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COUPLED COINCIDENCE POINT THEOREMS FOR MIXED
MONOTONE NONLINEAR OPERATOR IN PARTIALLY
ORDERED G-METRIC SPACES

SEYED H. RASOULI - M. BAHRAMPOUR

In this paper we present some coupled coincidence and coupled com-
mon fixed point theorems for mixed g-monotone mappings in partially
ordered G-metric spaces.

1. Introduction

In a recent paper Bhaskar and Lakshmikantham [7] introduced mixed mono-
tone operator and established coupled fixed point theorems for mixed monotone
operators in partially ordered metric spaces. After their work, many authors
have been studied about coupled fixed point [2,4,5,10,11,13,16,1718,19]. In
[12] Lakashmikantham and Ciric introduced the concept of a mixed g-monotone
mappings and proved coupled coincidence and coupled common fixed point
theorems in partially ordered metric spaces. After this work some authors con-
sidered coupled coincidence and common fixed point theorems in their works
[6,8]. Some authors generalized the concept of metric spaces. Mustafa and Sims
[14] introduced the notion of G-metric. Some authors studied some fixed point
theorems in partially ordered G-metric space [1,3,9,15].
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Mustafa and Simis [14] introduced following definition and obtained the fol-
lowing results.

Definition 1.1. ([14]) Let X be a non-empty set, G : X x X x X — R, be a
function satisfying the following properties:

(G1) G(x,y,z) =0ifx=y =z

(G2) 0 < G(x,x,y) for all x,y € X with x # y.

(G3) G(x,x,y) < G(x,y,z) for all x,y,z € X with y # z.

(G4) G(x,y,2) = G(x,z,y) = G(y,2,x) = - - - (symmetry in all three variables).
(G5) G(x,y,2) < G(x,a,a)+G(a,y,z) for all x,y,z,a € X, (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric
on X, and the pair (X, G) is called a G-metric space.

Definition 1.2. ([14]) Let (X, G) be a G-metric space, and let (x,) be a sequence
of points of X. We say that (x,) is G-convergent to x € X if

1limy, —ye0 G (X, X, X,) = 0, that is, for any € > 0, there exists N € N such that
G(x,x,,%n) < €, for all n,m > N. We call x the limit of the sequence and write
X, — x or limx, = x.

Proposition 1.3. ([14]) Let (X,G) be a G-metric space. The following are
equivalent:

(1) (x,) is G-convergent to x.

(2) G(xp,Xp,x) — 0 as n — oo,

(3) G(xp,x,x) = 0 as n — oo

Definition 1.4. ([14]) Let (X,G) be a G-metric space. A sequence (x,) is
called a G-Cauchy sequence if, for any € > 0, there exists N € N such that
G(xp, Xm,x;) < € for all myn,l > N, that is, G(x,,Xp,x;) — 0 as n,m,l — +co.

Proposition 1.5. ([14]) Let (X, G) be a G-metric space. Then the following are
equivalent

(1) the sequence (x,) is G-Cauchy

(2) for any € > 0, there exists N € N such that G(x,, Xy, Xm) < €, for allm,n> N.

Proposition 1.6. ([14]) Let (X,G) be a G-metric space. A mapping f: X — X
is G-continuous at x € X if and only if it is G-sequentially continuous at x, that
is, whenever (x,) is G-convergent to x, (f(x,)) is G-convergent to f(x).

Proposition 1.7. ([14]) Let (X,G) be a G-metric space. Then, the function
G(x,y,z) is jointly continuous in all three of its variables.

Proposition 1.8. ([14]) Let (X, G) be a G-metric space, then for any x,y,z,a € X
it follows
(1)if G(x,y,z) =0thenx =y =z,
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(2) G(x,y,z) < G(x,x,y) +G(x,x,2),
(3) G(x,y,y) <2G(y,x,x),
(4) G(x,y,z) < G(x,a,z) + G(a,y,z).

Definition 1.9. ([14]) A G-metric space (X,G) is called G-complete if every
G-Cauchy sequence is G-convergent in (X, G).

Definition 1.10. ([9]) Let (X, G) be a G-metric space. A mapping F : X x X —
X is said to be continuous if for any two G-convergent sequences (x,) and (y,)
converging to x and y respectively, {F (x,,y,)} is G-convergent to F(x,y).

Bhaskar and Lakshmikantham in [7] introduced the concept of a mixed
monotone property and following definitions.

Definition 1.11. ([7]) Let (X, <) be a partially ordered set and F : X x X — X.
We say that F has the mixed monotone property if F(x,y) is monotone non-
decreasing in x and is monotone non-increasing in y, that is , for any x,y € X,

x,0 €X, x1 <xx=F(x1,y) <F(x2,y)
and

yi, 2 €X, yi <y2=F(x,y1) > F(x,y2).

Definition 1.12. ([7]) An element (x,y) € X x X is said to be a coupled fixed
point of the mapping F if

F(x,y)=x and F(yx)=y.

Lakshmikantham and Ciric in [12] introduced the notion of mixed g- mono-
tone and coupled coincidence point.

Definition 1.13. ([12]) Let (X, <) be a partially ordered set and F : X x X — X
and g : X — X. The map F is said to have mixed g-monotone property if F
is monotone g-non-decreasing in the first argument and is monotone g-non-
increasing in its second argument, that is, for any x,y € X

X1,X2 er g(X1) Sg(XQ) :>F(X1,y) SF(x%y)
and

yLy2 €X, glv1) <g(2) = F(x,y1) > F(x,y2).

Definition 1.14. ([12]) An element (x,y) € X x X is said to be a coupled coin-
cidence point of the mapping F if

F(x,y)=g(x) and F(y,x)=g(y).
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Definition 1.15. ([12]) Let X be a non-empty set and F' : X x X — X and g:
X — X. We say F and g are commutative if

g(F(x,y)) =F(g(x),8(»))

Aydi and et al. in [1] considered the following assumptions and they proved
the following theorem. Let & denote the set of functions ¢ : [0,0) — ¢ : [0, 00)
satisfying
@ ¢1(0) =0,
(b) ¢(z) <t forallt >0,
(c) lim, ,,+ ¢(r) <t forallt > 0.

Theorem 1.16. ([1]) Let (X, <) be a partially ordered set and G be a G-metric
on X such that (X,G) is a complete G-metric space. Suppose that there exist
OeD F:XxX—Xandg:X — X such that

Ge(x),8(u),8(w)) +G(g(y),8(v),8(z
GF (e.).F (1), F (1.2)) < o C80:800:800) FCe). 6. 6())
Jor all x,y,u,v,w,z € X with g(w) < g(u) < g(x) and g(y) > g(v) > g(z). Sup-
pose also that F is continuous and has the mixed g-monotone property, F(X X
X) C g(X) and g is continuous and commutes with F. If there exist xo,yo € X
such that g(xo) < F(xo,y0) and F(yo,x0) < gvo, then F and g have a coupled
coincidence point, that is, there exists (x,y) € X x X such that g(x) = F(x,y)
and g(y) = F (y,x).
In this paper we obtain some coupled coincidence and common fixed point
theorems. Our work generalize and extend the result of Aydi and et al. [1].

2. Main result

Theorem 2.1. Let (X,<) be a partially ordered set and G be a G-metric on
X such that (X,G) is a complete G-metric space. Suppose that g : X — X and
F : X XX — X be a mapping having the mixed g-monotone property on X and
there exists ¢ € ® such that

G(F(x,y),F(u,v),F(z,t))+ G(F(y,x),F(v,u),F(t,2))

x
Gle(x),8(u),8(2)) +G(g(y),8(v), 8t
<20/ (g(x),8(u) ())2 (8(»),8(v) ()))7
Jor all x,y,u, vzt € X with g(x) > g(u) > g(z) and g(y) < g(v) < g(1).
Suppose also that F is continuous, F(X x X) C g(X) and g is continuous and
commutes with F. If there exist xo,yo € X with

g(x0) < F(x0,y0) and g(yo) > F(yo,%0)

then F and g have a coupled coincidence point.
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Proof. Let xo,yo € X such that g(xo) < F(xo,y0) and g(yo) > F (yo,xo) . Since
F(X x X) C g(X), we can choose x1,y; € X such that g(x;) = F(xo,y0) and
g(y1) = F(yo,x0). Again, since F(X x X) C g(X), we can choose x;,y; € X
such that g(x2) = F(x1,y1) and g(y2) = F(y1,x1). Continuing this process, we
can define two sequences {x, } and {y,} in X such that

g(xns1) = F(xp,y0) and  g(yuy1) = F(Yn,Xn)-

Since F has the mixed g-monotone property, it is easily to seen that

g(xn) = F(xn—1,Yn-1) < 8(Xnt1) = F (Xn,Yn),

and
8n) = F(n-1,%0-1) > 8¥n+1) = F (Y, Xn).
Let
Iy = G(g(xn-i-l)ag(xl’l-i-])ag(xn)) + G(g(yn-‘rl)7g(yn+1>7g<y"))'

Now, since

G(8(xn+1):8(xn+1),8(xn)) = G(F (X, ¥n), F (X, Yn), F (X¥n-1,Yn-1)), (1)

and

G(g())n+l)>g(yn+l)7g(yn)) :G(F(ynaxn)aF(Yn,xn)aF(ynflaxnfl))' ()

Adding (1) with (2), and using contractive condition, we obtain

I, = G(g(xn+l)¢g(xn+l)7g(xn)) + G(g(ynJrl)?g(ynJrl)ag(yn))

< 2¢(G(g(xn)7g(xn)7g(xn—1)) '; G(g(yn)7g(yn)7g(yn—l)))

3)

From the properties of ¢ we have ¢(r) <t for all 7 > 0, then from (3) it follows
that (7,) is a monotone decreasing sequence. Therefore, there exists some 6 > 0
such that

limz,=6+.

n—soo
We show that 6 = 0. Assume on the contrary, that is 6 > 0. Letting n — oo in
(3) and using the properties of ¢, we obtain

Ih—1

. . . Ih—1
= < =
5=lmn<2]ime(*7) =2 lim 05 <4,

thi— 0+ 2
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a contradiction. Thus § = 0 and hence
lim 7, = G(g(xn11), 8(6n+1),8(%n)) + G(8(Va+1):8n1),8(va)) = 0. (4)

Next, we show that {g(x,)} and {g(y,)} are Cauchy sequences in the G-metric
space (X,G). Suppose on the contrary. This means that at least one of {g(x,)}
or {g(x,)} is not a Cauchy sequence. Then, there exists € > 0 and sequences of
natural numbers (m(k)) and (n(k)) such that n(k) > m(k) > k, for every natural
number k and

e = G(8(Xn()) 8(Xnk) ) & Xmx))) + G(&Vn(x))> 8 Vn(k))s 8 Vmir))) = € (5)

Now corresponding to m(k) we choose n(k) to be the smallest for which (5)
holds. Then

G(8(Xnk)-1):8Xn(r)—1): 8(Xm(k))) + G(8Wnk)—1): 8Wn(r) 1), 8 Vm(ry)) < 8'6
Using (5) and (6) and the rectangle inequality, we obtain ©
€ <1 < G(g(Xn(k))> 8 X)) 8 Xn(i)—1)) + G(&(Xn(r)—1)» & Xn(r)—1), & Xmx) )

+ G(8nw))>8Wn)): & Wn(ry—1)) + G(&Vn(t) 1), 8 Vnk)—1):8 Vmx)))
= G(g(*n(t)—1),&Xnr)—1), & Xmx)))
+G(&Vn(k)—1)>8nk)—1)8m(k))) T ta—1 < €+tag)—1
Letting kK — oo in the above inequality and using (4), we obtain
/331010 re=¢€+. @)
Again, using rectangle inequality gives us

I = G(g(x *))>8(Xn(k) ) 8 Xmt))) + G(8(Vnk))> 8 (k) )+ 8 Vm(r)))
G(8(%Xn(k))> 8(Xn(k))> 8 Xnk)+1)) + G(&(Xn(k)+1) 8 (Xn(h)+1)> 8 Xty 1))
(g(xmk 1) 8Xm@t)+1)8Xm@x))) + G(&€Vn(k) ) & Vnk) ) € Vi) +1))
G(g(yn 1):8 () +1): 8 Vm(r)+1)) + G Vm(i)+1): 8 Omr)+1), & Vm(x) )
= tu(k) + G(8(Xuk))> 8 Xnk))s 8 Xn(ry+1)) + G (k) ) 8 k) )» 8 n(h)+1))
+G(&(Xn(k)+1)> 8 Xn(k)+1)5 8 Xm(i)+1)) + G(&nk)+1)58Vn()+1) & V(i) +1))
We have G(x,x,y) < 2G(x,y,y) for any x,y € X (Proposition 5) and from (G2)-
(G4) we obtain
T < t(k) +2G(8(Xn(k) ) 8 Xnky+1), 8 Xn(ky+1))
+2G(8Vnk))s 8 Wn(ry+1): 8 na) + )) ( (Fn(e)+1) 8 Xn(k)+1) > Xy +1))
+G(8n(t)+1)s 8 V() +1)s 8 Wm(k)+1)) = tmr) + 2t (8)

+ G(8(Xn(t) +1): 8Kty 1) 8 Xm()+1)) T G(€Wn(r)+1)s 8 Wn(ry+1) s 8 Wm(k) 1))
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Now, since n(k) > m(k), then g(x,x)) > (X)) and g(Vaw)) < &(Vm(x)) and
using contractive condition gives us

G(8(Xn(i)+1), 8 Xn()+1): 8 m@)+1)) + G(8Vn(i)+1) & Wn(r) 1) 8 Omt) 1))
= G(F (Xn(k)s Yn(k )) F(xn( %) yn( ))7F(xn(k))vyn(k))

+ G(F (Yn)%n())» F G Yn()Xn(k))s F Gn(i) s Xnk))) 9
<2 (G(g(xn<k>),g(xn<k>)7g( m(m)); G(g(yn(k)),g(yn(k)),g(ym<k>)))

Inserting (9) in (8), we get
Tk
Pl < (i) + 2 +29(5)-

Letting k — oo in the last inequality and using (4), (7) and properties of ¢, we
have -
s<2hm¢( £y=2 lim ¢(5k)<e,

k—so00 ry—€+

a contradiction. Thus, {g(x,)} and {g(y,)} are Cauchy sequences in the com-
plete G-metric space (X, G). Therefore, there are x,y € X such that {g(x,)} and
{g(yu)} are respectively G-convergent to x and y, that is from proposition (1),
we have

r}i_{I(}OG(g(xn)vg(xn)’x) :}%G(g(xn),%x) =0 (10)
lim G(g(yn),8(va),y) = lim G(g(ya),,y) = 0. (11)

From proposition (3) and continuity of G, we obtain

lim G(g(g(xn)),8(8(xx)),&(x)) = lim G(g(g(xn)),g(x),8(x)) =0  (12)

n—soo n—soo

lim G(g(g(va)),g(g(yn)),8(v)) = lim G(g(g(yn)),&(»),8(y)) =0.  (13)

On the other hand, since g(x,+1) = F(x,,yn) and g(yn+1) = F(yn,X,) and from
commutativity of F and g, we have

8(8(xnt1)) = &(F (xn,yn)) = F(8(xn),8(n)), (14)
and
8(8n+1)) = &(F (¥n, X)) = F(8(¥n),8(xn))- (15)
We prove that g(x) = F(x,y) and g(y) = F(y,x).
Since {g(x,)} and {g(y,)} are respectively G-convergent to x and y, by Defini-
tion (5) and (14), we have
lim F(g(xn),8(ya)) = F(x,y) = lim g(g(xn+1))-

n—soo
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Therefore, from (12) we have g(x) = F(x,y).
Similarly, we can show that g(y) = F(y,x), and this proves that (x, y) is a coupled
coincidence point of F and g. 0

The previous result is still valid for F' not necessarily continuous. Instead,
we require that underlying G-metric space X has an additional property. We
discuss this in the following theorem.

Theorem 2.2. If in Theorem 2.1 we omit the continuity of F and assume that X
has the following property:

if (x,) is a non-decreasing sequence with x, — x, then x, < x for eachn € N
and

if (yn) is a non-increasing sequence with 'y, — y then'’y <y, for eachn € N
then F and G have a coupled coincidence point.

Proof. Following the proof of Theorem 2 we only have to show that F(x,y) =
g(x) and F(y,x) = g(y). By our assumption, since g(x,) is non-decreasing and
g(yn) is non-increasing in X, we have g(x,) < x and g(y,) >y for all n > 0.
Using rectangle inequality and contractive condition, we obtain

x)) +G(F (y,x),8(y),g(y)

< Xn+1)),8(8(Xn+1))) + G(g(g(xnt1

+G(g(8(n+1)):8(v),8(y)) + G(g(g(vn+1)),8(8(vn

< G(g(g(xn+1)),8(x),8(x)) +G(g(g(ynr1)):8(»),8(y)
xn)),8(8(xn))) +G(g(y),8(8(yn))
2

Nad
o
—~

)
(

~—

);

S
oQ
—~
oQ
—

t
~—

—~
Q
—~
oo
—~
=
o9
—
o
—~

Taking n — oo in the last inequality and using (12),(13) and the properties of ¢
we have

G(F(x,y),8(x),g(x)) + G(F (y,x),8(»),8(»)) = 0,

which implies that G(F (x,y), g(x),g(x)) = G(F(y,x),g(y),g(y)) = 0. Therefore
g(x) = F(x,y) and g(y) = F (y,x). O

Corollary 2.3. Let (X,<) be a partially ordered set and G be a G-metric on
X such that (X,G) is a complete G-metric space. Suppose that g : X — X and
F : X x X — X be a mapping having the mixed g-monotone property on X and
there exists k € [0, 1) such that

G(F(x,y),F(u,v),F(z,t))+G(F(y,x),F(v,u),F(t,2))
< k[G(g(x),8(u),8(z)) +G(g(v),8(v), ()],
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forall x,y,u,v,z,t € X with g(x) > g(u) > g(z) and g(y) < g(v) < g(¢).
Suppose also that F (X x X) C g(X) and g is continuous and commutes with F.
Suppose that either

(a) F' is continuous or

(b) X has the following property:

(i) If (xn) is a non-decreasing sequence with x, — x then x, < x, foralln € N.
(ii) If (yn) is a non-increasing sequence with y, — y then 'y, >y, foralln € N.

If there exist xg,yg € X with

g(x0) < F(xo0,y0) and g(yo) > F(yo,%0)

then F and g have a coupled coincidence point.

Proof. Taking ¢(¢) = kt, with 0 <k < 1 in Theorem 2 and Theorem 3, we obtain
Corollary 1. UJ

3. Uniqueness

Remark 3.1. Notice that, since the contractivity condition in Theorem 1 is valid
only for comparable elements, therefore Theorem 1 and Theorem 2 cannot guar-
antee the uniqueness of coupled fixed point.

Now we prove the existence and uniqueness theorem of coupled fixed point.
Notice that if (X, <) is a partially ordered set, we endow the product space X x X
with the partial order relation given by

() < (ry) @x>u and y<v

Theorem 3.2. In addition to the hypothesis of Theorem 2, suppose that for all
(x,y), (u,v) € X x X, there exists (z,t) € X x X such that (F(z,t),F(t,z)) is
comparable with (F(x,y),F (y,x)) and (F(u,v),F(v,u)). Then F and g have a
unique coupled common fixed point, that is, there exists a unique (x,y) € X x X
such that

x=g(x)=F(x,y) andy=g(y)=F(yx).

Proof. Suppose that (x,y) and (u,v) are coupled coincidence point of F'.

By assumption, there exists (z,), an element of X x X such that (F(z,t),F(t,z))
is comparable with (F(x,y),F (y,x)) and (F(u,v),F (v,u)). Without restriction
to the generality, we can assume that

(F(x,y), F(,%)) < (F(z,1),F (t,2))
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and
(F(u,v),F(v,u)) < (F(z,1),F(t,z)).

Put 79 = z, tp = ¢, and choose z;,1; € X such that g(z;) = F(zo,%), g(t1) =
F(t1,z1). Then, similarly as in proof of Theorem 2, we can inductively define

sequences (g(z,)) and (g(#,)) as follows

g(znt1) = F(zn,ta) and  g(tar1) = F(tn,2n)-

Further, it is easily to seen that (g(x),g(y) and (g(zx),g(z)) are comparable.
Since g(x) < g(z1) and g(y) > g(1), using this fact that F' is mixed g-monotone
mapping, we can show that g(x) < g(z,) and g(y) > g(#,). Similarly, g(u) <

g(zn) and g(v) > g(tn)'
Now, using contractive condition gives us

G(g(znt1),8(x),8(x) + G(8(y),8(y),8(tn+1))
2
G(F(zn,t,,),F(x,y),F(x,y))+G(F(y,x),F(y,x),F(tn,zn))
2
G(8(zn),8(x),8(x)) + G(g(tn),8(»),8(y)) )
5 .

< ¢(
From the properties of ¢ we deduce that the sequences

5 = G(8(zn).8(x) 8(x)) + G(g(ta),8(»),8(r))
e 2

is decreasing and nonnegative, so

lim 6, = r,
n—oo

for certain r > 0.
Letting n — oo in (16) and using the properties of ¢, we obtain

rSr}grolﬁn = 5,}grrl+¢(6"_l) =90(r)<r,

and consequently, r = 0.

Therefore

lim G(g(zn),8(x),8(x)) =0 and  lim G(g(ta),8(v),8(y)) = 0.
Similarly, we can prove that

lim G(g(z,),g(u),g(u)) =0 and lim G(g(z,),g(v),g(v)) =0.

n—oo n—oo0

(16)

a7

(18)
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Now, using (17), (18) and rectangle inequality, we obtain

G(g(x),g(u),8(u)) < G(g(x),8(zn),8(zn)) +G(g(zn),8(u),8(u)),

and

G(8(y),8(v),8(v)) < G(g(v),8(tn), 8(1)) + G(g(1n),8(v), 8(v))-
Letting n — o in two above inequalities, we obtain
glx)=g(u) and g(y)=g(v). (19)

Now, since g(x) = F(x,y) and g(y) = F(y,x) and F is commutative with g, we
have

g(g(x)) = g(F(x,y)) = F(g(x),g(y)) and
8(8(y)) = g(F(y,x)) = F(g(y),8(x)). (20)

Denote, g(x) = x* and g(y) = y*, then from (20), we have
gx") =F(x",y") and g(y")=F(y"x"). 2D
Thus, (x*,y*) is a coincidence point. Then, with u = x* and v = y*, we get
g(x) =g(x") and g(y)=g(y"),
that is
gx*) =x" and g(y")=»". (22)
From (21) and (22), we have
X =g() =F(x",y") and y =g(y)=F("x).

Then, (x*,y*) is a coupled common fixed point of F and g. To prove the unique-
ness, assume (p,q) is another coupled common fixed point of F' and g. Then by
(19) and (22) we have

*

p=2g(p)=glx")=x" and qg=g(q) =g0") =y"
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