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ZERO-DIMENSIONAL FAMILIES
OF POLYNOMIAL SYSTEMS

LORENZO ROBBIANO - MARIA-LAURA TORRENTE

If a real world problem is modelled with a system of polynomial equa-
tions, the coefficients are in general not exact. The consequence is that
small perturbations of the coefficients may lead to big changes of the so-
lutions. In this paper we address the following question: how do the zeros
change when the coefficients of the polynomials are perturbed? In the first
part we show how to construct semi-algebraic sets in the parameter space
over which the family of all ideals shares the number of isolated real ze-
ros. In the second part we show how to modify the equations and get new
ones which generate the same ideal, but whose real zeros are more stable
with respect to perturbations of the coefficients.

1. Introduction

Systems of polynomial equations with imprecise coefficients arise in mathemat-
ical models of practical problems. Due to their relevance in many applications,
several methods have been considered for determining their solutions, in partic-
ular their real solutions. All of them face a difficulty, i.e. the potentially erratic
behaviour of the solutions with respect to small perturbations in the coefficients
of the polynomials involved. Tackling this problem entails a preliminary analy-
sis of the following question of an algebraic nature. Given a zero-dimensional
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system of polynomials with smooth zeros, how far can we perturb the coeffi-
cients so that their zeros remain smooth and the number of real zeros does not
change? It is clear that constancy of smoothness and the number of zeros are
essential if we want to consider the perturbation a good one.

To address these issues, we concentrate on systems having as many equa-
tions as indeterminates and a finite set of smooth solutions. The fact that every
zero-dimensional smooth scheme can be represented in this way follows, for
instance, from the Shape Lemma (see [18], Theorem 3.7.25). In our case the
focus is not on the ideal but on the given set of generators. Our method, ex-
plained in Section 2, prescribes the embedding of the given polynomials into
an algebraic family which is manufactured by substituting some coefficients of
the polynomials with parameters. The key remark is that the family is a family
of ideals which depend on the given set of polynomials, not on the ideal they
generate.

Once we have a family, we can describe a good subset of the parameter space
over which the members of the family share the property that their zero sets have
the same number of smooth real points. This is the content of Section 2 where
we describe a free (see Proposition 2.7), and a smooth (see Theorem 2.13) locus
in the parameter space. Then we provide a suitable algorithm to compute what
we call an I-optimal subscheme of the parameter space (see Corollary 2.17): it
is a subscheme over which the schemes are smooth and have the same num-
ber of complex points. The last important result of Section 2 is Theorem 2.21
which treats the real case and proves the existence of an open non-empty semi-
algebraic subscheme of the I-optimal subscheme over which the number of real
zeros is constant.

The second part of the paper starts with Section 3 where we focus on a
problem closely connected to the one addressed in Section 2. It is well-known
(see [5]) that for a linear system with n equations and n unknowns, the most
stable situation occurs when the coefficient matrix is orthonormal. Is there an
analogue to orthonormality when we deal with polynomial systems?

In numerical analysis the condition number of a problem measures the sen-
sitivity of the solution to small changes in the input data, and so it reveals how
numerically well-conditioned the problem is. There exists a huge body of re-
sults about condition numbers for various numerical problems, for instance the
solution of a linear system, the problem of matrix inversion, the least squares
problem, and the computation of eigenvalues and eigenvectors.

Regarding the condition numbers of polynomial systems, much has been
done during the last few decades by several authors, mainly following the pa-
per [23] of Shub and Smale which treated the case of zero-dimensional homoge-
neous polynomial systems and became the source of inspiration of several other
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papers, such as [4], [8], [9], [10], [20], [21].
After some preparatory results which use the results of Section 2, we intro-

duce a local condition number (see Definition 3.14) and with its help we prove
Theorem 3.15 which has the merit of fully generalizing a classical result in nu-
merical linear algebra (see Remark 3.16).

The subsequent short Section 4 illustrates how to manipulate the equations
in order to lower, and sometimes to minimize, the local condition number (see
Proposition 4.1). Then we concentrate on the case of the matrix 2-norm and
show how to achieve the minimum when the polynomials involved have equal
degree (see Proposition 4.3). Finally, Section 5 presents examples which indi-
cate that our approach is good, in particular we see that when the local condition
number is lowered, indeed the corresponding solution is more stable.

A natural question is how to compare our numbers with those of other au-
thors. In general the comparison is not easy since condition numbers simply
provide upper bounds, however some remarks can be made, particularly in con-
nection to the above mentioned work [23] of Shub and Smale.

A minus of our method is that our number is not invariant under orthonormal
transformations, and that it does not take into account the univariate case since
we are looking for orthogonality of tangents while in the univariate case there
is only one derivative. A plus is that our definition generalizes the classical
definition of condition number in numerical linear algebra. Another plus is that
we are able to use methods from commutative algebra to certify the admissibility
of a given perturbation of the data.

2. Families of Zero-Dimensional Polynomial Systems

Given a zero-dimensional polynomial system which defines a smooth scheme X,
we want to embed it into a family of zero-dimensional schemes and study when
and how it can move inside the family. In particular, we study the locus of
the parameter-space over which the fibers are smooth with the same number of
points as X, and we give special emphasis to the case of real points.

We start the section by recalling some definitions. The notation is borrowed
from [18] and [19], in particular we let x1, . . . ,xn be indeterminates and let Tn be
the monoid of the power products in the symbols x1, . . . ,xn. Most of the times,
for simplicity we use the notation x = x1, . . . ,xn. If K is a field, the multivariate
polynomial ring K[x] = K[x1, . . . ,xn] is denoted by P, and if f1(x), . . . , fk(x) are
polynomials in P, the set { f1(x), . . . , fk(x)} is denoted by f(x) (or simply by f).

Definition 2.1. The polynomial system defined by f(x) is denoted by f(x) = 0
(or simply by f = 0). We say that the system is zero-dimensional if the ideal
generated by f(x) is zero-dimensional (see [18], Section 3.7).
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Definition 2.2. We let m be a positive integer and let a = (a1, . . . ,am) be an
m-tuple of indeterminates which play the role of parameters. If we pick k
polynomials F1(a,x), . . . ,Fk(a,x)∈K[a,x], the set {F1(a,x), . . . ,Fk(a,x)} is de-
noted by F(a,x). We let F(a,x) = 0 be the corresponding family of systems
of equations parametrized by a and call I(a,x) the ideal generated by F(a,x)
in K[a,x]. If the scheme of the a-parameters is S , then there is a K-algebra
homomorphism ϕ : K[a] −→ K[a,x]/I(a,x) or, equivalently, a morphism of
schemes Φ : Spec(K[a,x]/I(a,x))−→S.

Although it is not strictly necessary for the theory, for our applications it
suffices to consider independent parameters. Here is the formal definition.

Definition 2.3. If S = Am
K and I(a,x)∩K[a] = (0), then the parameters a are

said to be independent with respect to F(a,x), or simply independent if the
context is clear.

The first important step is to embed the system f(x) = 0 into a family, but
we must be careful and exclude families of the following type.

Example 2.4. Consider the family F(a,x) = {x1(ax2 +1),x2(ax2 +1)}. It spe-
cializes to a zero dimensional scheme only for a = 0 while the generic member
is positive-dimensional.

Definition 2.5. Let f(x) be a set of polynomials in P so that f(x) defines a
zero-dimensional scheme and let F(a,x) be a family parametrized by m inde-
pendent parameters a. We say that F(a,x) (and similarly K[a,x]/I(a,x) and
Spec(K[a,x]/I(a,x))) is a generically zero-dimensional family which con-
tains f(x), if f(x) = 0 is a member of the family and the generic member of
the family is zero-dimensional.

A theorem called generic flatness (see [11], Theorem 14.4) prescribes the
existence of a non-empty Zariski-open subscheme U of S over which the mor-
phism Φ−1(U)−→ U is flat. In particular, it is possible to explicitly compute a
subscheme over which the morphism is free. To do this, Gröbner bases reveal
themselves as a fundamental tool.

Definition 2.6. Let f(x) be a set of polynomials in P such that I = (f(x)) defines
a zero-dimensional scheme and let F(a,x) be a generically zero-dimensional
family containing f(x). Let S =Am

K be the scheme of the independent a-param-
eters and let Φ : Spec(K[a,x]/I(a,x)) −→ S be the associated morphism of
schemes. A dense Zariski-open subscheme U of S such that Φ−1(U)−→U
is free (flat, faithfully flat), is said to be an I-free (I-flat, I−faithfully flat) sub-
scheme of S or simply an I-free (I-flat, I-faithfully flat) scheme.
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Proposition 2.7. With the above assumptions and notation, let I(a,x) be the
ideal generated by F(a,x) in K[a,x], let σ be a term ordering on Tn, let G(a,x)
be the reduced σ -Gröbner basis of the ideal I(a,x)K(a)[x], let d(a) be the least
common multiple of all the denominators of the coefficients of the polynomials
in G(a,x), and let T = Tn \LTσ (I(a,x)K(a)[x]).

(a) The open subscheme Uσ of Am
K defined by d(a) 6= 0 is I-free.

(b) The multiplicity of each fiber over U coincides with the cardinality of T .

Proof. The assumption that F(a,x) is a generically zero-dimensional family im-
plies that Spec

(
K(a)[x]/I(a,x)K(a)[x]

)
−→ Spec(K(a)) is finite, in other words

that K(a)[x]/I(a,x)K(a)[x] is a finite-dimensional K(a)-vector space. A stan-
dard result in Gröbner basis theory (see for instance [18], Theorem 1.5.7) shows
that the residue classes of the elements in T form a K(a)-basis of this vec-
tor space. We denote by Uσ the open subscheme of Am

K defined by d(a) 6= 0.
For every point in U , the given reduced Gröbner basis evaluates to the reduced
Gröbner basis of the corresponding ideal. Therefore the leading term ideal is the
same for all these fibers, and so is its complement T . If we denote by K[a]d(a)
the localization of K[a] at the element d(a) and by I(a,x)e the extension of
the ideal I(a,x) to the ring K[a]d(a), then K[a]d(a)[x]/I(a,x)e turns out to be a
free K[a]d(a)-module. So claim (a) is proved. Claim (b) follows immediately
from (a).

Remark 2.8. We collect here a few remarks about this proposition. First of all
we observe that the term ordering σ can be chosen arbitrarily, but clearly the
open set Uσ may vary. Even if we fix the term ordering, but change the gener-
ators of the ideal, the open set Uσ may vary. The following example illustrates
this remark.

Example 2.9. We consider the polynomials f1,g ∈ K[x,y] where f1 = x3− y,
g = x(x− 1)(x+ 1)(x− 2)(x+ 2)(x− 3)(x+ 3)(x+ 13)(x2 + x+ 1). We let I
be the ideal generated by { f1,g}, and check that I = ( f1, f2) where f2 = xy3 +
504x2y− 183xy2 + 14y3− 504x2 + 650xy− 147y2− 468x+ 133y. It defines a
zero-dimensional scheme and we embed it into the family I(a,x) = (ax3−y,g).

If we pick σ = Lex with y > x and perform the computation as suggested by
the proposition, we get the freeness of the family for all a. Instead, we get the
freeness of the family I(a,x) = (ax3− y, f2) for a 6= 0 (see a further discussion
in Example 2.15).

If we pick σ = Lex with x > y we get the freeness of the family for all a 6= 0.

Example 2.10. We let P =C[x], the univariate polynomial ring, and embed the
ideal I generated by the following polynomial x2−3x+2 into the generically
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zero-dimensional family F(a,x) = {a1x2−a2x+a3}. Such family is given by
the canonical K-algebra homomorphism

ϕ :C[a]−→C[a,x]/(a1x2−a2x+a3)

Let ααα = (a1,a2,a3) ∈ C3. The family is zero dimensional for
{ααα ∈ C3 | a1 6= 0} ∪ {ααα ∈ C3 | a1 = 0, a2 6= 0}.

It represents two distinct smooth points for
{ααα ∈ C3 | a1 6= 0, a2

2−4a1a3 6= 0}.
It represents a smooth point for {ααα ∈ C3 | a1 = 0, a2 6= 0}.
It is not zero-dimensional for {ααα ∈ C3 | a1 = 0, a2 = 0}.

From now on, we assume that K has characteristic 0. Moreover, Exam-
ples 2.9 and 2.10 motivate the following definition.

Definition 2.11. Let f(x) be a set of polynomials in P such that I =(f(x)) defines
a zero-dimensional scheme and let F(a,x) be a generically zero-dimensional
family containing f(x). Let S =Am

K be the scheme of the independent a-param-
eters and let Φ : Spec(K[a,x]/I(a,x)) −→ S be the associated morphism of
schemes. A dense Zariski-open subscheme U of S such that Φ−1(U) −→ U is
smooth, i.e. all the fibers of Φ−1(U) −→ U are zero-dimensional and smooth,
is said to be an I-smooth subscheme of S or simply an I-smooth scheme.

For instance in Example 2.10 we have the equality S =A3
C and the follow-

ing open set U = {ααα ∈ C3 | a1 6= 0, a2
2−4a1a3 6= 0} is I-smooth.

Remark 2.12. We observe that a dense I-smooth scheme may not exist. It
suffices to consider the ideal I = (x−1)2 embedded into the family (x−a)2. In
any event, a practical way to find one, if there is one, is via Jacobians, as we are
going to show.

As anticipated in the introduction, at this point we restrict ourselves to the
special and fundamental case where our zero-dimensional system f(x) = 0 is
given by n equations, i.e. f(x) = { f1(x), . . . , fn(x)}.

Theorem 2.13. Let f1(x), . . . , fn(x) ∈ P, let f(x) = { f1(x), . . . , fn(x)} be such
that I = (f(x)) defines a zero-dimensional scheme. Then let F(a,x) ∈ K[a,x]
be a generically zero-dimensional family containing f(x). Let S = Am

K be the
scheme of the independent a-parameters and let I(a,x) be the ideal generated
by F(a,x) in K[a,x]. Let D(a,x)= det(JacF(a,x)) be the determinant of the
Jacobian matrix of F(a,x) with respect to the indeterminates x, let J(a,x) be
the ideal sum I(a,x)+(D(a,x)) in K[a,x], and let H be the ideal in K[a] defined
by the equality H = J(a,x)∩K[a].
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(a) There exists an I-smooth subscheme of S if and only if H 6= (0).

(b) If 0 6= h(a) ∈ H then the open subscheme of S defined by the inequality
h(a) 6= 0 is I-smooth.

Proof. To prove one implication of claim (a), and simultaneously claim (b),
we assume that H 6= (0) and let 0 6= h(a) ∈ H. We have an equality of type
h(a) = a(a,x) f (a,x)+b(a,x)D(a,x) with f (a,x)∈ I(a,x), and hence an equal-
ity 1 = a(a,x)

h(a) f (a,x) + b(a,x)
h(a) D(a,x) in J(a,x)K(a)[x]. For every ααα ∈ S such

that h(ααα) 6= 0 the equality implies that the corresponding scheme has no com-
mon zeros with the determinant of its Jacobian matrix, hence it is smooth.
Conversely, assume that H = (0). Then the canonical K-algebra homomor-
phism K[a] −→ K[a,x]/J(a,x) is injective and hence it induces a morphism
Spec

(
K[a,x]/J(a,x)

)
−→ Am

K which is dominant. Hence, for a generic point
of Am

K , the scheme Spec
(
K[a,x]/J(a,x)

)
is not empty and so the affine scheme

Spec
(
K[a,x]/I(a,x)

)
is not smooth.

The following example illustrates these results.

Example 2.14. Let us consider the polynomials f1 = x2
1 + x2

2− 1, f2 = x2
2 + x1

in C[x1,x2] and the ideal I=( f1, f2) generated by them. We embed it into
I(a,x) = (x2

1 +a1x2
2−1, x2

2 + a2x1). It is a free family over A2
C, and the mul-

tiplicity of each fiber is 4. We compute D(a,x) = det(JacF(a,x)) and get the
equality D(a,x) =−2a1a2x2 +4x1x2. We let

J(a,x) = I(a,x)+(D(a,x)) = (x2
1 +a1x2

2−1, x2
2 +a2x1, −2a1a2x2 +4x1x2)

A computation with CoCoA of Elim([x1,x2],J) yields (1
2 a2

1a3
2+2a2), and hence

J(a,x)∩K[a] = (1
2 a2

1a3
2 + 2a2). According to the theorem, if U is the comple-

ment in A2
C of the curve defined by 1

2 a2
1a3

2 + 2a2 = 0, then U is an I-smooth
subscheme of A2

C. On the other hand, the curve has three components, a2 = 0,
and a1a2±2i = 0. If a2 = 0 then the corresponding ideal is (x2

1− 1,x2
2) which

is not smooth. If we have a1a2 ± 2i = 0, then the corresponding ideals are
(x2

1∓ 2i
a2

x2
2− 1, x2

2 + a2x1) which can be written as ((x1± i)2, x2
2 + a2x1) and

hence are not smooth.
Let us now consider the set { f1, f2}where f1 = x2

1+x2
2, f2 = x2

2+x1. We em-
bed it into the family I(a,x) = (x2

1−a1x2
2, x2

2 +a2x1). As before, we check that
it is a free family over A2

C, and the multiplicity of each fiber is 4. We compute
D(a,x) = det(JacF(a,x)) and get D(a,x) = 2a1a2x2 +4x1x2. The computation
with CoCoA of Elim([x,y],J) yields (0), and hence there is no subscheme of A2

K
which is I-smooth. Indeed, for a2 6= 0 we have I(a,x) = (x1+

1
a2

x2
2,

1
a2

2
x4

2−a1x2
2)

which is not smooth. Incidentally, we observe that also for a2 = 0 the corre-
sponding zero-dimensional scheme is not smooth.
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The following example illustrates other subtleties related to the theorem.

Example 2.15. (Example 2.9 continued)
We consider the family I(a,x) = (ax3−y, f2) for a 6= 0 of Example 2.9, compute
D(a,x) = det(JacF(a,x)) and get D(a,x) = 9ax3y2 +1512ax4−1098ax3y
+ 126ax2y2 + 1950ax3− 882ax2y+ y3 + 399ax2 + 1008xy− 183y2− 1008x+
650y−468. We let J(a,x) = I(a,x)+(D(a,x)) and get J(a,x)∩K[a] = (h(a))
where

h(a) = a9− 738170716516748
7749152384519

a8 +
218039463835944563500746

91409877182005574647
a7

−166557011563009981474061668
31353587873427912103921

a6− 276169260891419750846552207
31353587873427912103921

a5

+
986809115998719019081678896

31353587873427912103921
a4− 63247607413926237871517952

31353587873427912103921
a3

−1316764479863922379654192128
31353587873427912103921

a2 +
317872550804296477704192

13058553883143653521
a− 974975584016793600000

266501099655992929

Therefore, if U denotes the complement in A1
K of the zeros of h(a), the theorem

says that it is a Zariski-open I-smooth subscheme. However, we have already
seen in Example 2.9 that a = 0 (the origin is in U) is not in the free locus: we
observe that the corresponding scheme is smooth, but it has only two points.
The other subtlety is that the Bézout number of the family is 3× 4 = 12, but
if we substitute y = ax3 into f2 we get a univariate polynomial of degree 10.
The two missing points are at infinity. No member of the family represents
twelve points. The final remark is that if we move the parameter a inside the
locus described by a·h(a) 6= 0 we always get a smooth scheme of 10 points.
If K = C the ten points have complex coordinates, some of them are real, but
there are no values of a for which all the 10 points are real. The reason is that if
r1 =

−1+
√

3i
2 , r2 =

−1−
√

3i
2 are the two complex roots of x2+x+1 = 0, then two

of the ten points are (r1,r3
1), (r2,r3

2) which are not real points (see Theorem 2.21
and Example 2.23).

An alternative method to construct the smooth locus of the family is ob-
tained by using the discriminant, as explained for instance in the book [14].

Combining Theorem 2.13 and Proposition 2.7 we get a method to select a
Zariski-open subscheme of the parameter space over which all the fibers are
smooth schemes of constant multiplicity (see [24] for similar results). Before
describing the algorithm, we need a definition which captures this concept.

Definition 2.16. With the above notation, a dense Zariski-open subscheme U
of S such that Φ−1(U) −→ U is smooth and free is said to be an I-optimal
subscheme of S .
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Corollary 2.17. Let S = Am
K and consider the following sequence of instruc-

tions.

(1) Compute D(a,x) = det(JacF(a,x)).

(2) Let J(a,x) = I(a,x)+(D(a,x)) and compute H = J(a,x)∩K[a].

(3) If H = (0) return “There is no I-smooth subscheme of Am
K ” and stop.

(4) Choose h(a) ∈ H \0 and let U1 = Am
K \{ααα ∈ Am

K |h(ααα) = 0}.

(5) Choose a term ordering σ on Tn and compute the reduced σ -Gröbner
basis G(a,x) of I(a,x)K(a)[x]

(6) Let T = Tn \LTσ (I(a,x)K(a)[x]), compute the cardinality of T and call
it µ; then compute the least common multiple of all the denominators of
the coefficients of the polynomials in G(a,x), and call it d(a); finally, let
U2 = Am

K \{ααα ∈ Am
K |d(ααα) 6= 0} and let U = U1∩U2.

(7) Return U1, U2, U , T , µ .

This is an algorithm which returns U1 which is I-smooth, U2 which is I-free, U
which is I-optimal, T which provides a basis as K-vector spaces of all the fibers
over U2, and µ which is the multiplicity of all the fibers over U2.

Proof. It suffices to combine Theorem 2.13 and Proposition 2.7.

Example 2.18. We consider the ideal I = ( f1, f2) of K[x,y] where f1 = xy−6,
f2 = x2 + y2− 13. We embed it into the family I(a,x) = (a1xy+ a2, a3x2 +
a4y2 + a5). We compute the reduced DegRevLex-Gröbner basis of the ideal
I(a,x)K(a)[x] and get

{x2 + a4
a3

y2 + a5
a3
, xy+ a2

a1
, y3− a2a3

a1a4
x+ a1a5

a1a4
y}

according to the above results, a free locus is given by a1a3a4 6= 0. Now we
compute D(a,x) = det(JacF(a,x)) and get D(a,x) =−2a1a3x2 +2a1a4y2.

We let J(a,x) = I(a,x)+ (D(a,x)) and compute J(a,x)∩K[a]. We get the
principal ideal generated by a2

2a3a4− 1
4 a2

1a2
5. In conclusion, an I-optimal sub-

scheme is U = A5
K \F where F is the closed subscheme defined by the equa-

tion a1a3a4(a2
2a3a4− 1

4 a2
1a2

5) = 0, and µ = 4.
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Definition 2.19. We say that a point is complex if its coordinates are complex
numbers, and we say that a point is real if its coordinates are real numbers.

The following example illustrates the fact that even if we start with a set of
real points, a zero-dimensional complete intersection which contains them may
also contain complex non-real points.

Example 2.20. Let X be the set of the 10 real points {(−1,−1),(2,8),(−2,−8),
(3,27), (−3,−27), (4,64), (5,125), (−5,−125), (6,216), (−6,−216)}.

A zero-dimensional scheme containing X is defined by f = { f1, f2} where
f1 = y− x3 and f2 = x2y2− 1/4095y4 + 1729/15x2y− 74/15xy2 + 1/15y3−
8832/5x2 +5852/15xy−10754/315y2 +2160x−4632/5y+250560/91. Let I
denote the vanishing ideal of the 10 points and let J denote the ideal gener-
ated by f. The colon ideal J : I defines the residual intersection. Since J is
the intersection of a cubic and a quartic curve, the residual intersection is a
zero-dimensional scheme of multiplicity 2. Indeed, a computation (performed
with CoCoA) shows that J : I is generated by (x+ 1/78y− 87/26, y2− 756y+
658503). Since 7562−4 ·658503 =−2062476 < 0, the two extra points on the
zero-dimensional complete intersection are complex, non real points.

Theorem 2.21. Let f1(x), . . . , fn(x) ∈ R[x], let f(x) = { f1(x), . . . , fn(x)} such
that I = (f(x)) defines a zero-dimensional scheme. Then let F(a,x) ∈ R[a,x] be
a generically zero-dimensional family containing f(x). Assume that there exists
an I-optimal subscheme U of Am

R, and let ααα I ∈ U be the point in the parameter
space which corresponds to I. If µR,I is the number of distinct real points in
the fiber over ααα I (i.e. zeroes of I), then there exists an open semi-algebraic
subscheme V of U such that for every ααα ∈ V the number of real points in the
fiber over ααα is µR,I .

Proof. We consider the ideal I = I(a,x)R(a)[x]. It is zero-dimensional and the
field R(a) is infinite. Since a linear change of coordinates does not change the
problem, we may assume that I is in xn-normal position (see [18], Section 3.7).
Moreover, we have already observed (see Remark 2.8) that in Proposition 2.7
the choice of σ is arbitrary. We choose σ = Lex and hence the reduced Lex-
Gröbner basis of I has the shape prescribed by the Shape Lemma (see [18]
Theorem 3.7.25). Therefore there exists a univariate polynomial ha ∈ R(a)[xn]
whose degree is the multiplicity of both the generic fiber and the fiber over ααα I ,
which is the number of complex zeros of I. Due to the shape of the reduced
Gröbner basis, a point is real if and only if its xn-coordinate is real. Therefore it
suffices to prove the following statement: given a univariate square-free polyno-
mial ha ∈R(a)[xn] such that hααα I has exactly µR,I real roots, there exists an open
semi-algebraic subset of Am

R such that for every point ααα in it, the polynomial hααα
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has exactly µR,I real roots. The correctedness of this statement follows from [3],
Theorem 5.12 where it is shown that for every root there exists an open semi-
algebraic set in Am

R which isolates the root. Since complex non-real roots have
to occur in conjugate pairs, this implies that real roots stay real.

Let us see some examples.

Example 2.22. We consider the ideal I = (xy−2y2+2y, x2−y2−2x) in R[x,y],
and we embed it into the family I(a,x) = (xy− ay2 + ay, x2− y2− 2x). We
compute the reduced Lex-Gröbner basis of I(a,x)R(a)[x] and get

{x2−2x− y2, xy−ay2 +ay, y3− 2a
a−1 y2 + a2+2a

a2−1 y}

Applying the algorithm illustrated in Corollary 2.17 we get an I-smooth sub-
scheme of A1

R for a(a+2) 6= 0, and an I-free subscheme for (a−1)(a+1) 6= 0.
For a different from 0,−2, 1,−1 we have an I-optimal subscheme and the mul-
tiplicity is 4.

Our ideal I is obtained for a = 2, and hence it lies over the optimal sub-
scheme. It has multiplicity 4 and the four zeros are real.

The computed Lex-Gröbner basis does not have the shape prescribed by
the Shape Lemma, so we perform a linear change of coordinates by setting
x = x+ y, y = x− y. We compute the reduced Lex-Gröbner basis and get

{x+4 a+1
a−1 y3−2 a+1

a−1 y2− 3a+1
a−1 y, y4− y3− 1

2
a

a+1 y2 + 1
2

a
a+1 y}

It has the good shape, so we can use the polynomial

ha = y4− y3− 1
2

a
a+1 y2 + 1

2
a

a+1 y = y(y−1)(y2− 1
2

a
a+1)

We get the following result.

• For a <−1, a 6=−2 there are 4 real points.

• For −1 < a < 0 there are 2 real points.

• For a > 0, a 6= 1 there are 4 real points.

To complete our analysis, let us see what happens at the bad points 0,−2, 1,−1.
At 0 the primary decomposition of the ideal I0 is (x−2,y)∩(y2+2x,xy,x2),

hence the fiber consists in the simple point (2,0) and a triple point at (0,0).
At −2 we see that (x+ 2

3 , y− 4
3)∩ (x,y)∩ (x−2,y2) is the primary decom-

position of the ideal I−2, and hence the fiber consists in the simple point (−2
3 ,

4
3),

the simple point (0,0) and a double point at (2,0).
At−1 the primary decomposition of the ideal I−1 is (x,y)∩ (x−2,y), hence

the fiber consists of the two simple real points (0,0) and (2,0).
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At 1 we see that (x,y)∩ (x−2,y)∩ (x+ 1
4 ,y−

3
4) is the primary decomposi-

tion of the ideal I1, hence the fiber consists of the three simple real points (0,0),
(2,0), (−1

4 ,
3
4).

Example 2.23. We consider the ideal I = (xy+1, x2+y2−5) in R[x,y], and we
embed it into the family I(a,x,y) = (xy+ a1x+ 1, x2 + y2 + a2). We compute
the reduced Lex-Gröbner basis of I(a,x)K(a)[x,y] and get G(a,x,y) = {g1,g2}
where

g1 = x− y3−a1y2−a2y−a1a2,

g2 = y4 +2a1y3 +(a2
1 +a2)y2 +2a1a2y+(a2

1a2 +1)

which has the shape prescribed by the Shape Lemma (see [18] Theorem 3.7.25).
There is no condition for the free locus, and D(a,x,y) = det(JacF(a,x,y)) =
−2x2+2y2+2a1y. We let J(a,x,y)= I(a,x,y)+(D(a,x,y)) and compute the in-
tersection J(a,x,y)∩K[a]. We get the principal ideal generated by the following
polynomial h(a) = a6

1a2 +3a4
1a2

2 +a4
1 +3a2

1a3
2 +20a2

1a2 +a4
2−8a2

2 +16. An I-
optimal subscheme is U = A4

R \F where F is the closed subscheme defined by
the equation h(a) = 0, and we observe that µ = 4.

At this point we know that for h(a) 6= 0 each fiber is smooth and has multi-
plicity 4, hence it consists of 4 distinct complex points. What about real points?

The real curve defined by h(a) = 0 is shown in the above picture. It is the
union of two branches and the isolated point (0,2). The upper region R1 (with
the exception of the point (0,2)) corresponds to the ideals in the family whose
zeros are four complex non-real points. The regions R2 and R3 correspond to
the ideals whose zeros are two complex non-real points and two real points. The
region R4 corresponds to the ideals whose zeros are four real points. To describe
the four regions algebraically, we use the Sturm-Habicht sequence (see [15])
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of g2 ∈ R(a)[y]. The leading monomials are y4, 4y3, 4r(a)y2, −8`(a)y, 16h(a)
where we have r(a) = a2

1− 2a2, `(a) = a4
1a2 + 2a2

1a2
2 + 2a2

1 + a3
2− 4a2. To get

the total number of real roots we count the sign changes in the sequence at −∞

and +∞; in particular, we observe that in the parameter space the ideal I corre-
sponds to the point (0,−5) which belongs to the region R4. We get

R4 = {ααα ∈ R2 | r(ααα)> 0, `(ααα)< 0, h(ααα)> 0}

which is semi-algebraic open, not Zariski-open.

3. Condition Numbers

In this section we introduce a notion of condition number for zero-dimensional
polynomial systems of R[x] which define a smooth scheme; the aim is to give a
measure of the sensitivity of its real roots with respect to small perturbations of
the input data, that is small changes of the coefficients of the involved polyno-
mials.

The section starts with the recall of well-known facts about numerical linear
algebra. We let m,n be positive integers and let Matm×n(R) be the set of m×n
matrices with entries in R; if m = n we simply write Matn(R).

Definition 3.1. Let M = (mi j) be a matrix in Matm×n(R), v = (v1, . . . ,vn) a
vector in Rn and ‖ · ‖ a vector norm.

(a) Let r ≥ 1 be a real number; the r-norm on the vector space Rn is defined
by the formula ‖v‖r = (∑n

i=1 |vi|r)
1
r for every v ∈ Rn.

(b) The infinity norm on Rn is defined by the formula ‖v‖∞ = maxi|vi|.

(c) The spectral radius ρ(M) of the matrix M is defined by the formula
ρ(M) = maxi |λi|, where the λi are the complex eigenvalues of M.

(d) The real function defined on Matm×n(R) by M 7→ max‖v‖=1 ‖Mv‖ is a
matrix norm called the matrix norm induced by ‖ · ‖. A matrix norm
induced by a vector norm is called an induced matrix norm.

(e) The matrix norm induced by ‖ · ‖1 is given by the following formula
‖M‖1 = max j(∑i |mi j|). The matrix norm induced by ‖ · ‖∞ is given by
the formula ‖M‖∞ = maxi(∑ j |mi j|). Finally, the matrix norm induced
by ‖ · ‖2 is given by the formula ‖M‖2 = maxi(σi) where the σi are the
singular values of M.
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If no confusion arises, from now on we will use the symbol ‖ · ‖ to denote
both a vector norm and a matrix norm. We recall some facts about matrix norms.

Proposition 3.2. Let M be a matrix in Matn(R), let I be the identity matrix of
size n and let ‖ · ‖ be an induced matrix norm on Matn(R). If the matrix I +M
is invertible then (1−‖M‖)‖(I +M)−1‖ ≤ 1.

Proof. See [5], Theorem 3.13.

Proposition 3.3. Let M ∈Matm×n(R) and denote by Mi the i-th row of M. Let
r1 ≥ 1,r2 ≥ 1 be real numbers such that 1

r1
+ 1

r2
= 1; then

max
i
‖Mi‖r2 ≤ ‖M‖r1 ≤ m1/r1 max

i
‖Mi‖r2

In particular, for r1 = r2 = 2

max
i
‖Mi‖2 ≤ ‖M‖2 ≤

√
mmax

i
‖Mi‖2

Proof. See [16], inequality (6.13).

This introductory part ends with the recollection of some facts about the
polynomial ring K[x]. In particular, given η = (η1, . . . ,ηn) ∈ Nn we denote
by |η | the number η1 + . . .+ηn, by η! the number η1! . . .ηn!, and by xη the
power product xη1

1 . . .xηn
n .

Definition 3.4. Let p be a point of Kn; the K-linear map on K[x] defined by
f 7→ f (p) is called the evaluation map associated to p.

Definition 3.5. Let d be a nonnegative integer, let r ≥ 1 be a real number, let p
be a point of Rn and let g(x) be a polynomial in R[x].

(a) The formal Taylor expansion of g(x) at p is given by the following ex-
pression: g(x) = ∑|η |≥0

1
η!

∂ η g
∂xη (p)(x− p)η .

(b) The polynomial ∑|η |≥d
1

η!
∂ η g
∂xη (p)(x− p)η is denoted by g≥d(x, p).

(c) The r-norm of g(x) at p is defined as the r-norm of the vector ∂g
∂x(p). If

‖ ∂g
∂x(p)‖r = 1 then g(x) is called unitary at p.



ZERO-DIMENSIONAL FAMILIES OF POLYNOMIAL SYSTEMS 151

We use the following formulation of Taylor’s theorem.

Proposition 3.6. Let p be a point of Rn and let g(x) be a polynomial in R[x].
For every point q ∈ Rn we have

g(q) = g(p)+ Jacg(p)(q− p)+
1
2
(q− p)tHg(ξ )(q− p)

where ξ is a point of the line connecting p to q and Hg(ξ ) is the Hessian matrix
of g at ξ .

Let f1(x), . . . , fn(x)∈R[x] and let f(x) = { f1(x), . . . , fn(x)} so that the ideal
I = (f(x)) defines a zero-dimensional scheme; we introduce a notion of ad-
missible perturbation of f(x). Roughly speaking, the polynomial set εεε(x) =
{ε1(x), . . . ,εn(x)} ⊂ R[x] is considered to be an admissible perturbation of f(x)
if the real solutions of (f+ εεε)(x) = 0 are nonsingular and derive from pertur-
bations of the real solutions of f(x) = 0. Using the results of Section 2 we
formalize this concept as follows.

Definition 3.7. Let f1(x), . . . , fn(x) ∈ R[x] and let f(x) = { f1(x), . . . , fn(x)}
such that I = (f(x)) defines a zero-dimensional scheme; let µR,I be the num-
ber of real solutions of f(x) = 0, and let εεε(x) = {ε1(x), . . . ,εn(x)} be a set of
polynomials in R[x]. Suppose that the assumptions of Theorem 2.21 are satis-
fied, let V ⊂ Am

R be an open semi-algebraic subset of U such that ααα I ∈ V , and
for every ααα ∈ V the number of real roots of F(ααα,x) = 0 is equal to µR,I . If there
exists ααα ∈ V such that (f+ εεε)(x) = F(ααα,x), then εεε(x) is called an admissible
perturbation of f(x) .

Henceforth we let εεε(x) = {ε1(x), . . . ,εn(x)} be an admissible perturbation
of f(x), and let ZR(f) = {p1, . . . , pµR,I}, ZR(f+ εεε) = {r1, . . . ,rµR,I} be the sets
of real solutions of f(x) = 0 and (f+εεε)(x) = 0 respectively. We consider each ri

as a perturbation of the root pi, hence we write ri = pi +∆pi for i = 1, . . . ,µR,I .

Now we concentrate on a single element p of ZR(f).

Corollary 3.8. Let p be one of the real solutions of f = 0, and p + ∆p the
corresponding real solution of f+ εεε = 0. Then we have

0 = (f+ εεε)(p+∆p) = εεε(p)+ Jacf+εεε(p)∆p+(v1(ξ1), . . . ,vn(ξn))
t (1)

where ξ1, . . . ,ξn are points on the line which connects the points p and p+∆p,
and v j(ξ j) =

1
2 ∆ptH f j+ε j(ξ j)∆p for each j = 1, . . . ,n.

Proof. It suffices to put q = p+∆p, apply the formula of Proposition 3.6 to the
polynomial system (f+ εεε)(x), and use the fact that f(p) = 0.
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Example 3.9. We consider f = { f1, f2} where f1 = xy− 6, f2 = x2 + y2− 13
and observe that ZR(f) = {(−3,−2),(3,2),(−2,−3),(2,3)}. The set f(x) is
embedded into the following family F(a,x) = {xy+a1,x2 +a2y2 +a3}.

Let ααα = (a1,a2,a3) ∈ R3; the semi-algebraic open set

V = {ααα ∈ R3 |a2
3−4a2

1a2 > 0,a2 > 0,a3 < 0}

is a subset of the I-optimal scheme U = {ααα ∈ A3
R| a2(a2

3−4a2
1a2) 6= 0}. More-

over, it contains the point ααα I = (−6, 1,−13), and the fiber over each ααα ∈ V
consists of 4 real points. The set εεε(x) = {δ1,δ2y2 +δ3} is an admissible pertur-
bation of f(x) if and only if the conditions (δ3−13)2−4(δ1−6)2(δ2 +1)> 0,
δ2 >−1, and δ3 < 13 are satisfied. Since the values δ1 = 2, δ2 =

5
4 , and δ3 = 0

satisfy the previous conditions, the polynomial set εεε(x) = {2, 5
4 y2} is an admis-

sible perturbation of f(x). The real roots of (f+ εεε)(x) = 0 are

ZR(f+ εεε) =
{(
−3,−4

3

)
,
(
3, 4

3

)
,(−2,−2),(2,2)

}
For each ri ∈ ZR(f+ εεε) the matrix Jacf+εεε(ri) is invertible, as predicted by the
theory. On the contrary, by evaluating Jacf+εεε(x) at the third and the fourth point
of ZR(f) we obtain a singular matrix. This is an obstruction to the development
of the theory which suggests further restrictions (see the following discussion).

Our idea is to evaluate ∆p using equation (1) of Corollary 3.8. However,
while the assumption that εεε(x) is an admissible perturbation of f(x) combined
with the Jacobian criterion guarantee the non singularity of Jacf+εεε(p+∆p), they
do not imply the non singularity of the matrix Jacf+εεε(p), as we have just seen
in Example 3.9. The next step is to find a criterion which guarantees the non
singularity of Jacf+εεε(p).

Lemma 3.10. Let ‖ ·‖ be an induced matrix norm on Matn(R) and assume that
‖Jacf(p)−1 Jacεεε(p)‖< 1. Then Jacf+εεε(p) is invertible.

Proof. By assumption p is a nonsingular root of f(x) = 0, hence Jacf(p) is in-
vertible and so Jacf+εεε(p) can be rewritten as Jacf+εεε(p) = Jacf(p)+ Jacεεε(p) =
Jacf(p)

(
I + Jacf(p)−1 Jacεεε(p)

)
. Consequently, it suffices to show that the ma-

trix I + Jacf(p)−1 Jacεεε(p) is invertible. And we achieve it by proving that the
spectral radius ρ(Jacf(p)−1 Jacεεε(p)) is smaller than 1.

We have ρ(Jacf(p)−1 Jacεεε(p))≤ ‖Jacf(p)−1 Jacεεε(p)‖< 1, and the proof is
now complete.

Note that the requirement ‖Jacf(p)−1 Jacεεε(p)‖< 1 gives a restriction on the
admissible choices of εεε(x), as we see in the following example.
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Example 3.11. (Example 3.9 continued)
Let εεε(x) = {δ1,δ2y2 + δ3}, with δi ∈ R, be an admissible perturbation of f(x)
of Example 3.9. We consider the real solution p4 = (2,3) of f = 0 and compute
‖Jacf(p4)

−1 Jacεεε(p4)‖2
2 =

117
25 δ 2

2 . Using Lemma 3.10 we see that the condition
|δ2|< 5

39

√
13 is sufficient to have Jacf+εεε(p4) invertible.

From now on we assume that the hypothesis of Lemma 3.10 is satisfied. In
order to deduce an upper bound for ‖∆p‖ we consider an approximation of it.

Definition 3.12. If ‖Jacf(p)−1 Jacεεε(p)‖ is different from 1, we denote the num-
ber 1/(1−‖Jacf(p)−1 Jacεεε(p)‖) by Λ(f,εεε, p). Moreover, by ∆p1 we denote the
vector−Jacf+εεε(p)−1εεε(p), which is the solution of equation (1) of Corollary 3.8
truncated at the first order.

Proposition 3.13. Let ‖ · ‖ be an induced matrix norm on Matn(R) and assume
that ‖Jacf(p)−1 Jacεεε(p)‖< 1. Then we have

‖∆p1‖ ≤ Λ(f,εεε, p) ‖Jacf(p)−1‖ ‖εεε(p)‖ (2)

Proof. Lemma 3.10 guarantees that the matrix Jacf+εεε(p) is invertible, so

∆p1 = −Jacf+εεε(p)−1
εεε(p) =−(Jacf(p)+ Jacεεε(p))−1

εεε(p)

= −
(
I + Jacf(p)−1 Jacεεε(p)

)−1
Jacf(p)−1

εεε(p)

We apply the inequality of Proposition 3.2 to Jacf(p)−1 Jacεεε(p), and get

‖∆p1‖ ≤ ‖(I + Jacf(p)−1 Jacεεε(p)−1)‖ ‖Jacf(p)−1‖ ‖εεε(p)‖
≤ Λ(f,εεε, p) ‖Jacf(p)−1‖ ‖εεε(p)‖

which concludes the proof.

We introduce the local condition number of the polynomial system f(x) = 0.

Definition 3.14. Let f1(x), . . . , fn(x) ∈ R[x], let f(x) = { f1(x), . . . , fn(x)} such
that the ideal generated by f(x) defines a zero-dimensional scheme, and let p be
a nonsingular real solution of f(x) = 0. Let ‖ · ‖ be a norm.

(a) The number κ(f, p) = ‖Jacf(p)−1‖‖Jacf(p)‖ is called the local condition
number of f(x) at p.

(b) If the norm is an r-norm, the local condition number is denoted by κr(f,p).

The following theorem illustrates the importance of the local condition num-
ber. It depends on f and p, not on εεε , and is a key ingredient to provide an upper
bound for the relative error ‖∆p1‖

‖p‖ .
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Theorem 3.15. (Local Condition Number)
Let f1(x), . . . , fn(x) ∈ R[x] and let f(x) = { f1(x), . . . , fn(x)} such that the ideal
generated by f(x) defines a zero-dimensional scheme; let εεε(x) be an admissible
perturbation of f(x), let p be a nonsingular real solution of f(x) = 0, let ‖ · ‖ be
an induced matrix norm, and assume that ‖Jacf(p)−1 Jacεεε(p)‖ < 1. Then we
have

‖∆p1‖
‖p‖

≤ Λ(f,εεε, p) κ(f, p)
(
‖Jacεεε(p)‖
‖Jacf(p)‖

+
‖εεε(0)− εεε≥2(0, p)‖
‖f(0)− f≥2(0, p)‖

)
(3)

Proof. By Definition 3.5 the evaluation of εεε at 0 can be expressed in this way
εεε(0)=εεε(p)−Jacεεε(p)p+εεε≥2(0, p). We get εεε(p)=εεε(0)+Jacεεε(p)p−εεε≥2(0, p).
Dividing (2) of Proposition 3.13 by ‖p‖ we obtain

‖∆p1‖
‖p‖

≤ Λ(f,εεε, p) ‖Jacf(p)−1‖ ‖ε
εε(p)‖
‖p‖

≤ Λ(f,εεε, p) ‖Jacf(p)−1‖ ‖Jacεεε(p)‖‖p‖+‖εεε(0)− εεε≥2(0, p)‖
‖p‖

= Λ(f,εεε, p)‖Jacf(p)−1‖
(
‖Jacεεε(p)‖+ ‖ε

εε(0)− εεε≥2(0, p)‖
‖p‖

)
Using again Definition 3.5 we express f(0) = f(p)− Jacf(p)p+ f≥2(0, p); since
f(p) = 0 we have ‖f(0)− f≥2(0, p)‖= ‖Jacf(p)p‖ ≤ ‖Jacf(p)‖‖p‖ from which

1
‖p‖
≤ ‖Jacf(p)‖
‖f(0)− f≥2(0, p)‖

We combine the inequalities to obtain

‖∆p1‖
‖p‖

≤ Λ(f,εεε, p)‖Jacf(p)−1‖
(
‖Jacεεε(p)‖+‖Jacf(p)‖‖ε

εε(0)− εεε≥2(0, p)‖
‖f(0)− f≥2(0, p)‖

)
≤ Λ(f,εεε, p)‖Jacf(p)−1‖‖Jacf(p)‖

(
‖Jacεεε(p)‖
‖Jacf(p)‖

+
‖εεε(0)− εεε≥2(0, p)‖
‖f(0)− f≥2(0, p)‖

)
and the proof is concluded.

The next remark contains observations about the local condition number.

Remark 3.16. We call attention to the following observations.

(a) The notion of local condition number given in Definition 3.14 is a gen-
eralization of the classical notion of condition number of linear systems
(see [5]). In fact, if f(x) is linear, that is f(x) = Ax−b with A ∈Matn(R)
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invertible, and ZR(f) = {p} = {A−1b}, then κ(f, p) is the classical con-
dition number of the matrix A. In fact Jacf(x) = A, and so κ(f, p) =
‖Jacf(p)−1‖‖Jacf(p)‖ = ‖A−1‖‖A‖. Further, if we consider the pertur-
bation εεε(x) = ∆Ax−∆b, relation (3) becomes

‖∆p‖
‖p‖

≤ 1
1−‖A−1‖ ‖∆A‖

‖A−1‖ ‖A‖
(
‖∆A‖
‖A‖

+
‖∆b‖
‖b‖

)
(4)

which is the relation that quantifies the sensitivity of the Ax = b problem
(see [5], Theorem 4.1).

(b) Using any induced matrix norm, the condition number κ(f, p) turns out
to be greater than or equal to 1. In particular, using the 2-norm we have
κ2(f, p) = σmax(Jacf(p))

σmin(Jacf(p)) ; in this case the local condition number attains its
minimum, that is κ2(f, p) = 1, when Jacf(p) is orthonormal.

(c) The condition number κ(f, p) is invariant under a scalar multiplication
of the polynomial system f(x) by a unique nonzero real number γ . On
the contrary, κ(f, p) is not invariant under a generic scalar multiplica-
tion of each polynomial f j(x) of f(x). The reason is that if we multiply
each f j(x) by a nonzero real number γ j we obtain the new polynomial set
g(x) = {γ1 f1(x), . . . ,γn fn(x)} whose condition number at p is

κ(g, p) = ‖Jacf(p)−1
Γ
−1‖‖ΓJacf(p)‖ 6= κ(f, p)

where Γ = diag(γ1, . . . ,γn) ∈ Matn(R) is the diagonal matrix with en-
tries γ1, . . . ,γn.

(d) It is interesting to observe that if p is the origin then Formula (3) of the
theorem is not applicable. However, one can translate p away from the
origin, and the nice thing is that the local condition number does not
change.

4. Optimization of the local condition number

In this section we introduce a strategy to improve the numerical stability of
zero-dimensional polynomial systems of R[x] which define a smooth scheme.
Let f1(x), . . . , fn(x)∈R[x] and let f(x) = { f1(x), . . . , fn(x)} such that I = (f(x))
defines a zero-dimensional scheme; our aim is to find an alternative representa-
tion of I with minimal local condition number.

Motivated by Remark 3.16, item (b) and (c), we consider the strategy of
resizing each polynomial of f(x), and study its effects on the condition number.
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The following proposition shows that rescaling each f j(x) so that ∂ f j
∂x (p) has

unitary norm is a nearly optimal, in some cases optimal, strategy. The result is
obtained by adapting the method of Van der Sluis (see [16], Section 7.3) to the
polynomial case.

Proposition 4.1. Let f1(x), . . . , fn(x) ∈ R[x], let f(x) = { f1(x), . . . , fn(x)} such
that I = (f(x)) defines a zero-dimensional scheme, and let p be a nonsingu-
lar real solution of f(x) = 0. Let r1 ≥ 1,r2 ≥ 1 be real numbers such that
1
r1
+ 1

r2
= 1, including the pairs (1,∞) and (∞,1), let γ = (γ1, . . . ,γn) be an n-

tuple of nonzero real numbers, and let gγ(x), uuu(x) be the polynomial systems
defined by the polynomials gγ(x) = {γ1 f1(x), . . . ,γn fn(x)} and also the polyno-
mials uuu(x) = {‖ ∂ f1

∂x (p)‖−1
r2

f1(x), . . . ,‖ ∂ fn
∂x (p)‖−1

r2
fn(x)}.

(a) We have the inequality κr1(uuu, p)≤ n1/r1κr1(gγ , p).

(b) In particular, if (r1,r2) = (∞,1) we have the equality

κ∞(uuu, p) = minγκ∞(gγ , p)

where uuu(x) = {‖ ∂ f1
∂x (p)‖−1

1 f1(x), . . . ,‖ ∂ fn
∂x (p)‖−1

1 fn(x)}.

Proof. Let Γ= diag(γ1, . . . ,γn) and D= diag(‖ ∂ f1
∂x (p)‖

−1
r2
, . . . ,‖ ∂ fn

∂x (p)‖
−1
r2
); then

Jacgγ
(x) = ΓJacf(x) and Jacuuu(x) = DJacf(x). The condition numbers of gγ(x)

and uuu(x) at p are given by

κr1(gγ , p) = ‖(ΓJacf(p))−1‖r1‖ΓJacf(p)‖r1

κr1(uuu, p) = ‖(DJacf(p))−1‖r1‖DJacf(p)‖r1

From Proposition 3.3 we have

‖DJacf(p)‖r1 ≤ n1/r1 max
i
‖(DJacf(p))i‖r2 = n1/r1

‖(DJacf(p))−1‖r1 = ‖Jac−1
f (p)D−1‖r1 = ‖Jac−1

f (p)Γ−1
ΓD−1‖r1

≤ ‖Jac−1
f (p)Γ−1‖r1 max

i

(
|γi|
∥∥∥∥∂ fi

∂x
(p)
∥∥∥∥

r2

)
≤ ‖Jac−1

f (p)Γ−1‖r1‖ΓJacf(p)‖r1 = κr1(gγ , p)

therefore κr1(uuu, p) ≤ n1/r1κr1(gγ , p) and (a) is proved. To prove (b) it suffices
to use (a) and observe that n1/∞ = 1

Remark 4.2. The above proposition implies that the strategy of rescaling each
polynomial f j(x) to make it unitary at p (see Definition 3.5) is beneficial for
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lowering the local condition number of f(x) at p. This number is minimum
when r = ∞, it is within factor

√
n of the minimum when r = 2. However, for

r = 2 we can do better, at least when all the polynomials f1(x), . . . , fn(x) have
equal degree. The idea is to use Remark 3.16, item (b) which says that when
using the matrix 2-norm, the local condition number attains its minimum when
the Jacobian matrix is orthonormal.

Proposition 4.3. With the same assumptions of Proposition 4.1 we assume that
deg( f1) = · · ·= deg( fn); moreover, let C = (ci j) ∈ Matn(R) be an invertible
matrix, and let g be defined by gtr = C · ftr. Then the following conditions are
equivalent:

(a) κ2(g, p) = 1, the minimum possible;

(b) C tC = (Jacf(p)Jacf(p)t)−1

Proof. We know that κ2(g, p) = 1 if and only if the matrix Jacg(p) is orthonor-
mal. This condition can be expressed by the equality Jacg(p)Jacg(p)t = In, that
is C Jacf(p)Jacf(p)t C t = In and the conclusion follows.

We observe that condition (b) of Proposition 4.3 requires that the entries
of C satisfy an underdetermined system of (n2 + n)/2 independent quadratic
equations in n2 unknowns.

5. Experiments

In numerical linear algebra it is known (see for instance [5], Ch. 4, Section 1)
that the upper bound given by the classical formula (4) of Remark 3.16 (a) is not
necessarily sharp. Since our upper bound (3) generalizes the classical one, as
shown in Remark 3.16, we provide some experimental evidence that lowering
the condition number not only sharpens the upper bound, but indeed stabilizes
the solution point. To do that, we exhibit two explicit examples where we show
that a suitable change of generators of our ideals leads to a substantial lower-
ing of our condition number. As a side remark, we mention that we computed
the corresponding condition number of Shub and Smale as described in the pa-
per [23], and observed that also in their case the number obtained with our new
polynomials is better (smaller) than the number obtained with the original ones.
But in our case we can benefit from the claim of Proposition 4.3 since, by chang-
ing the generators of our ideals, we achieve the optimal condition number 1.
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Example 5.1. We consider f1, f2 ∈ R[x,y], where

f1 = 1
4 x2y+ xy2 + 1

4 y3 + 1
5 x2− 5

8 xy+ 13
40 y2 + 9

40 x− 3
5 y+ 1

40

f2 = x3 + 14
13 xy2 + 57

52 x2− 25
52 xy+ 8

13 y2− 11
52 x− 4

13 y− 4
13

Let f = { f1, f2} and let I be the ideal generated by f. The set ZR(f) has 7 real
roots; we consider the point p = (0,1) ∈ ZR(f). The polynomial system f is
unitary at p and its condition number is κ2(f, p) = 8. Using Proposition 4.3 we
construct a new polynomial system g with minimal local condition number at p.
The new pair of generators g is defined (see Proposition 4.3) by the following
the formula gtr =C ·ftr, where C = (ci j)∈Mat2(R) is an invertible matrix whose
entries satisfy the following system

c2
11 + c2

21 = 25
16

c11c12 + c21c22 = −15
16

c2
12 + c2

22 = 25
16

A solution is given by c11 = 1, c12 = 0, c21 =
63
16 , c22 = −65

16 , and we observe
that the associated unitary polynomial system g = { f1,

63
16 f1− 65

16 f2} provides an
alternative representation of I with minimal local condition number κ2(g, p) = 1
at the point p.

Now we embed the system f(x,y) into the family F(a,x,y) = {F1,F2}where

F1(a,x,y) = 1
4 x2y+ xy2 + 1

4 y3 + 1
5 x2− 5

8 xy+
(13

40 −a
)

y2

+
( 9

40 +a
)

x+
(
−3

5 +a
)

y+ 1
40 −2a

F2(a,x,y) = x3 + 14
13 xy2 + 57

52 x2− 25
52 xy+

( 8
13 +a

)
y2

+
(
−11

52 +a
)

x−
( 4

13 +a
)

y− 4
13 +a2

We denote by IF(a,x,y) the ideal generated by F(a,x,y) in R[a,x,y], compute
the reduced Lex-Gröbner basis of IF(a,x,y)R(a)[x,y], and get

{x+ l1(a,y)
dF (a)

, y9 + l2(a,y)}

where l1(a,y), l2(a,y) ∈ R[a,y] have degree 8 in y and dF(a) ∈ R[a] has de-
gree 12. This basis has the shape prescribed by the Shape Lemma and a flat
locus is given by {α ∈ R | dF(α) 6= 0}. We let DF(a,x,y) = det(JacF(a,x,y)),
JF(a,x,y) = IF(a,x,y) + (DF(a,x,y)), compute JF(a,x,y)∩R[a], and we get
the principal ideal generated by a univariate polynomial hF(a) of degree 28.
An I-optimal subscheme is UF = {α ∈ R | dF(α)hF(α) 6= 0}. An open semi-
algebraic subset VF of UF which contains the point αI = 0 and such that the fiber
over each α ∈VF consists of 7 real points, is given by the open interval (α1,α2),
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where α1 < 0 and α2 > 0 are the real roots of dF(a)hF(a) = 0 closest to the ori-
gin. Their approximate values are α1 =−0.00006 and α2 = 0.01136.

To produce similar perturbations, we embed the system g(x,y) into the fam-
ily G(a,x,y) = {G1,G2} where

G1(a,x,y) = 1
4 x2y+ xy2 + 1

4 y3 + 1
5 x2− 5

8 xy+
(13

40 −a
)

y2

+
( 9

40 +a
)

x+
(
−3

5 +a
)

y+ 1
40 −2a

G2(a,x,y) = −65
16 x3 + 63

64 x2y− 7
16 xy2 + 63

64 y3− 1173
320 x2− 65

128 xy

+
(
−781

640 +a
)

y2 +
(1117

640 +a
)

x+
(
−89

80 −a
)

y+ 863
640 +a2

We denote by IG(a,x,y) the ideal generated by G(a,x,y) in R[a,x,y], compute
the reduced Lex-Gröbner basis of IG(a,x,y)R(a)[x,y], and get

{x+ l3(a,y)
dG(a)

, y9 + l4(a,y)}

where l3(a,y), l4(a,y) ∈ R[a,y] have degree 8 in y and dG(a) ∈ R[a] has de-
gree 12, therefore the basis has the shape prescribed by the Shape Lemma. A flat
locus is given by {α ∈ R | dG(α) 6= 0}. We let DG(a,x,y) = det(JacG(a,x,y)),
JG(a,x,y) = IG(a,x,y) + (DG(a,x,y)) and compute JG(a,x,y)∩R[a]. We get
the principal ideal generated by a univariate polynomial hG(a) of degree 28.
An I-optimal subscheme is UG = {α ∈ R | dG(α)hG(α) 6= 0}. An open semi-
algebraic subset VG of UG containing the point αI = 0 and such that the fiber
over each α ∈ VG consists of 7 real points is given by the open interval (α3,α4),
where α3 < 0 and α4 > 0 are the real roots of dG(a)hG(a) = 0 closest to the
origin. Their approximate values are α3 =−0.00009 and α4 = 0.00914.

Let α ∈ (α1,α4). According to Definition 3.7 the polynomial set εεε(x,y) =
{−αy2 +αx+αy− 2α, αy2 +αx−αy+α2} is an admissible perturbation
of f(x,y) and g(x,y). Further, since ‖Jacf(p)−1 Jacεεε(p)‖2 =

√
65|α| < 1 and

‖Jacg(p)−1 Jacεεε(p)‖2 =
√

2|α|< 1 Theorem 3.15 can be applied.
We let q ∈ ZR(f+ εεε) and r ∈ ZR(g+ εεε) be the two perturbations of the

point p. In order to compare the numerical behaviour of f and g at the real root p
we compare the relative errors ‖q−p‖2

‖p‖2
and ‖r−p‖2

‖p‖2
for different values of α .

κ2(f, p) UB(f, p) ‖q−p‖2
‖p‖2

8 0.1729 0.000097
κ2(g, p) UB(g, p) ‖r−p‖2

‖p‖2

1 0.0275 0.000023

The first column of the above table contains the values of the local condition
numbers of f and g at p. The second column contains the mean values of the
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upper bounds UB(f, p) and UB(g, p) given by Theorem 3.15, computed for 100
random values of α ∈ (α1,α4). The third column contains the mean values
of ‖q−p‖2

‖p‖2
and ‖r−p‖2

‖p‖2
for the same values of α . The mean values of ‖q−p‖2

‖p‖2
are

smaller than the mean values of ‖r−p‖2
‖p‖2

. This fact suggests that p is more stable
when it is considered as a root of g instead of as a root of f.

Example 5.2. We consider f1, f2, f3 ∈ R[x,y,z], where

f1 = 6
17 x2 + xy− 24

85 x− 8
85 y− 6

85

f2 = 39
89 x2 + 70

89 xy+ yz− 39
89 x+ 10

89 y

f3 = y2 +2xz+ z2− z

Let f = { f1, f2, f3} and let I be the ideal generated by f. The set ZR(f) has 6 real
roots; we consider the point p = (1,0,0) ∈ ZR(f). The polynomial system f is
unitary at p and its condition number is κ2(f, p) = 123. Using Proposition 4.3
we construct a new polynomial system g with minimal local condition number
at p. The new set g is defined by gtr = C · ftr, where C = (ci j) ∈Mat3(R) is an
invertible matrix whose entries satisfy the following system

c2
11 + c2

21 + c2
31 = 57229225

15129
c11c12 + c21c22 + c31c32 = −57221660

15129
c11c13 + c21c23 + c31c33 = 0
c2

12 + c2
22 + c2

32 = 57229225
15129

c12c13 + c22c23 + c32c33 = 0
c2

13 + c2
23 + c2

33 = 1

A solution is given by c11 = c33 = 1, c12 = c13 = c23 = c32 = 0, c21 =
7564
123 ,

c22 =−7565
123 . Therefore the associated unitary polynomial system is the follow-

ing g = { f1,
7564
123 f1− 7565

123 f2, f3}. It provides an alternative representation of I
with minimal local condition number κ2(g, p) = 1 at the point p.

We embed the system f(x,y,z) into the family F(a,x,y,z) = {F1,F2,F3}
where

F1(a,x,y,z) = 6
17 x2 +(1−a2)xy+(−24

85 +a)x+(− 8
85 −a)y+(− 6

85 +a2)

F2(a,x,y,z) = 39
89 x2 +(70

89 +a)xy+ yz+(39
89 +a)x+(10

89 +a)y

F3(a,x,y,z) = y2 +2xz+(1−2a)z2 +(−1+a)z

We denote by IF(a,x,y,z) the ideal generated by F(a,x,y,z) in R[a,x,y,z], com-
pute the reduced Lex-Gröbner basis of IF(a,x,y,z)R(a)[x,y,z], and get

{x+ l1(a,z)
dF (a)

, y+ l2(a,z)
dF (a)

, z9 + l3(a,z)
eF (a)
}
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where l1(a,z), l2(a,z), l3(a,z) ∈ R[a,z] have degrees degz(l1) = degz(l2) = 7
and degz(l3) = 8 while dF(a) ∈ R[a] has degree 54, and eF(a) ∈ R[a] has de-
gree 11. The basis has the shape prescribed by the Shape Lemma. A flat locus is
given by {α ∈R | dF(α)eF(α) 6= 0}. We let DF(a,x,y,z) = det(JacF(a,x,y,z)),
JF(a,x,y,z) = IF(a,x,y,z)+(DF(a,x,y,z)) and compute JF(a,x,y,z)∩R[a]. We
get the principal ideal generated by a univariate polynomial hF(a) of degree 59.
An I-optimal subscheme is UF = {α ∈ R | dF(α)eF(α)hF(α) 6= 0}. An open
semi-algebraic subset VF of UF containing the point αI = 0 and such that the
fiber over each α ∈ VF consists of 6 real points is given by the interval (α1,α2),
where α1 < 0 and α2 > 0 are the real roots of dF(a)eF(a)hF(a) = 0 closest to
the origin. Their approximate values are α1 =−0.17082 and α2 = 0.20711.

To produce similar perturbations, we embed the system g(x,y,z) into the
family G(a,x,y,z) = {G1,G2,G3} where

G1(a,x,y) = 6
17 x2 +(1−a2)xy+(−24

85 +a)x+(− 8
85 −a)y+(− 6

85 +a2)

G2(a,x,y) = −3657
697 x2 +(538

41 +a)xy− 7565
123 yz+(33413

3485 +a)x

+(−44254
3485 +a)y− 15128

3485

G3(a,x,y) = y2 +2xz+(1−2a)z2 +(−1+a)z

We denote by IG(a,x,y,z) the ideal generated by G(a,x,y,z) in R[a,x,y,z], com-
pute the reduced Lex-Gröbner basis of IG(a,x,y,z)R(a)[x,y,z], and get

{x+ l4(a,z)
dG(a)

, y+ l5(a,z)
dG(a)

, z9 + l6(a,z)
eG(a)
}

where l4(a,z), l5(a,z), l6(a,z)∈R[a,z] have degrees degz(l4) = degz(l5) = 7 and
degz(l6) = 8 while dG(a) ∈R[a] has degree 54, and eG(a) ∈R[a] has degree 11.
The basis has the shape prescribed by the Shape Lemma. A flat locus is given
by {α ∈ R | dG1(α)dG2(α) 6= 0}. We let DG(a,x,y,z) = det(JacG(a,x,y,z)),
JG(a,x,y,z) = IG(a,x,y,z)+(DG(a,x,y,z)) and compute JG(a,x,y,z)∩R[a]. We
get the principal ideal generated by a univariate polynomial hG(a) of degree 59.
An I-optimal subscheme is UG = {α ∈ R | dG(α)eG(α)hG(α) 6= 0}. An open
semi-algebraic subset VG of UG containing the point αI = 0 and such that the
fiber over each α ∈ VG consists of 6 real points is given by the interval (α3,α4),
where α3 < 0 and α4 > 0 are the real roots of dG(a)eG(a)hG(a) = 0 closest to
the origin. Their approximate values are α3 =−0.02942 and α4 = 0.03312.

Let α ∈ (α3,α4). According to Definition 3.7 the polynomial set εεε(x,y) =
{−α2xy+αx−αy+α2, αxy+αx+αy, −2αz2+αz} is an admissible pertur-
bation of f(x,y,z) and g(x,y,z).

We let q ∈ ZR(f+ εεε) and r ∈ ZR(g+ εεε) be the two perturbations of the
point p. In order to compare the numerical behaviour of f and g at the real
root p we compare the relative errors ‖q−p‖2

‖p‖2
and ‖r−p‖2

‖p‖2
for different values
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of α . The first column of the following table contains the values of the local
condition numbers of f and g at p. The second column contains the mean values
of ‖q−p‖2

‖p‖2
and ‖r−p‖2

‖p‖2
for 100 random values of α ∈ (α1,α4).

κ2(f, p) ‖q−p‖2
‖p‖2

123 0.0436
κ2(g, p) ‖r−p‖2

‖p‖2

1 0.0221

As in the example before, the fact that the mean values of ‖q−p‖2
‖p‖2

are smaller than

the mean values of ‖r−p‖2
‖p‖2

suggests that p is more stable when it is considered
as a root of g instead of as a root of f.
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