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ON A CLASS OF CONTROLLED FUNCTIONAL
DIFFERENTIAL INCLUSIONS

SADIA ARSHAD - VASILE LUPULESCU

The aim of this paper is to establish the existence of solutions and
some properties of solutions set for a class of functional differential equa-
tions with causal operator under assumption that the equation satisfies the
Carathéodory type condition. Also, an application for an optimal control
problem is given.

1. Introduction

The study of differential equations with causal operators or a non anticipative
operator has been rapidly developing in the last years and some results are as-
sembled in very recent monographs [2, 15]. The term of causal operators is
adopted from engineering literature and the theory of these operators has the
powerful quality of unifying ordinary differential equations, integro - differen-
tial equations, differential equations with finite or infinite delay, Volterra integral
equations, and neutral functional equations, to name a few.

We considered the class S of all infinite-dimensional nonlinear M- input
u, M- output y systems (p,g,Q) given by the following controlled nonlinear
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functional equation {
y′(t) = g(p(t),(Q̂y)(t),u(t)),
y|[−σ ,0] = y0 ∈C([−σ ,0],RM),

(1)

where σ ≥ 0 quantifies the memory of the system, p(·) is a perturbation term,
Q̂ is a nonlinear causal operator, and R is the class of reference signals as-
sumed to be W 1,∞(R+,RM) the set of all locally absolutely continuous and
bounded with essentially bounded derivative. The control problem can be for-
mulated in terms of a performance funnel Fλ : t → {e ∈ RM;λ (t)||e|| < 1},
where λ ∈W 1,∞(R+,R+) is a prescribed function with λ (t) > 0 for all t > 0
and liminfλ (t)> 0.

t→∞

The objective is an (R,S)− universal feedback control

which, when applied to any system of the admissible class S with any refer-
ence signal of class R, ensure that the tracking error e := y− r, r ∈ R, evolves
within the performance funnel Fλ , provided that the initial data is such that
e(0) = y0(0)− r(0) ∈ Fλ (0). The tracking objective can be achieved by a sim-
ple time-varying error feedback of the form

u(t) =−k(t)e(t), k(t) = β (λ (t)||e(t)||), (2)

where β : [0,1)→R+ is any continuous, unbounded injection, and k :R+→R+

given function. For more details see the papers [12, 20].
Writing e′(t) = g(p(t),((Q̂(e+r))(t),−β (λ (z(t))||e(t))||e(t))−r′(t), z′(t) = 1,
and

f (t,x,w) := g(p(t),(e,z),w) = g(p(t),w,−β (λ (z)||e||)e)− r′(t),1)

then we see that analysis of the behavior of a system (p,g,Q) ∈ S under control
(2) constitutes a study of an initial-value problem of the form

x′(t) = f (t,x(t),(Qx)(t)), x|[−σ ,0] = x0 ∈C([−σ ,0],RN), (3)

where N =M+1, x(t) := (e(t),z(t)), x0 = (y0−r|[−σ ,0],0), and Q is an operator
defined on C([−σ ,0],RN) by

(Qx)(t) = (Q̂(e,z))(t) := ((Q̂(e+ r))(t).

In the context of the general class S , we will investigate a nonsmooth gen-
eralization of (3) in which the nonsmooth counterpart of (3) takes the form
x′(t) ∈ F(t,x(t),(Qx)(t)), with appropriate initial data, where F is a multifunc-
tion.

The aim of this paper is to give an existence result for the following initial
value problem

x′(t) ∈ F(t,x(t),(Qx)(t)), x|[−σ ,0] = x0 ∈C([−σ ,0],RN). (4)
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Also, we study the properties of the set of the solutions for (4), and give an
application for an optimal control problem.

2. Preliminaries

Let RN be the N-dimensional Euclidian space with norm || · ||. For x ∈ RN and
r > 0 let Br(x) := {y∈RN ; ||y−x||< r} be the open ball centered at x with radius
r, and let Br[x] be its closure. By Kc(RN) we will denote the set of all nonempty
compact convex subsets of RN . If I = [0,b) ⊂ R, b ∈ (0,∞], then we denote
by C(I,RN) the Banach space of continuous functions from I into RN . If σ is
a positive number then we put Cσ := C([−σ ,0],RN) and let L∞

loc(I,RN) denote
the space of measurable locally essentially bounded functions x(·) : I→ RN .

Definition 2.1. Let σ ≥ 0. An operator Q : C([−σ ,b),RN)→ L∞
loc([0,b),RM)

is a causal operator if the following property holds:

(Q) for each τ ∈ [0,b) and for all x(·),y(·) ∈C([−σ ,b),RN), with x(t) = y(t)
for every t ∈ [−σ ,τ], we have (Qx)(t) = (Qy)(t) for a.e. t ∈ [0,τ].

For concrete applications and examples which serve to illustrate that the
class of causal operators is very large, we refer to the monographs [2–4, 9] and
[15].

We consider the initial-valued problem with causal operator

x′(t) ∈ F(t,x(t),(Qx)(t)), x|[−σ ,0] = ϕ ∈ Cσ , (5)

under the following assumptions:

(h1) Q is continuous;

(h2) for each r > 0 and each τ ∈ (0,b), there exists M > 0 such that, for all
x(·) ∈ C([−σ ,b),RN) with sup

−σ≤t≤τ

||x(t)|| ≤ r, we have ||(Qx)(t)|| ≤ M

for a.e. t ∈ [0,τ];

(h3) F : [−σ ,b)×RN×RM → Kc(RN) is a Carathéodory function, that is:

(a) for a.e. t ∈ [−σ ,b), F(t, ·, ·) is upper-semicontinuous,

(b) for each fixed (x,y) ∈ RN×RM, F(·,x,y) has a measurable selection,



56 SADIA ARSHAD - VASILE LUPULESCU

(c) for every bounded B ⊂ RN ×RM, there exists µ(·) ∈ L1
loc([−σ ,b),R+)

such that
|F(t,x,y)| := sup{||z||;z ∈ F(t,x,y)} ≤ µ(t)

for a.e. t ∈ [−σ ,b) and all (x,y) ∈ B.

By a solution of (5) on [−σ ,T ], we mean a function x(·) ∈ C([−σ ,T ],RN),
with T ∈ (0,b] and x|[−σ ,0] = ϕ , such that x|[0,T ] is absolutely continuous and
satisfies (5) for a.e. t ∈ [0,T ].

We remark that, x(·) ∈ C([−σ ,T ],RN) is a solution for (5) on [−σ ,T ], if
and only if x|−σ ,0] = ϕ and

x(t) ∈ ϕ(0)+
∫ t

0
F(s,x(s),(Qx)(s))ds for t ∈ (0,T ].

The existence of solutions for the Cauchy problem (3) has been studied in
[12], when Q : C([−σ ,b),RN)→ L∞

loc([0,b),RM) is a locally Lipschitz operator.
The existence of solutions for the following Cauchy problem

x′(t) = (Qx)(t), x(0) = x0,

has been studied in [6], in the case when Q : C([0,b),E)→ C([0,b),E) is a
locally Lipschitz operator and E is a Banach space. Also, for other results see
[7, 13, 16, 19].

3. Existence of solutions

In this section, we present an existence result of the solutions for Cauchy prob-
lem (5), under conditions (h1)− (h3).

Theorem 3.1. Assume that the conditions (h1)− (h3) hold. Then, for every
ϕ ∈ Cσ , there exists a solution x(·) : [−σ ,T ]→ RN for Cauchy problem (5) on
some interval [−σ ,T ] with T ∈ (0,b).

Proof. Let δ > 0 be any number and let r := ||ϕ||σ +δ . If x0(·)∈C([−σ ,b),RN)
denotes the function defined by

x0(t) =
{

ϕ(t), for t ∈ [−σ ,0)
ϕ(0), for t ∈ [0,b),

then sup
0≤t<b

||x0(t)|| ≤ r. Therefore, by (h2) , we have ||(Qx0)(t)|| ≤ M for a.e.

t ∈ [0,b). Since F is a Carathéodory function, there exists µ(·)∈ L1
loc([0,b),R+)

such that

|F(t,x,y)| ≤ µ(t) for a.e. t ∈ [0,b) and (x,y) ∈ Br(0)×BM(0).
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We construct a sequence {xm}m≥1 of continuous functions from [−σ ,T ]
to RN as follows. Let m ∈ N. For i = 1,2, ...,m, define xi

m : [−σ , iT
m ]→ RN

by recursive procedure. For t ∈ [−σ , T
m ] we define x1

m(t) = x0(t). Since x1
m :

[0, T
m ]→ RN and Qx1

m : [0, T
m ]→ RM are measurable functions then, by (h3) and

[14, Theorem 1.3.5], [5, Proposition 3.5], there exists a measurable function
g̃1

m(·) such that g̃1
m(t) ∈ F(t,x1

m(t),(Qx1
m)(t)) for a.e. t ∈ [0, T

m ]. For t ∈ ( T
m ,

2T
m ]

we define

x2
m(t) =


x1

m(t), t ∈ [−σ , T
m ]

ϕ(0)+
∫ t−T/m

0 g̃1
m(s)ds, t ∈ ( T

m ,
2T
m ].

Let us assume that xi
m(t) is defined on [−σ , iT

m ], 1 ≤ i < m. Then for t ∈
( iT

m , (i+1)T
m ] we define

xi+1
m (t) =


xi

m(t), t ∈ [−σ , iT
m ]

xi
m(

iT
m )+

∫ t−T/m
(i−1)T/m g̃i

m(s)ds, t ∈ ( iT
m , (i+1)T

m ],

where g̃i
m(·) is a measurable function such that g̃i

m(t) ∈ F(t,xi
m(t),(Qxi

m)(t)) for
a.e. t ∈ ( (i−1)T

m , iT
m ]. In fact, if for i = 1,2, ...,m, we define gi

m(·) : [0,T ]→ RN

by g1
m(t) = g̃1

m(t) if t ∈ [0, T
m ], and

gi
m(t) =


gi−1

m (t), t ∈ [0, (i−1)T
m ]

g̃i
m(t), t ∈ ( (i−1)T

m , iT
m ],

for 2≤ i≤ m, then gi
m(·) are measurable functions such that

gi
m(t) ∈ F(t,(Qxi

m)(t)) for a. e. t ∈ [0,
iT
m
] and i = 1,2, ...,m.

Moreover, we have that

xi
m(t) =


xi−1

m (t), t ∈ [−σ , (i−1)T
m ]

ϕ(0)+
∫ t−T/m

0 gi−1
m (s)ds, t ∈ ( (i−1)T

m , iT
m ],

for i = 2,3, ...,m. Further, we observe that
∥∥x1

m(t)
∥∥≤ r for all t ∈ [0, T

m ] and so,
by (h2),

∥∥(Qx1
m)(t)

∥∥ ≤M for a.e. t ∈ [0, T
m ]. If for i ∈ {1,2, ..., p}, p < m, we

assume that
∥∥xi

m(t)
∥∥≤ r for all t ∈ [0, iT

m ] and
∥∥(Qxi

m)(t)
∥∥≤M for a.e. t ∈ [0, iT

m ]
then, since

||xp+1
m (t)−ϕ(0)|| ≤

∫ t−T/m

0
||gi−1

m (s)||ds≤
∫ t−T/m

0
µ(s)ds < δ ,
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we have

||xp+1
m (t)|| ≤ ||xp+1

m (t)−ϕ(0)||+ ||ϕ(0)||< r,

and so, by (h2), ||(Qxp+1
m )(t)|| ≤ M for a.e. t ∈ [0, (p+1)T

m ]. Therefore, by in-
duction on i, we obtain that

∥∥xi
m(t)

∥∥≤ r for all t ∈ [0, iT
m ] and

∥∥(Qxi
m)(t)

∥∥≤M
for a.e. t ∈ [0, iT

m ], i = 1,2, ...,m. For notational convenience, we write gm = gm
m

and xm = xm
m. By causality of Q, the sequence {xm}m≥1 so constructed has the

property that, for each m≥ 1,

xm(t) =


x0(t), t ∈ [−σ , T

m ]

ϕ(0)+
∫ t−T/m

0 gm(s)ds, t ∈ ( T
m ,T ].

Moreover, for all m≥ 1, ||xm(t)|| ≤ r for all t ∈ [−σ ,T ] and so {xm}m≥1 is uni-
formly bounded. Next, we show that the sequence {xm}m≥1 is equicontinuous.
Since on the closed interval [0,T ] the function t 7→

∫ t
0 µ(s)ds is uniformly con-

tinuous, then for any ε > 0 there exists η > 0 such that for all t,s ∈ [0,T ] with
|t− s| < η we have

∣∣∫ t
s µ(τ)dτ

∣∣ < ε . Let m ≥ 1, t,s ∈ [0,T ] with |t− s| < η .
Without loss of generality, we can assume that s ≤ t. If 0 ≤ s ≤ t ≤ T

m , then
||xm(t)− xm(s)||= 0. If 0≤ s≤ T

m ≤ t, then t− T
m < η and so

||xm(t)− xm(s)||= ||xm(t)−ϕ(0)|| ≤
∫ t−T/m

0
µ(s)ds < ε.

If 0≤ T
m ≤ s≤ t, then |(t− T

m)− (s− T
m)|= |t− s|< η and so

||xm(t)− xm(s)|| ≤
∫ t−T/m

s−T/m
µ(s)ds < ε.

Recalling that xm|[−σ ,0] = ϕ for all m ≥ 1, we conclude that the sequence
{xm}m≥1 is equicontinuous. Hence by the Ascoli-Arzela theorem and extracting
a subsequence if necessary, we may assume that the sequence {xm}m≥1 converge
uniformly on [0,T ] to a function x(·) which is absolutely continuous and satisfies
x(t) = ϕ(t) for all t ∈ [−σ ,0]. Now, by (h1), we have that lim

m→∞
Qxm = Qx in

L∞([0,T ],RM) and so lim
m→∞

(Qxm)(t) = (Qx)(t) for a.e. t ∈ [0,T ]. Since

xm(t) ∈ ϕ(0)+
∫ t−T/m

0
F(s,xm(s),(Qxm)(s))ds

holds, we have by upper semicontinuity of F(t, ·, ·) and Fatou’s Lemma [1, The-
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orem 8.6.7] that

x(t) ∈ ϕ(0)+ limsup
m→∞

∫ t−T/m

0
F(s,xm(s),(Qxm)(s))ds

⊂ ϕ(0)+
∫ t

0
limsup

m→∞

F(s,xm(s),(Qxm)(s))ds

+limsup
m→∞

∫ t−T/m

t
F(s,xm(s),(Qxm)(s))ds

⊂ ϕ(0)+
∫ t

0
F(s,xm(s),(Qxm)(s))ds.

Therefore, since x(·) is absolutely continuous on [0,T ], we conclude that x′(t)∈
F(t,x(t),(Qx)(t)) a.e. on [0,T ].

Theorem 3.2. Assume that the conditions (h1)−(h3) hold. Then, every solution
of Cauchy problem (5) can be extended to a maximal solution x(·) : [−σ ,T )→
RN . Moreover, if x(·) is bounded, then T = b.

Proof. Let x(·) : [−σ ,T )→ RN be a solution of Cauchy problem (5) and let

M= {(τ,v);T ≤ τ ≤ b, v(·) : [−σ ,τ)→ RN is a solution of (5)
with v|[−σ ,0] = ϕ}.

ThenM is nonempty and we can define a partial order 2 onM by (τ1,v1) 2
(τ2,v2) if and only if τ1 ≤ τ2 and v2(t) = v1(t) for all t ∈ [−σ ,τ1). By Zorn’
lemma, it follows that M contains at least one maximal element. Next, as-
sume that x(·) : [−σ ,T )→ RN is a bounded maximal solution of (5) existing
on [−σ ,T ), 0 < T < b. Also, we suppose, by contradiction, that the value of
T < b. Since x(·) is bounded and x′(t) ∈ F(t,x(t),(Qx)(t)) a.e. on [0,T ), then
it follows that x′(·) is essentially bounded on [0,T ) Therefore, x(·) is uniformly
continuous and so extend to a continuous function x(·) : [−σ ,T ]→RN . Further
on, we consider the Cauchy problem{

y′(t) ∈ F(t +T,y(t +T ),(Qy(·−T )(t +T )), 0≤ t < b−T
y|[−(σ+T ),0] = ψ

(6)

where ψ(·) ∈ Cσ+T is defined by ψ(s) = x(s+ T ), for all s ∈ [−(σ + T ),0].
By Theorem 3.1, there exists a solution v(·) : [−(σ +T ),τ)→ RN of Cauchy
problem (6), where τ ∈ (0,b−T ]. It follows that z(·) : [−σ ,T +τ]→RN , given
by

z(t) =
{

x(t), for t ∈ [−σ ,T ]
y(t−T ), for t ∈ [T,T + τ],
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Since, for a.e. t ∈ [T,T + τ], we have that

z′(t) = y′(t−T ) ∈ F(t,x(t),(Qy(·−T )(t)) = F(t,z(t),(Qz)(t))

it follows that z(·) is a solution of Cauchy problem (5) and a proper right ex-
tension of solution x(·). This contradicts the maximality of x(·). Therefore,
T = b.

Example 3.3. Let us consider the operator Q in the form

(Qx)(t) =
∫ t

t−σ

k(t,s)x(s)ds, 0≤ t < b,

where x(·) ∈ C([−σ ,b),RN), and k(t,s) : ∆→ R+, is a measurable kernel, inte-
grable with respect to s for a.e. t ∈ [0,b) with t−σ ≤ s < t < b, such that

esssup
t∈[0,b)

∫ t

t−σ

|k(t,s)|ds≤M < ∞.

Here ∆ := {(t,s);0 ≤ t < b, t −σ ≤ s < t < b}. Then Q is a causal operator
from C([−σ ,b),RN) into L∞([0,T ],RN) and it satisfies the properties (h1) and
(h2) (see [2]). Therefore, if the multifunction F : [−σ ,b)×RN×RN → Kc(RN)
satisfies the property (h3), then the following integro-differential equation

x′(t) ∈ F
(

t,x(t),
∫ t

t−σ

k(t,s)x(s)ds
)
, 0≤ t < b,

has a maximally defined solution with maximal interval of existence [0,b), b >
0.

4. Properties of the solutions set

In the following, for a fixed ϕ ∈ Cσ and a compact set K ⊂ RN , by ST (ϕ,K)
we denote the set of solutions x(·) of Cauchy problem (5) on [−σ ,T ] with T ∈
(0,b) and such that x(t) ∈ K for each t ∈ [−σ ,T ]. By AT (ϕ,K) we denote the
attainable set; that is, AT (ϕ,K) = {x(T );x(·) ∈ ST (ϕ,K)}.

Theorem 4.1. Assume that the conditions (h1)− (h3) hold. Then, for every
ϕ ∈ Cσ , ST (ϕ,K) is compact set in C([−σ ,T ],RN).

Proof. We consider a sequence {xm}n≥1 in ST (ϕ,K) and we shall show that this
sequence contains a subsequence which converges, uniformly on [−σ ,T ], to a
solution x(·) ∈ ST (ϕ,K). Since K is a bounded set, then there exists r > 0 such
that K ⊂ Br(0). By (h2), there exists M > 0 such that ||(Qx)(t)|| ≤M for every
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x(·) ∈ C([−σ ,T ],E) with sup−σ≤t≤T ||x(t)|| < r. Since F is a Carathéodory
function, there exists µ(·) ∈ L1([0,T ],R+) such that

|F(t,x,y)| ≤ µ(t) for a.e. t ∈ [0,T ] and (x,y) ∈ Br(0)×BM(0).

Since xm|[−σ ,0] = ϕ , we have that xm→ ϕ uniformly on [−σ ,0]. On the other
hand, since x′m(t) ∈ F(t,xm(t),(Qxm)(t)) for a.e. t ∈ [0,T ] and all m ≥ 1, we
have that

xm(t)− xm(s) ∈
∫ t

s
F(τ,xm(s),(Qxm)(τ))dτ for s, t ∈ [0,T ]

and hence

||xm(t)− xm(s)|| ≤
∣∣∣∣∫ t

s
µ(τ)dτ

∣∣∣∣≤ r|t− s| for s, t ∈ [0,T ].

Therefore, {xm}m≥1 is equicontinuous on [0,T ]. Since, for every m≥ 1, xm sat-
isfies the same initial condition, xm(0) = ϕ(0), then we deduce that {xm}m≥1
is uniformly bounded. Further, by the Ascoli-Arzela theorem and extracting
a subsequence if necessary, we may assume that the sequence {xm}m≥1 con-
verges uniformly on [0,T ] to an absolutely continuous function x. Moreover,
x(t) ∈ K for any t ∈ [0,T ]. If we extend x(·) to [−σ ,T ] such that x|[−σ ,0] = ϕ

then clearly xm→ x uniformly on [−σ ,T ]. Moreover, we have that x(t) ∈ K for
each t ∈ [−σ ,T ]. Now, by (h1), we have that lim

n→∞
Qxm = Qx in L∞([0,T ],RM).

Therefore, lim
m→∞

(Qxm)(t) = (Qx)(t) for a.e. t ∈ [0,T ] and so, by the upper semi-

continuity of F(t, ·) and Fatou’s Lemma [1, Theorem 8.6.7], we have that

x(t)− x(s) ∈ limsup
n→∞

∫ t

s
F(τ,xm(τ),(Qxm)(τ))dτ

⊂
∫ t

s
limsup

m→∞

F(τ,xm(τ),(Qxm)(τ))dτ

⊂
∫ t

0
F(τ,xm(τ),(Qxm)(τ))dτ,

for t,s ∈ [0,T ]. Therefore, we conclude that x(·) is absolutely continuous on
[0,T ], x′(t) ∈ F(t,x(t),(Qx)(t)) for a.e. t ∈ [0,T ] and u|[−σ ,0] = ϕ .

Theorem 4.2. Assume that the conditions (h1)− (h3) hold. Then, the multi-
function ST (·,K) : Cσ →C([−σ ,T ],RN) is upper semicontinuous.

Proof. Let K be a closed set in C([−σ ,T ],RN) and B = {ϕ ∈ Cσ ;ST (ϕ,K)∩
K 6= /0}. We must show that B is closed in Cσ . For this, let {ϕm}m≥1 be a se-
quence in B such that ϕm→ ϕ on [−σ ,0]. Further, for any m ≥ 1, let xm(·) ∈
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ST (ϕm,K)∩K. Then, xm = ϕm on [−σ ,0] for all m ≥ 1, and xm(t) ∈ ϕm(0)+∫ t
0 F(s,xm(s),(Qxm)(s))ds for all t ∈ (0,T ]. As in proof of Theorem 4.1 we can

show that {xm}n≥1 is equicontinuous and equibounded on [0,T ]. Therefore, by
the Ascoli-Arzela theorem and extracting a subsequence if necessary, we may
assume that the sequence {xm}m≥1 converges uniformly on [−σ ,T ] to a continu-
ous function x(·)∈K. Since x(t)= lim

m→∞
xm(t)∈ϕ(0)+

∫ t
0 F(s,xm(s),(Qx)(s))ds

for all t ∈ [0,T ], we deduce that x(·)∈ST (ϕ,K)∩K. This prove that B is closed
and so ϕ 7→ ST (ϕ,K) is upper semicontinuous.

Corollary 4.3. Assume that the conditions (h1)− (h3) hold. Then, for any ϕ ∈
Cσ and any t ∈ [0,T ] the attainable set At(ϕ,K) is compact in C([−σ , t],RN)
and the multifunction (t,ϕ) 7→ At(ϕ,K) is jointly upper semicontinuous.

5. An optimal control problem

In this section, we consider the following control problem:
x′(t) ∈ F(t,x(t),(Qx)(t)) for a.e. t ∈ [0,T ]
x|[−σ ,0] = ϕ

minimize ξ (x(T )),
(7)

where ξ : RN → R is a given function.

It is well known that the initial value problem (5) appears in the theory of
control systems having equations of motion of the form

x′(t) = f (t,x(t),(Qx)(t),u(t)), x|[−σ ,0] = ϕ, (8)

where the admissible control function u can be chosen as any measurable func-
tion with value at time t in a preassigned set U(t,x(t)) ⊂ Rk. The problem is
to determine an admissible control u∗, which causes the system (8) to follow
an admissible trajectory x∗ = x(t,u∗) that minimizes the cost function J(x,u) =
ξ (x(T )). Such controls u∗ are called optimal controls. If we put

F(t,x(t),(Qx)(t)) = { f (t,x(t),(Qx)(t),u(t));x(t) ∈U(t,x(t))}

then, under suitable assumptions, a function x(·) is a solution of (5) if and only
if x(·) is a solution of (8) for some admissible control u (see [4, 8, 10]).

Theorem 5.1. Let K0 be a compact set in Cσ and let ξ : RN → R be a lower
semicontinuous function. If the conditions (h1)− (h3) hold, then the control
problem (7) has an optimal solution; that is, there exists ϕ0 ∈ K0 and x0(·) ∈
ST (ϕ0,K) such that

ξ (x0(T )) = inf{ξ (x(T ));x(·) ∈ ST (ϕ,K),ϕ ∈ K0}.
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Proof. From Corollary 4.3 we deduce that the attainable set AT (ϕ,K) is upper
semicontinuous. Then by [11, Corollary 1.2.20] the set

AT (K0) = {x(T );x(·) ∈ ST (ϕ,K),ϕ ∈ K0}= ∪ϕ∈K0AT (ϕ,K)

is compact in RN and so, since ξ is lower semicontinuous, there exists ϕ0 ∈ K0
such that ξ (x0(T )) = inf{ξ (x(T ));x(·) ∈ ST (ϕ,K),ϕ ∈ K0}.
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