of the Riemann Zeta function {; as an
integral and using Schwarz’s and Holder’s inequalities we obtain some
inequalities relating §; and T’ functions. The obtained results are the -
anologues of known results concerning functions involving the Gamma
and psi functions.

1. Introduction

The Euler Gamma function I'(x) is defined [1] by T'(x) = [5°+* 'e'dt forx € C
with Rx > 0 and

. nln*
Tlx) = r}gl}ox(x—l— 1)...(x+n)
The digamma (or psi) function is defined as the logarithmic derivative of Eu-
ler’s Gamma function, that is y(x) = 4 InT'(x) = 1;((;)) . The following integral
and series representations are valid (see [1]):

XEC\Z". (1)

—t —xt
e ' —e
B dt,

S p—— /0 ) »)
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1
yx)=—y—-+)Y (n+ )x7é0 - 3)

n>1 n

where ¥ = 0.57721--- denotes Euler’s constant.
For k > 0, the I'; function is defined [5] by

k" (nk)x !
ni) = Jim "5 xe vz @)

where (x),x = x(x+k)(x+2k)...(x+ (n — 1)k).
The above definiton is a generalization of the definition of I'(x) function.
For x € C with R(x) > 0, the function [';(x) is given by the integral [5]

Fk(x):/ Fle ' dr. (5)

and satisfies [6] the following properties:
(i) Ti(x+k) = xI(x)

- _ Ti(x+nk)
(i) (xX)nx = ka(x)

(iii) (k) =

(iv) Ty(x) is logarithmically convex, for x € R

X 2 tk
(v) Ti(x) =at [t*le~T4t, fora € R
0

(vi) Fkl(x) :xk_%eﬁfl ((14—;7)6_'%).

It is obvious that: I’y —T"ask — 1.
Let yi(x) be the k-analogue of the psi function, that is the logarithmic
derivative of the I'; function:

_4d _ T
Y(x) = - InTe(x) = Ty k>0 (6)

The function y;(x) has the following series representation (see [5,8,9])

Ink—y 1

= X
Vi(x) = A —;+’;m (N

W}Ep)( p+1pyz x+nk — p>1 ()
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The motivation to introduce the function I';(x) is its connection with the symbol
(X)nx Which appears in a variety of contexts see [5] and references there in.
In the recent years there is a increasing interest about the function I'y(x) see
[5.6,8,9,11].

We recall the definition of completely and logarithmically completely mo-
notonic functions, as well as two results given in [2,3] which we mention as
Lemmas and are basic for the proof of our theorems.

A function f(x) is said to be completely monotonic on an interval /, if it has
derivatives of all orders on / and satisfies

(—1)"fW(x) > 0,(x€I,n=0,1,2,...). )

If the inequality (9) is strict, then f(x) is said to be strictly completely mono-
tonic on /. A theorem of Bernstein (see for example, [13]) states that f(x) is
completely monotonic if and only if f(x) = [;” e du(r), where U is a nonneg-
ative measure on [0, o) such that for all x > 0 the integral converges. A positive
function f(x) is said to be logarithmically completely monotonic on an interval
1, if it satisfies

(=1)"[Inf(x)]™ >0,(x e ,n=1,2,...). (10)

If the inequality (10) is strict, then f(x) is said to be strictly logarithmically
completely monotonic.

Lemma 1.1. /3] Let f” be completely monotonic on (0,00), then for 0 < s < 1,
the functions

vevexp (= (frt )= flrrs) - (=97 (x+157))

1—
ximrexp (f(x+1) = fle+5) == (f (x4 1)+ £ (x+5))
are logarithmically completely monotonic on (0,0).

Lemma 1.2. [2] If I is completely monotonic on (0,), then exp(—h) is also
completely monotonic on (0,).

We also introduce the definition of the k-Riemann zeta function as an inte-
gral:

Definition 1.3. We define the function §; as

1 =k
C"(s):rk(s)/o S, s>k (11)
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Note that when k tends to 1 we obtain the known Riemann Zeta function
& (s)-

In this paper we prove the completely monotonicity or the logarithmically
completely monotonicity of some functions involving the functions I';(x) as
well as inequalities for I';(x) and the k-Riemann zeta function. The obtained
results are the k-analogues of results given by other authors see [2,3,4,7,10,12].

2. Main results for k£ -Gamma functions
Theorem 2.1. For 0 <s < 1, the functions
Ti(x+s) 1+
m g o0 (19w (x+ 7))
Hrk(x+1)‘°”‘p(( V(¥ +—

and

Fk(x+ 1)

Te(its) exp (— %(Wk(x—kl)—i-lllk(x—i-s)))

are logarithmically completely monotonic on (0,0).

Proof. Applying Lemma 1.1 to f(x) = InT;(x), and using the fact that f”(x) =
v, (x) is completely monotonic on (0,0) (see [8,9]), we obtain the desired re-
sult. U

Remark 2.2. Theorem 2.1 is the analogue of Corollary 2.4 proved in [3] for the
function I' (x).

Theorem 2.3. For positive x and 0 < s < 1,

oo (15 (e i) < B

<exp ((1 —s)l//k(x+ 1—2|—s>).

Proof. Let fi(x) = %exp ((1 —5) Wk (x+ %)) and

I (x + 1) 1—s
N )
o) = iy o0 (-5 (Wl D wles)
We know [8] that Ty (x) = ki ~'T'(3) and yi(x) = 1 Ink+ y(%), where y(4) =
d(InT'(3)). For x >0 and 0 < s < 1, using Stirling’s formula we are able to
show that lim f(x) = lim g (x) = 1 so the functions fi(x), gx(x) decrease with
X—ro0 X—oo

respect to x and using Theorem 2.1 we obtain the desired inequalities. O
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Remark 2.4. Theorem 2.3 is the analogue of Theorem 3.5 proved in [3] for the
function I';(x).

For the proof of the following theorem it is necessary the following lemma
which is mentioned in [2].

Lemma 2.5. Let a; and b; (i =1,2,...,n) be real numbers such that 0 < a; <
<a, 0<b <---<b, and): 1a,<Z,1bf0rk—12 n If fisa
decreasing and convex function on R then

n n
Y fbi) <Y fla)
i=1 i=1
Theorem 2.6. Let a; and b; (i=1,2,...,n) be real numbers such that 0 < a; <
w<a, 0<b << by andZ la,SZl 1bifor k=1,2,...,n. Then the
function
x—l—a,
H
g Hrk x+b)

is completely monotonic on (0,0).

Proof. Leth(x)=Y" ,(logTx(x+b;) —logT'y(x+a;)). Then for p > 0 we have

(—1)P (K (x)) P = i<w<”><x+b> v (x+ap)

i=1

n
iy P IR S L
Z ) Z (x+b; +nk p+l ) Z (x+a; —|—nk ptl

1
2 +1
’ P'ZZ ( (x+b; +nk)P+1 (x+a,-+nk)ﬁ+1>'

i=1n=

Since the function x — ﬁ, p > 0 is decreasing and convex on R, and using
Lemma 2.5 we conclude that

4 1 1
— <0
; ((x—i—bi—i-nk)l“rl (x—i—ai—i-nk)l’“) -

and that implies that (—1)?(#(x))(P) > 0 for p > 0. Hence /' is completely
monotonic on (0, ). By Lemma 1.2 we obtain that

nTi(x+a;)

exp(—h(x)) = g Fk(X-Fbi)

is also completely monotonic on (0, o). O
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Remark 2.7. Theorem 2.6 is the k-analogue of Theorem 10 proved in [2].

Theorem 2.8. The function f(x) = ﬁ is logarithmically completely mo-
rx+1)]x

notonic on (k—1,00) fork—1 > 0.

Proof. Using Leibniz’ rule

we obtain

EYIOIEEDY

0 <Z> (%) v ( —InTy(x+ 1)>(n—p)

1 & /n o (nep—
Z—ﬂHEZQ)PD%W”W£p”u+w
p=0

n

1
2 —Wg(x)

¢ )= ZO (2) - 17pttn= pt el s )
+pf_o (Z) (—=1)Ppl Py P (x4-1)
n—1
X <Z> (=1)Ppl(n—p)x P " P (x+ 1)+

S

4
(g E

(2) el s

Il
o

p

|
—_

n

=T () vty e

<
Il

n—1

sy e+ L () oy )
p

=0

= pi_:) [(Z) (n—p)— (pi 1) (p+ 1)} (1) pl P Iy P (x4 1)

oy e+ 1) =y (1)
> 1

— N -1 n+1 ! -
x( ) n = (x_|_pk)n+1

p
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We recall that the function g(x) includes the function InT';(x+ 1) and its deriva-
tives. Since I'y(k) = 1 it is obvious that g(k — 1) = 0. So, if n is odd, then for
x>k—1,

g(x)>0=g(x) > glk—1)=0= (Inf(x))" <0= (—1)"(In f(x))™ > 0.

If n is even, then forx > k— 1,

/

g(x) <0=g) <glk—1)=0= (Inf(x))™ > 0= (—1)"(Inf(x))™ > 0.

Hence,
(—=1)"(Inf(x)" >0

for all x € (k— 1,00) and all integers n > 1, so the proof is complete. Ul

Remark 2.9. The above theorem is the k-analogue of Lemma 2.1 of [4] and the
following theorem is k-analogue of Theorem 1.1 of [12].

Theorem 2.10. Let s and t be two real numbers with s #t, ¢ = min{s,t} and
B > —a. Forx € (—a,o), we define

_1

T(B+1) Ti(xts)] =P
[F:(ﬁ-&-s) : r’,i(m) , x# B

exp[Vi(B+s)—wi(B+1)], x=PB

hg i (x) =

The function hg y(x) is logarithmically completely monotonic on (—a., ).

Proof. Tt is assumed s > ¢ without loss the generality. For x # 3, taking loga-
rithm of the function /g 4 (x) gives

L[ TB+n) | Tulets)
Inp () = = [mrk(ﬁﬂ) +ln Fk(x—i—t)}
_ lan(x+s) —lan(B —|—S) B lan(x+t) —lan(B —I—l)

x—p x—p

:x_lﬁﬁ/y/k(u—l—s)du—x_lﬁﬁ/‘lfk(u+t)d”

x_IB /[‘I/k(u+s) — Yi(u+1)]du =
B
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u+v )dvdu

kst du/(Pku u+ﬁ)

Prs(x = B)u+B)du

o—__

Hence
1

g ()] = [ o) (v~ BJu-+ B (12)
0
if x = B, formula (11) is also valid.
Since q/,/( is completely monotonic (see [8,9]), @ s, is completely monotonic
on (—t,00). This means that (—1)'[g,(x)]®) > 0 holds on (—¢,c0) for any
nonnegative integer i.

Thus
1
(1) i )7 = [ (=17 9[2), (v~ BJu+B)du > 0
0
n (—t,0) for k € N. The proof is complete. O

3. Main results for k-Riemann zeta function

Theorem 3.1. Let (i (s) be the k-Riemann zeta function defined by (11).Then
the following inequality is valid

Gls) . Gls+h)
Ge(s+k) = (s +2k)’
Proof. The proof of the theorem is based on the following consequence of

Schwarz’s inequality [10]: Let f, g be two nonnegative functions of a real vari-
able and m, n real numbers such that integrals in (14) exist. Then

[ sorora [ soora ([ oo Ea).  as

L f)=t,m=s—k,n=s+k,

(s+k)- s> k. (13)

So, applying inequality (14) with g(¢) = til
o —
a =0, b+ o, we obtain

oo tsfk oo ts+k o 48 )
dt- dt > ( / dt) .
/o el —1 /o er—1 —\Jo e—1
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Further, using (11) we have
Gk()Ta(9) Gi(s + 20Tk (s +2k) > (Gi(s+k))*(Ta (s +k))?
and using the property I'y(s+ k) = s-I'x(s) implies the desired result. O
Remark 3.2. For k tends to 1 we obtain Theorem 2.3 of [10].

Theorem 3.3. Let {i(u) be the k-Riemann zeta function. Then the inequality

rlk(;;+l;) AURA0
M) G(s+2)

1 1
holds, where u >k, v >k, 7+f:1andﬁ+ﬁ>k.
P q P q

Proof. Using Holder’s inequality for p > 1

[ r0-swa| < ([ iswpea) ([Csora) as

. [% K
with f(t) = —— and g(r) =
¥

—. Using definition 1.3 we obtain the
(e —1)r (et —1)q

inequality
(%4 2) a5+ 0) <t Tw - ¢ -5 o)

which completes the proof. O
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