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COUPLED COINCIDENCE POINT THEOREMS FOR MIXED
MONOTONE NONLINEAR OPERATOR IN PARTIALLY

ORDERED G-METRIC SPACES

SEYED H. RASOULI - M. BAHRAMPOUR

In this paper we present some coupled coincidence and coupled com-
mon fixed point theorems for mixed g-monotone mappings in partially
ordered G-metric spaces.

1. Introduction

In a recent paper Bhaskar and Lakshmikantham [7] introduced mixed mono-
tone operator and established coupled fixed point theorems for mixed monotone
operators in partially ordered metric spaces. After their work, many authors
have been studied about coupled fixed point [2,4,5,10,11,13,16,1718,19]. In
[12] Lakashmikantham and Ciric introduced the concept of a mixed g-monotone
mappings and proved coupled coincidence and coupled common fixed point
theorems in partially ordered metric spaces. After this work some authors con-
sidered coupled coincidence and common fixed point theorems in their works
[6,8]. Some authors generalized the concept of metric spaces. Mustafa and Sims
[14] introduced the notion of G-metric. Some authors studied some fixed point
theorems in partially ordered G-metric space [1,3,9,15].
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Mustafa and Simis [14] introduced following definition and obtained the fol-
lowing results.

Definition 1.1. ([14]) Let X be a non-empty set, G : X ×X ×X → R+ be a
function satisfying the following properties:
(G1) G(x,y,z) = 0 if x = y = z.
(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y.
(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z.
(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · (symmetry in all three variables).
(G5) G(x,y,z)≤G(x,a,a)+G(a,y,z) for all x,y,z,a∈ X , (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric
on X, and the pair (X, G) is called a G-metric space.

Definition 1.2. ([14]) Let (X ,G) be a G-metric space, and let (xn) be a sequence
of points of X . We say that (xn) is G-convergent to x ∈ X if
limn,m→∞ G(x,xn,xm) = 0, that is, for any ε > 0, there exists N ∈ N such that
G(x,xn,xm)< ε , for all n,m≥ N. We call x the limit of the sequence and write
xn→ x or limxn = x.

Proposition 1.3. ([14]) Let (X ,G) be a G-metric space. The following are
equivalent:
(1) (xn) is G-convergent to x.
(2) G(xn,xn,x)→ 0 as n→+∞.
(3) G(xn,x,x)→ 0 as n→+∞.

Definition 1.4. ([14]) Let (X ,G) be a G-metric space. A sequence (xn) is
called a G-Cauchy sequence if, for any ε > 0, there exists N ∈ N such that
G(xn,xm,xl)< ε for all m,n, l ≥ N, that is, G(xn,xm,xl)→ 0 as n,m, l→+∞.

Proposition 1.5. ([14]) Let (X ,G) be a G-metric space. Then the following are
equivalent
(1) the sequence (xn) is G-Cauchy
(2) for any ε > 0, there exists N ∈N such that G(xn,xm,xm)< ε , for all m,n≥N.

Proposition 1.6. ([14]) Let (X ,G) be a G-metric space. A mapping f : X → X
is G-continuous at x ∈ X if and only if it is G-sequentially continuous at x, that
is, whenever (xn) is G-convergent to x, ( f (xn)) is G-convergent to f (x).

Proposition 1.7. ([14]) Let (X ,G) be a G-metric space. Then, the function
G(x,y,z) is jointly continuous in all three of its variables.

Proposition 1.8. ([14]) Let (X ,G) be a G-metric space, then for any x,y,z,a∈X
it follows
(1) if G(x,y,z) = 0 then x = y = z,
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(2) G(x,y,z)≤ G(x,x,y)+G(x,x,z),
(3) G(x,y,y)≤ 2G(y,x,x),
(4) G(x,y,z)≤ G(x,a,z)+G(a,y,z).

Definition 1.9. ([14]) A G-metric space (X ,G) is called G-complete if every
G-Cauchy sequence is G-convergent in (X ,G).

Definition 1.10. ([9]) Let (X ,G) be a G-metric space. A mapping F : X×X →
X is said to be continuous if for any two G-convergent sequences (xn) and (yn)
converging to x and y respectively, {F(xn,yn)} is G-convergent to F(x,y).

Bhaskar and Lakshmikantham in [7] introduced the concept of a mixed
monotone property and following definitions.

Definition 1.11. ([7]) Let (X ,≤) be a partially ordered set and F : X ×X → X .
We say that F has the mixed monotone property if F(x,y) is monotone non-
decreasing in x and is monotone non-increasing in y, that is , for any x,y ∈ X ,

x1,x2 ∈ X , x1 ≤ x2⇒ F(x1,y)≤ F(x2,y)

and

y1,y2 ∈ X , y1 ≤ y2⇒ F(x,y1)≥ F(x,y2).

Definition 1.12. ([7]) An element (x,y) ∈ X ×X is said to be a coupled fixed
point of the mapping F if

F(x,y) = x and F(y,x) = y.

Lakshmikantham and Ciric in [12] introduced the notion of mixed g- mono-
tone and coupled coincidence point.

Definition 1.13. ([12]) Let (X ,≤) be a partially ordered set and F : X×X → X
and g : X → X . The map F is said to have mixed g-monotone property if F
is monotone g-non-decreasing in the first argument and is monotone g-non-
increasing in its second argument, that is, for any x,y ∈ X

x1,x2 ∈ X , g(x1)≤ g(x2)⇒ F(x1,y)≤ F(x2,y)

and

y1,y2 ∈ X , g(y1)≤ g(y2)⇒ F(x,y1)≥ F(x,y2).

Definition 1.14. ([12]) An element (x,y) ∈ X ×X is said to be a coupled coin-
cidence point of the mapping F if

F(x,y) = g(x) and F(y,x) = g(y).
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Definition 1.15. ([12]) Let X be a non-empty set and F : X ×X → X and g :
X → X . We say F and g are commutative if

g(F(x,y)) = F(g(x),g(y)).

Aydi and et al. in [1] considered the following assumptions and they proved
the following theorem. Let Φ denote the set of functions φ : [0,∞)→ φ : [0,∞)
satisfying
(a) φ−1(0) = 0,
(b) φ(t)< t for all t > 0,
(c) limr→t+ φ(r)< t for all t > 0.

Theorem 1.16. ([1]) Let (X ,≤) be a partially ordered set and G be a G-metric
on X such that (X ,G) is a complete G-metric space. Suppose that there exist
φ ∈Φ, F : X×X → X and g : X → X such that

G(F(x,y),F(u,v),F(w,z))≤ φ(
G(g(x),g(u),g(w))+G(g(y),g(v),g(z))

2
)

for all x,y,u,v,w,z ∈ X with g(w) ≤ g(u) ≤ g(x) and g(y) ≥ g(v) ≥ g(z). Sup-
pose also that F is continuous and has the mixed g-monotone property, F(X ×
X) ⊆ g(X) and g is continuous and commutes with F. If there exist x0,y0 ∈ X
such that g(x0) ≤ F(x0,y0) and F(y0,x0) ≤ gy0, then F and g have a coupled
coincidence point, that is, there exists (x,y) ∈ X ×X such that g(x) = F(x,y)
and g(y) = F(y,x).

In this paper we obtain some coupled coincidence and common fixed point
theorems. Our work generalize and extend the result of Aydi and et al. [1].

2. Main result

Theorem 2.1. Let (X ,≤) be a partially ordered set and G be a G-metric on
X such that (X ,G) is a complete G-metric space. Suppose that g : X → X and
F : X ×X → X be a mapping having the mixed g-monotone property on X and
there exists φ ∈Φ such that

G(F(x,y),F(u,v),F(z, t))+G(F(y,x),F(v,u),F(t,z))

≤ 2φ(
G(g(x),g(u),g(z))+G(g(y),g(v),g(t))

2
),

for all x,y,u,v,z, t ∈ X with g(x)≥ g(u)≥ g(z) and g(y)≤ g(v)≤ g(t).
Suppose also that F is continuous, F(X ×X) ⊆ g(X) and g is continuous and
commutes with F. If there exist x0,y0 ∈ X with

g(x0)≤ F(x0,y0) and g(y0)≥ F(y0,x0)

then F and g have a coupled coincidence point.
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Proof. Let x0,y0 ∈ X such that g(x0) ≤ F(x0,y0) and g(y0) ≥ F(y0,x0) . Since
F(X ×X) ⊆ g(X), we can choose x1,y1 ∈ X such that g(x1) = F(x0,y0) and
g(y1) = F(y0,x0). Again, since F(X ×X) ⊆ g(X), we can choose x2,y2 ∈ X
such that g(x2) = F(x1,y1) and g(y2) = F(y1,x1). Continuing this process, we
can define two sequences {xn} and {yn} in X such that

g(xn+1) = F(xn,yn) and g(yn+1) = F(yn,xn).

Since F has the mixed g-monotone property, it is easily to seen that

g(xn) = F(xn−1,yn−1)≤ g(xn+1) = F(xn,yn),

and
g(yn) = F(yn−1,xn−1)≥ g(yn+1) = F(yn,xn).

Let
tn = G(g(xn+1),g(xn+1),g(xn))+G(g(yn+1),g(yn+1),g(yn)).

Now, since

G(g(xn+1),g(xn+1),g(xn)) = G(F(xn,yn),F(xn,yn),F(xn−1,yn−1)), (1)

and

G(g(yn+1),g(yn+1),g(yn)) = G(F(yn,xn),F(yn,xn),F(yn−1,xn−1)). (2)

Adding (1) with (2), and using contractive condition, we obtain

tn = G(g(xn+1),g(xn+1),g(xn))+G(g(yn+1),g(yn+1),g(yn))

≤ 2φ(
G(g(xn),g(xn),g(xn−1))+G(g(yn),g(yn),g(yn−1))

2
) (3)

= 2φ(
tn−1

2
).

From the properties of φ we have φ(t)< t for all t > 0, then from (3) it follows
that (tn) is a monotone decreasing sequence. Therefore, there exists some δ ≥ 0
such that

lim
n→∞

tn = δ + .

We show that δ = 0. Assume on the contrary, that is δ > 0. Letting n→ ∞ in
(3) and using the properties of φ , we obtain

δ = lim
n→∞

tn ≤ 2 lim
n→∞

φ(
tn−1

2
) = 2 lim

tn→δ+
φ(

tn−1

2
)< δ ,
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a contradiction. Thus δ = 0 and hence

lim
n→∞

tn = G(g(xn+1),g(xn+1),g(xn))+G(g(yn+1),g(yn+1),g(yn)) = 0. (4)

Next, we show that {g(xn)} and {g(yn)} are Cauchy sequences in the G-metric
space (X ,G). Suppose on the contrary. This means that at least one of {g(xn)}
or {g(xn)} is not a Cauchy sequence. Then, there exists ε > 0 and sequences of
natural numbers (m(k)) and (n(k)) such that n(k)> m(k)> k, for every natural
number k and

rk = G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))≥ ε. (5)

Now corresponding to m(k) we choose n(k) to be the smallest for which (5)
holds. Then

G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))+G(g(yn(k)−1),g(yn(k)−1),g(ym(k)))< ε.
(6)

Using (5) and (6) and the rectangle inequality, we obtain

ε ≤ rk ≤ G(g(xn(k)),g(xn(k)),g(xn(k)−1))+G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))

+G(g(yn(k)),g(yn(k)),g(yn(k)−1))+G(g(yn(k)−1),g(yn(k)−1),g(ym(k)))

= G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))

+G(g(yn(k)−1),g(yn(k)−1),g(ym(k)))+ tn(k)−1 < ε + tn(k)−1.

Letting k→ ∞ in the above inequality and using (4), we obtain

lim
k→∞

rk = ε + . (7)

Again, using rectangle inequality gives us

rk = G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))

≤ G(g(xn(k)),g(xn(k)),g(xn(k)+1))+G(g(xn(k)+1),g(xn(k)+1),g(xm(k)+1))

+G(g(xm(k)+1),g(xm(k)+1),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(yn(k)+1))

+G(g(yn(k)+1),g(yn(k)+1),g(ym(k)+1))+G(g(ym(k)+1),g(ym(k)+1),g(ym(k)))

= tm(k)+G(g(xn(k)),g(xn(k)),g(xn(k)+1))+G(g(yn(k)),g(yn(k)),g(yn(k)+1))

+G(g(xn(k)+1),g(xn(k)+1),g(xm(k)+1))+G(g(yn(k)+1),g(yn(k)+1),g(ym(k)+1))

We have G(x,x,y)≤ 2G(x,y,y) for any x,y ∈ X (Proposition 5) and from (G2)-
(G4) we obtain

rk ≤ tm(k)+2G(g(xn(k)),g(xn(k)+1),g(xn(k)+1))

+2G(g(yn(k)),g(yn(k)+1),g(yn(k)+1))+G(g(xn(k)+1),g(xn(k)+1),g(xm(k)+1))

+G(g(yn(k)+1),g(yn(k)+1),g(ym(k)+1)) = tm(k)+2tn(k) (8)

+G(g(xn(k)+1),g(xn(k)+1),g(xm(k)+1))+G(g(yn(k)+1),g(yn(k)+1),g(ym(k)+1))
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Now, since n(k) > m(k), then g(xn(k)) ≥ g(xm(k)) and g(yn(k)) ≤ g(ym(k)) and
using contractive condition gives us

G(g(xn(k)+1),g(xn(k)+1),g(xm(k)+1))+G(g(yn(k)+1),g(yn(k)+1),g(ym(k)+1))

= G(F(xn(k),yn(k)),F(xn(k),yn(k)),F(xn(k)),yn(k))

+G(F(,yn(k)xn(k)),F(,yn(k)xn(k)),F(yn(k),xn(k))) (9)

≤ 2φ(
G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))

2
)

Inserting (9) in (8), we get

rk ≤ tm(k)+2tn(k)+2φ(
rk

2
).

Letting k→ ∞ in the last inequality and using (4), (7) and properties of φ , we
have

ε ≤ 2 lim
k→∞

φ(
rk

2
) = 2 lim

rk→ε+
φ(

rk

2
)< ε,

a contradiction. Thus, {g(xn)} and {g(yn)} are Cauchy sequences in the com-
plete G-metric space (X ,G). Therefore, there are x,y ∈ X such that {g(xn)} and
{g(yn)} are respectively G-convergent to x and y, that is from proposition (1),
we have

lim
n→∞

G(g(xn),g(xn),x) = lim
n→∞

G(g(xn),x,x) = 0 (10)

lim
n→∞

G(g(yn),g(yn),y) = lim
n→∞

G(g(yn),y,y) = 0. (11)

From proposition (3) and continuity of G, we obtain

lim
n→∞

G(g(g(xn)),g(g(xn)),g(x)) = lim
n→∞

G(g(g(xn)),g(x),g(x)) = 0 (12)

lim
n→∞

G(g(g(yn)),g(g(yn)),g(y)) = lim
n→∞

G(g(g(yn)),g(y),g(y)) = 0. (13)

On the other hand, since g(xn+1) = F(xn,yn) and g(yn+1) = F(yn,xn) and from
commutativity of F and g, we have

g(g(xn+1)) = g(F(xn,yn)) = F(g(xn),g(yn)), (14)

and
g(g(yn+1)) = g(F(yn,xn)) = F(g(yn),g(xn)). (15)

We prove that g(x) = F(x,y) and g(y) = F(y,x).
Since {g(xn)} and {g(yn)} are respectively G-convergent to x and y, by Defini-
tion (5) and (14), we have

lim
n→∞

F(g(xn),g(yn)) = F(x,y) = lim
n→∞

g(g(xn+1)).
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Therefore, from (12) we have g(x) = F(x,y).
Similarly, we can show that g(y)=F(y,x), and this proves that (x,y) is a coupled
coincidence point of F and g.

The previous result is still valid for F not necessarily continuous. Instead,
we require that underlying G-metric space X has an additional property. We
discuss this in the following theorem.

Theorem 2.2. If in Theorem 2.1 we omit the continuity of F and assume that X
has the following property:
if (xn) is a non-decreasing sequence with xn→ x, then xn ≤ x for each n ∈ N
and
if (yn) is a non-increasing sequence with yn→ y then y≤ yn for each n ∈ N
then F and G have a coupled coincidence point.

Proof. Following the proof of Theorem 2 we only have to show that F(x,y) =
g(x) and F(y,x) = g(y). By our assumption, since g(xn) is non-decreasing and
g(yn) is non-increasing in X , we have g(xn)≤ x and g(yn)≥ y for all n≥ 0.
Using rectangle inequality and contractive condition, we obtain

G(F(x,y),g(x),g(x))+G(F(y,x),g(y),g(y))

≤ G(F(x,y),g(g(xn+1)),g(g(xn+1)))+G(g(g(xn+1)),g(x),g(x))

+G(g(g(yn+1)),g(y),g(y))+G(g(g(yn+1)),g(g(yn+1)),F(y,x))

≤ G(g(g(xn+1)),g(x),g(x))+G(g(g(yn+1)),g(y),g(y))

+2φ(
G(g(x),g(g(xn)),g(g(xn)))+G(g(y),g(g(yn)),g(g(yn)))

2
).

Taking n→ ∞ in the last inequality and using (12),(13) and the properties of φ

we have
G(F(x,y),g(x),g(x))+G(F(y,x),g(y),g(y)) = 0,

which implies that G(F(x,y),g(x),g(x)) =G(F(y,x),g(y),g(y)) = 0. Therefore
g(x) = F(x,y) and g(y) = F(y,x).

Corollary 2.3. Let (X ,≤) be a partially ordered set and G be a G-metric on
X such that (X ,G) is a complete G-metric space. Suppose that g : X → X and
F : X ×X → X be a mapping having the mixed g-monotone property on X and
there exists k ∈ [0,1) such that

G(F(x,y),F(u,v),F(z, t))+G(F(y,x),F(v,u),F(t,z))

≤ k[G(g(x),g(u),g(z))+G(g(y),g(v),g(t))],
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for all x,y,u,v,z, t ∈ X with g(x)≥ g(u)≥ g(z) and g(y)≤ g(v)≤ g(t).
Suppose also that F(X×X)⊆ g(X) and g is continuous and commutes with F.
Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) If (xn) is a non-decreasing sequence with xn→ x then xn≤ x, for all n∈N.

(ii) If (yn) is a non-increasing sequence with yn→ y then yn≥ y, for all n∈N.

If there exist x0,y0 ∈ X with

g(x0)≤ F(x0,y0) and g(y0)≥ F(y0,x0)

then F and g have a coupled coincidence point.

Proof. Taking φ(t)= kt, with 0≤ k < 1 in Theorem 2 and Theorem 3, we obtain
Corollary 1.

3. Uniqueness

Remark 3.1. Notice that, since the contractivity condition in Theorem 1 is valid
only for comparable elements, therefore Theorem 1 and Theorem 2 cannot guar-
antee the uniqueness of coupled fixed point.

Now we prove the existence and uniqueness theorem of coupled fixed point.
Notice that if (X ,≤) is a partially ordered set, we endow the product space X×X
with the partial order relation given by

(u,v)≤ (x,y)⇔ x≥ u and y≤ v

Theorem 3.2. In addition to the hypothesis of Theorem 2, suppose that for all
(x,y), (u,v) ∈ X ×X, there exists (z, t) ∈ X ×X such that (F(z, t),F(t,z)) is
comparable with (F(x,y),F(y,x)) and (F(u,v),F(v,u)). Then F and g have a
unique coupled common fixed point, that is, there exists a unique (x,y) ∈ X×X
such that

x = g(x) = F(x,y) and y = g(y) = F(y,x).

Proof. Suppose that (x,y) and (u,v) are coupled coincidence point of F .
By assumption, there exists (z, t), an element of X×X such that (F(z, t),F(t,z))
is comparable with (F(x,y),F(y,x)) and (F(u,v),F(v,u)). Without restriction
to the generality, we can assume that

(F(x,y),F(y,x))≤ (F(z, t),F(t,z))
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and
(F(u,v),F(v,u))≤ (F(z, t),F(t,z)).

Put z0 = z, t0 = t, and choose z1, t1 ∈ X such that g(z1) = F(z0, t0), g(t1) =
F(t1,z1). Then, similarly as in proof of Theorem 2, we can inductively define
sequences (g(zn)) and (g(tn)) as follows

g(zn+1) = F(zn, tn) and g(tn+1) = F(tn,zn).

Further, it is easily to seen that (g(x),g(y) and (g(zn),g(zn)) are comparable.
Since g(x)≤ g(z1) and g(y)≥ g(t1), using this fact that F is mixed g-monotone
mapping, we can show that g(x) ≤ g(zn) and g(y) ≥ g(tn). Similarly, g(u) ≤
g(zn) and g(v)≥ g(tn).
Now, using contractive condition gives us

G(g(zn+1),g(x),g(x))+G(g(y),g(y),g(tn+1))

2

=
G(F(zn, tn),F(x,y),F(x,y))+G(F(y,x),F(y,x),F(tn,zn))

2
(16)

≤ φ(
G(g(zn),g(x),g(x))+G(g(tn),g(y),g(y))

2
).

From the properties of φ we deduce that the sequences

δn =
G(g(zn),g(x),g(x))+G(g(tn),g(y),g(y))

2

is decreasing and nonnegative, so

lim
n→∞

δn = r,

for certain r ≥ 0.
Letting n→ ∞ in (16) and using the properties of φ , we obtain

r ≤ lim
n→∞

δn = lim
δn→r+

φ(δn−1) = φ(r)< r,

and consequently, r = 0.
Therefore

lim
n→∞

G(g(zn),g(x),g(x)) = 0 and lim
n→∞

G(g(tn),g(y),g(y)) = 0. (17)

Similarly, we can prove that

lim
n→∞

G(g(zn),g(u),g(u)) = 0 and lim
n→∞

G(g(tn),g(v),g(v)) = 0. (18)
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Now, using (17), (18) and rectangle inequality, we obtain

G(g(x),g(u),g(u))≤ G(g(x),g(zn),g(zn))+G(g(zn),g(u),g(u)),

and

G(g(y),g(v),g(v))≤ G(g(y),g(tn),g(tn))+G(g(tn),g(v),g(v)).

Letting n→ ∞ in two above inequalities, we obtain

g(x) = g(u) and g(y) = g(v). (19)

Now, since g(x) = F(x,y) and g(y) = F(y,x) and F is commutative with g, we
have

g(g(x)) = g(F(x,y)) = F(g(x),g(y)) and

g(g(y)) = g(F(y,x)) = F(g(y),g(x)). (20)

Denote, g(x) = x∗ and g(y) = y∗, then from (20), we have

g(x∗) = F(x∗,y∗) and g(y∗) = F(y∗,x∗). (21)

Thus, (x∗,y∗) is a coincidence point. Then, with u = x∗ and v = y∗, we get

g(x) = g(x∗) and g(y) = g(y∗),

that is

g(x∗) = x∗ and g(y∗) = y∗. (22)

From (21) and (22), we have

x∗ = g(x∗) = F(x∗,y∗) and y∗ = g(y∗) = F(y∗,x∗).

Then, (x∗,y∗) is a coupled common fixed point of F and g. To prove the unique-
ness, assume (p,q) is another coupled common fixed point of F and g. Then by
(19) and (22) we have

p = g(p) = g(x∗) = x∗ and q = g(q) = g(y∗) = y∗.
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