SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY DZIOK-SRIVASTAVA OPERATOR

M. K. AOUF - A. O. MOSTAFA - A. SHAMANDY - E. A. ADWAN

In this paper we introduce a new class of harmonic univalent functions defined by the Dziok-Srivastava operator. Coefficient estimates, extreme points, distortion bounds and convex combination for functions belonging to this class are obtained and also for a class preserving the integral operator.

1. Introduction

A continuous complex-valued function f = u + iv is defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply connected domain we can write

$$f = h + \overline{g},\tag{1}$$

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h'(z)| > |g'(z)| in D (see [6]).

Denote by S_H the class of functions f of the form (1) that are harmonic univalent and sense-preserving in the unit disc $U = \{z : |z| < 1\}$ for which

Entrato in redazione: 31 maggio 2012

Keywords: Harmonic univalent functions, Dziok-Srivastava operator, Extreme points.

 $f(0) = f_z(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_H$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ g(z) = \sum_{n=1}^{\infty} b_n z^n, \qquad |b_1| < 1.$$
 (2)

In [6] Clunie and Shell-Small investigated the class S_H as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_H and its subclasses. Denote by V_H the subclass of S_H consisting of functions of the form $f = h + \overline{g}$, where

$$h(z) = z + \sum_{n=2}^{\infty} |a_n| z^n, g(z) = \sum_{n=1}^{\infty} |b_n| z^n, \qquad |b_1| < 1.$$
 (3)

For positive real parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s ($\beta_j \in \mathbb{C} \setminus \mathbb{Z}_0^-$, with $\mathbb{Z}_0^- = 0, -1, -2, \ldots$ and $j = 1, 2, \ldots, s$), the generalized hypergeometric function ${}_qF_s$ is defined by

$$_{q}F_{s}(\alpha_{1},\ldots,\alpha_{q};\beta_{1},\ldots,\beta_{s};z)=\sum_{n=0}^{\infty}\frac{(\alpha_{1})_{n}\ldots(\alpha_{q})_{n}}{(\beta_{1})_{n}\ldots(\beta_{s})_{n}n!}z^{n}$$

$$(q \le s+1; s, q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \ \mathbb{N} = \{1, 2, \dots\}; \ z \in U),$$

where $(\theta)_n$ is the Pochhammer symbol defined in terms of the Gamma function Γ by

$$(\theta)_n = \frac{\Gamma(\theta+n)}{\Gamma(\theta)} = \left\{ \begin{array}{ll} 1 & (n=0) \\ \theta(\theta+1)\dots(\theta+n-1) & (n\in\mathbb{N}). \end{array} \right.$$

For the function $h(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) = z_q F_s(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$, the Dziok-Srivastava linear operator (see [8] and [9]) $H_{q,s}(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s)$ is defined by the Hadamard product as follows:

$$H_{q,s}(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s) f(z) = h(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) * f(z)$$

$$= z + \sum_{n=2}^{\infty} \Psi_n(\alpha_1) a_n z^n \quad (z \in U), \tag{4}$$

where

$$\Psi_n(\alpha_1) = \frac{(\alpha_1)_{n-1} \dots (\alpha_q)_{n-1}}{(\beta_1)_{n-1} \dots (\beta_s)_{n-1} (n-1)!}.$$
 (5)

For brevity, we write

$$H_{q,s}(\alpha_1,\ldots,\alpha_q; \beta_1,\ldots,\beta_s;z)f(z)=H_{q,s}(\alpha_1)f(z).$$

Al-Kharsani and Al-Khal [2] and Al-Khal [1] defined the modified Dziok-Srivastava operator of the harmonic function $f = h + \overline{g}$ given by (1) as

$$H_{q,s}(\alpha_1)f(z) = H_{q,s}(\alpha_1)h(z) + \overline{H_{q,s}(\alpha_1)g(z)}.$$

For $1 < \gamma \le 2$ and for all $z \in U$, let $S_{H_{q,s}}([\alpha_1]; \gamma)$ denote the family of harmonic functions $f(z) = h(z) + \overline{g(z)}$, where h and g are given by (2) and satisfying the analytic criterion

$$\Re\left\{\frac{H_{q,s}(\alpha_1)h(z) + \overline{H_{q,s}(\alpha_1)g(z)}}{z}\right\} < \gamma. \tag{6}$$

Let $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ be the subclass of $S_{H_{q,s}}([\alpha_1]; \gamma)$ consisting of functions f = h + g such that h and g given by (3).

We note that for suitable choices of q and s, we obtain the following subclasses:

1) Putting $q=2, s=1, \alpha_1=a(a>0), \alpha_2=1$ and $\beta_1=c(c>0)$ in (6), the class $\overline{S}_{H_{2,1}}([a,1;c];\gamma)$ reduces to the class $\mathcal{L}_H(a,c;\gamma)$

$$= \left\{ f \in S_H : \mathfrak{R} \left\{ \frac{L(a,c)h(z) + \overline{L(a,c)g(z)}}{z} \right\} < \gamma, \ 1 < \gamma \le 2, a,c > 0, \\ z \in U \right\},$$

where L(a,c) is the modified Carlson-Shaffer operator (see [3]), defined as follows:

$$L(a,c)f(z) = L(a,c)h(z) + \overline{L(a,c)g(z)};$$

2) Putting $q=2, s=1, \alpha_1=\lambda+1(\lambda>-1)$ and $\alpha_2=\beta_1=1$ in (6), the class $\overline{S}_{H_{2,1}}([\lambda+1];\gamma)$ reduces to the class $\overline{W}_H(\lambda;\gamma)$

$$=\left\{f\in S_H:\Re\left\{\frac{D^{\lambda}h(z)+\overline{D^{\lambda}g(z)}}{z}\right\}<\gamma,\ 1<\gamma\leq 2,\lambda>-1,z\in U\right\},$$

where D^{λ} is the modified Ruscheweyh derivative operator (see [13]), defined as follows:

$$D^{\lambda} f(z) = D^{\lambda} h(z) + \overline{D^{\lambda} g(z)};$$

3) Putting $q=2, s=1, \alpha_1=v+1 \ (v>-1), \alpha_2=1 \ and \ \beta_1=v+2 \ in (6)$, the class $\overline{S}_{H_{2,1}}([v+1,1;v+2];\gamma)$ reduces to the class $\overline{\zeta}_H(v;\gamma)$

$$=\left\{f\in S_H:\Re\left\{\frac{J_vh(z)+\overline{J_vg(z)}}{z}\right\}<\gamma,\ 1<\gamma\leq 2, v>-1, z\in U\right\},\right\}$$

where J_{ν} is the modified generalized Bernardi-Libera-Livingston operator (see [10]), defined as follows:

$$J_{v}f(z) = J_{v}h(z) + \overline{J_{v}g(z)};$$

4) Putting $q = 2, s = 1, \alpha_1 = 2, \alpha_2 = 1$ and $\beta_1 = 2 - \mu (\mu \neq 2, 3, ...)$ in (6), the class $\overline{S}_{H_{2,1}}([2,1;2-\mu];\gamma)$ reduces to the class $\mathcal{F}_H(\mu;\gamma)$

$$=\left\{f\in S_H:\Re\left\{\frac{\Omega_z^\mu h(z)+\overline{\Omega_z^\mu g(z)}}{z}\right\}<\gamma,\ 1<\gamma\leq 2, \mu\neq 2,3,\ldots,z\in U\right\},$$

where Ω_z^{μ} is the modified Srivastava-Owa fractional derivative operator (see [12]), defined as follows:

$$\Omega_z^{\mu} f(z) = \Omega_z^{\mu} h(z) + \overline{\Omega_z^{\mu} g(z)};$$

5) Putting $q = 2, s = 1, \alpha_1 = \mu (\mu > 0), \alpha_2 = 1$ and $\beta_1 = \lambda + 1 (\lambda > -1)$ in (6), the class $\overline{S}_{H_{2,1}}([\mu, 1; \lambda + 1]; \gamma)$ reduces to the class $\overline{\mathcal{E}}_H(\mu, \lambda; \gamma) =$

$$\left\{f \in S_H: \mathfrak{R}\left\{\frac{I_{\mu,\lambda}h(z) + \overline{I_{\mu,\lambda}g(z)}}{z}\right\} < \gamma, \ 1 < \gamma \leq 2, \mu > 0, \lambda > -1, z \in U\right\},\right\}$$

where $I_{\lambda,\mu}$ is the modified Choi-Saigo-Srivastava operator (see [5]), defined as follows:

$$I_{\mu,\lambda}f(z) = I_{\mu,\lambda}h(z) + \overline{I_{\mu,\lambda}g(z)};$$

6) Putting $q = 2, s = 1, \alpha_1 = 2, \alpha_2 = 1$ and $\beta_1 = k + 1(k > -1)$ in (6), the class $\overline{S}_{H_{2,1}}([2,1;k+1];\gamma)$ reduces to the class $\overline{A}_H(k;\gamma)$

$$=\left\{f\in S_{H}:\Re\left\{\frac{I_{k}h(z)+\overline{I_{k}g(z)}}{z}\right\}<\gamma,\ 1<\gamma\leq 2, k>-1, z\in U\right\},$$

where I_k is the modified Noor integral operator (see [11]), defined as follows:

$$I_k f(z) = I_k h(z) + \overline{I_k g(z)};$$

7) Putting q = 2, s = 1, $\alpha_1 = c$ (c > 0), $\alpha_2 = \lambda + 1$ ($\lambda > -1$) and $\beta_1 = a$ (a > 0) in (6), the class $\overline{S}_{H_{2,1}}([c, \lambda + 1; a]; \gamma)$ reduces to the class $\overline{F}_H(c, a, \lambda; \gamma)$

$$= \left\{ f \in S_H : \Re \left\{ \frac{I^{\lambda}(a,c)h(z) + \overline{I^{\lambda}(a,c)g(z)}}{z} \right\} < \gamma, \ 1 < \gamma \le 2, c > 0, \lambda$$

$$> -1, a > 0, z \in U \right\},$$

where $I^{\lambda}(a,c)$ is the modified Cho-Kwon-Srivastava operator (see [4]), defined as follows:

$$I^{\lambda}(a,c) f(z) = I^{\lambda}(a,c) h(z) + \overline{I^{\lambda}(a,c) g(z)}.$$

2. Coefficient estimates

Unless otherwise mentioned, we shall assume in the reminder of this paper that, the parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s are positive real numbers, $1 < \gamma \le 2, z \in U$ and $\Psi_n(\alpha_1)$ is defined by (5).

Theorem 2.1. Let $f = h + \overline{g}$ be such that h(z) and g(z) given by (2). Furthermore, let

$$\sum_{n=2}^{\infty} \Psi_n(\alpha_1) |a_n| + \sum_{n=1}^{\infty} \Psi_n(\alpha_1) |b_n| \le \gamma - 1.$$
 (7)

Then f(z) is sense-preserving, harmonic univalent in U and $f(z) \in S_{H_{q,s}}([\alpha_1]; \gamma)$. Proof. If $z_1 \neq z_2$, then

$$\left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| \ge 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| = 1 - \left| \frac{\sum_{n=1}^{\infty} b_n (z_1^n - z_2^n)}{(z_1 - z_2) + \sum_{n=2}^{\infty} a_n (z_1^n - z_2^n)} \right|$$

$$> 1 - \frac{\sum_{n=1}^{\infty} n |b_n|}{1 - \sum_{n=2}^{\infty} n |a_n|}$$

$$\ge 1 - \frac{\frac{\Psi_n(\alpha_1)}{\gamma - 1} |b_n|}{\frac{\Psi_n(\alpha_1)}{\gamma - 1} |a_n|} \ge 0,$$

which proves univalence. Note that f(z) is sense-preserving in U. This is because

$$\left| h'(z) \right| \ge 1 - \sum_{n=2}^{\infty} n |a_n| |z|^{n-1}$$

$$> 1 - \sum_{n=2}^{\infty} n |a_n| \ge \sum_{n=2}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |a_n|$$

$$\ge \sum_{n=1}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |b_n| \ge \sum_{n=1}^{\infty} n |b_n|$$

$$> \sum_{n=1}^{\infty} n |b_n| |z^{n-1}| \ge |g'(z)|.$$

Now we will show that $f(z) \in S_{H_{q,s}}([\alpha_1]; \gamma)$. We only need to show that if (7) holds then the condition (6) is satisfied. Using the fact that $Re\{w\} < \gamma$ if and only if $|1-w| < |w-(2\gamma-1)|$, it suffices to show that

$$\left|\frac{\frac{H_{q,s}(\alpha_1)h(z)+\overline{H_{q,s}(\alpha_1)g(z)}}{z}-1}{\frac{z}{H_{q,s}(\alpha_1)h(z)+\overline{H_{q,s}(\alpha_1)g(z)}}-(2\gamma-1)}\right|<1.$$

We have

$$\left| \frac{\frac{H_{q,s}(\alpha_1)h(z) + \overline{H_{q,s}(\alpha_1)g(z)}}{z} - 1}{\frac{H_{q,s}(\alpha_1)h(z) + \overline{H_{q,s}(\alpha_1)g(z)}}{z} - (2\gamma - 1)} \right| = \left| \frac{\sum_{n=2}^{\infty} \Psi_n(\alpha_1)a_nz^{n-1} + \sum_{n=1}^{\infty} \Psi_n(\alpha_1)\overline{b_nz^{n-1}}}{2(\gamma - 1) - \sum_{n=2}^{\infty} \Psi_n(\alpha_1)a_nz^{n-1} + \sum_{n=1}^{\infty} \Psi_n(\alpha_1)\overline{b_nz^{n-1}}} \right|$$

$$\leq \frac{\sum\limits_{n=2}^{\infty} \Psi_{n}(\alpha_{1}) |a_{n}| |z|^{n-1} + \sum\limits_{n=1}^{\infty} \Psi_{n}(\alpha_{1}) |b_{n}| |z|^{n-1}}{2(\gamma - 1) - \sum\limits_{n=2}^{\infty} \Psi_{n}(\alpha_{1}) |a_{n}| |z|^{n-1} - \sum\limits_{n=1}^{\infty} \Psi_{n}(\alpha_{1}) |b_{n}| |z|^{n-1}} \\ \leq \frac{\sum\limits_{n=2}^{\infty} \Psi_{n}(\alpha_{1}) |a_{n}| + \sum\limits_{n=1}^{\infty} \Psi_{n}(\alpha_{1}) |b_{n}|}{2(\gamma - 1) - \sum\limits_{n=2}^{\infty} \Psi_{n}(\alpha_{1}) |a_{n}| - \sum\limits_{n=1}^{\infty} \Psi_{n}(\alpha_{1}) |b_{n}|},$$

which is bounded above by 1 by using (7). This completes the proof of Theorem 2.1.

The harmonic univalent functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} \frac{\gamma - 1}{\Psi_n(\alpha_1)} x_n z^n + \sum_{n=1}^{\infty} \frac{\gamma - 1}{\Psi_n(\alpha_1)} \overline{y_n \overline{z}^n},$$
 (8)

where $\sum\limits_{n=2}^{\infty}|x_n|+\sum\limits_{n=1}^{\infty}|y_n|=1$, show that the coefficient bound given by (7) is sharp. It is worthy to note that the function of the form (8) belongs to the class $S_{H_{q,s}}([\alpha_1];\gamma)$ for all $\sum\limits_{n=2}^{\infty}|x_n|+\sum\limits_{n=1}^{\infty}|y_n|\leq 1$ because coefficient inequality (7) holds.

Theorem 2.2. A function f(z) of the form (3) is in the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ if and only if

$$\sum_{n=2}^{\infty} \Psi_n(\alpha_1) |a_n| + \sum_{n=1}^{\infty} \Psi_n(\alpha_1) |b_n| \le \gamma - 1.$$
 (9)

Proof. Since $\overline{S}_{H_{q,s}}([\alpha_1];\gamma) \subset S_{H_{q,s}}([\alpha_1];\gamma)$, we only need to prove the "only if" part of this theorem. To this end, for functions f(z) of the form (3), we notice that the condition

$$\Re\left\{\frac{H_{q,s}(\alpha_1)h(z)+\overline{H_{q,s}(\alpha_1)g(z)}}{z}\right\}<\gamma,$$

i.e.

$$\Re\left\{1+\sum_{n=2}^{\infty}\Psi_{n}\left(\alpha_{1}\right)\left|a_{n}\right|z^{n-1}+\sum_{n=1}^{\infty}\Psi_{n}\left(\alpha_{1}\right)\left|b_{n}\right|\overline{z^{n-1}}\right\}<\gamma.$$

Letting $z \to 1^-$ along the real axis, we obtain the inequality (9). This completes the proof of Theorem 2.

Remark 2.3. Putting q = 2, s = 1, $\alpha_1 = 2$ and $\alpha_2 = \beta_1 = 1$ in Theorems 2.1 and 2.2, we obtain the result obtained by Dixit and Porwal [7, Theorem 2.1].

3. Distortion theorem

Theorem 3.1. Let the function f(z) given in (3) belong to the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$. Then for |z| = r < 1, we have

$$(1 - |b_1|)r - \frac{\gamma - 1 - |b_1|}{\Psi_2(\alpha_1)}r^2 \le |f(z)| \le (1 + |b_1|)r + \frac{\gamma - 1 - |b_1|}{\Psi_2(\alpha_1)}r^2 \tag{10}$$

for $|b_1| \le \gamma - 1$. The results are sharp with equality for the functions f(z) defined by

$$f(z) = z + b_1 \overline{z} + \frac{\gamma - 1 - b_1}{\Psi_2(\alpha_1)} \overline{z}^2$$
 (11)

and

$$f(z) = z - b_1 \bar{z} - \frac{\gamma - 1 - b_1}{\Psi_2(\alpha_1)} z^2.$$
 (12)

Proof. We only prove the right-hand inequality. The proof for the left-hand inequality is similar and will be omitted. Since

$$f(z) = z + \sum_{n=2}^{\infty} \Psi_n(\alpha_1) a_n z^n + \sum_{n=1}^{\infty} \Psi_n(\alpha_1) \overline{b_n z^n},$$

then

$$|f(z)| \le (1+|b_1|)r + \sum_{n=2}^{\infty} (|a_n|+|b_n|)r^n \le (1+|b_1|)r + \sum_{n=2}^{\infty} (|a_n|+|b_n|)r^2 =$$

$$= (1+|b_1|)r + \frac{\gamma-1}{\Psi_2(\alpha_1)} \sum_{n=2}^{\infty} \frac{\Psi_2(\alpha_1)}{\gamma-1} (|a_n|+|b_n|)r^2$$

$$\leq (1+|b_{1}|)r + \frac{\gamma-1}{\Psi_{2}(\alpha_{1})} \sum_{n=2}^{\infty} \frac{\Psi_{n}(\alpha_{1})}{\gamma-1} (|a_{n}|+|b_{n}|) r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{\gamma-1-|b_{1}|}{\Psi_{2}(\alpha_{1})} r^{2}.$$

The functions f(z) given by (11) and (12), respectively, for $|b_1| \le \gamma - 1$ show that the bounds given in Theorem 3.1 are sharp.

4. Extreme points

Theorem 4.1. Let f(z) be given by (3). Then $f(z) \in \overline{S}_{H_{a,s}}([\alpha_1]; \gamma)$ if and only if

$$f(z) = \sum_{n=1}^{\infty} (\mu_n h_n(z) + \eta_n g_n(z)),$$
 (13)

where $h_1(z) = z$,

$$h_n(z) = z + \frac{\gamma - 1}{\Psi_n(\alpha_1)} z^n \quad (n = 2, 3, ...)$$
 (14)

and

$$g_n(z) = z + \frac{\gamma - 1}{\Psi_n(\alpha_1)} \overline{z^n} \quad (n = 1, 2, \dots),$$
(15)

 $\mu_n \geq 0, \eta_n \geq 0, \sum_{n=1}^{\infty} (\mu_n + \eta_n) = 1$. In particular, the extreme points of the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ are $\{h_n\}$ and $\{g_n\}$, respectively.

Proof. Suppose that

$$f(z) = \sum_{n=1}^{\infty} \left(\mu_n h_n(z) + \eta_n g_n(z)\right) = z + \sum_{n=2}^{\infty} \frac{\gamma - 1}{\Psi_n(\alpha_1)} \mu_n z^n + \sum_{n=1}^{\infty} \frac{\gamma - 1}{\Psi_n(\alpha_1)} \eta_n \overline{z^n}.$$

Then

$$\begin{split} &\sum_{n=2}^{\infty} \frac{\Psi_{n}\left(\alpha_{1}\right)}{\gamma - 1} \left(\frac{\gamma - 1}{\Psi_{n}\left(\alpha_{1}\right)} \mu_{n}\right) + \sum_{n=1}^{\infty} \frac{\Psi_{n}\left(\alpha_{1}\right)}{\gamma - 1} \left(\frac{\gamma - 1}{\Psi_{n}\left(\alpha_{1}\right)} \eta_{n}\right) \\ &= \sum_{n=2}^{\infty} \mu_{n} + \sum_{n=1}^{\infty} \eta_{n} = 1 - \mu_{1} \leq 1 \end{split}$$

and so $f(z) \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$.

Conversely, if $f(z) \in \overline{S}_{H_{\alpha,s}}([\alpha_1]; \gamma)$, then

$$|a_n| \le \frac{\gamma - 1}{\Psi_n(\alpha_1)} \ (n \ge 2)$$

and

$$|b_n| \leq \frac{\gamma - 1}{\Psi_n(\alpha_1)} \ (n \geq 1).$$

Setting

$$\mu_n = \frac{\Psi_n(\alpha_1)}{\gamma - 1} |a_n| \quad (n = 2, 3, \dots)$$

and

$$\eta_n = \frac{\Psi_n(\alpha_1)}{\gamma - 1} |b_n| \quad (n = 1, 2, \dots).$$

Since
$$0 \le \mu_n \le 1$$
 $(n = 2, 3, ...)$ and $0 \le \eta_n \le 1$ $(n = 1, 2, ...)$, $\mu_1 = 1 - \sum_{n=2}^{\infty} \mu_n + 1$

 $\sum_{n=1}^{\infty} \eta_n \ge 0$, then, we can see that f(z) can be expressed in the form (13). This completes the proof.

5. Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic functions.

For harmonic functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} |a_n| z^n + \sum_{n=1}^{\infty} |b_n| \overline{z^n}$$
(16)

and

$$F(z) = z + \sum_{n=2}^{\infty} |A_n| z^n + \sum_{n=1}^{\infty} |B_n| \overline{z^n},$$
(17)

the convolution of f and F is given by

$$(f*F)(z) = f(z)*F(z) = z + \sum_{n=2}^{\infty} |a_n A_n| z^n + \sum_{n=1}^{\infty} |b_n B_n| \overline{z^n}.$$
 (18)

Using this definition, the next theorem shows that the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ is closed under convolution.

Theorem 5.1. For $1 < \gamma \le \lambda \le 2$, let $f(z) \in \overline{S}_{H_{q,s}}([\alpha_1]; \lambda)$, where f(z) is given by (16) and $F \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$, where F(z) is given by (17). Then $f * F \in \overline{S}_{H_{q,s}}([\alpha_1]; \lambda) \subset \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$.

Proof. We wish to show that the coefficients of f * F satisfy the required condition given in Theorem 2.2. For $f \in \overline{S}_{H_{q,s}}([\alpha_1]; \lambda)$ we note that $|a_n| \le 1$ and $|b_n| \le 1$. Now, for the convolution function f * F we obtain

$$\begin{split} &\sum_{n=2}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\lambda - 1} \left| a_n A_n \right| z^n + \sum_{n=1}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\lambda - 1} \left| b_n B_n \right| \overline{z^n} \\ &\leq \sum_{n=2}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\lambda - 1} \left| A_n \right| z^n + \sum_{n=1}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\lambda - 1} \left| B_n \right| \overline{z^n} \\ &\leq \sum_{n=2}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\gamma - 1} \left| A_n \right| z^n + \sum_{n=1}^{\infty} \frac{\Psi_n\left(\alpha_1\right)}{\gamma - 1} \left| B_n \right| \overline{z^n} \\ &\leq 1. \end{split}$$

Therefore
$$f * F \in \overline{S}_{H_{q,s}}([\alpha_1]; \lambda) \subset \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$$
.

Now we show that the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ is closed under convex combinations of its members.

Theorem 5.2. The class $\overline{S}_{H_{as}}([\alpha_1]; \gamma)$ is closed under convex combination.

Proof. For i = 1, 2, 3, ..., let $f_i \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$, where f_i is given by

$$f_i = z + \sum_{n=2}^{\infty} |a_{n_i}| z^n + \sum_{n=1}^{\infty} |b_{n_i}| \overline{z^n}.$$

Then by using Theorem 2.2, we have

$$\sum_{n=2}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |a_{n_i}| z^n + \sum_{n=1}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |b_{n_i}| \overline{z}^n \le 1.$$
 (19)

For $\sum_{i=1}^{\infty} t_i = 1$, $0 \le t_i \le 1$, the convex combination of f_i may be written as

$$\sum_{i=1}^{\infty} t_i f_i(z) = z + \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{n_i}| \right) z^n + \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{n_i}| \right) \overline{z^n}.$$
 (20)

Then by (19), we have

$$\sum_{n=2}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} \left(\sum_{i=1}^{\infty} t_i |a_{n_i}| \right) + \sum_{n=1}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} \left(\sum_{i=1}^{\infty} t_i |b_{n_i}| \right)$$

$$= \sum_{i=1}^{\infty} t_i \left(\sum_{n=2}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |a_{n_i}| + \sum_{n=1}^{\infty} \frac{\Psi_n(\alpha_1)}{\gamma - 1} |b_{n_i}| \right)$$

$$\leq \sum_{i=1}^{\infty} t_i = 1.$$

This is the condition required by (7) and so $\sum_{i=1}^{\infty} t_i f_i(z) \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$.

6. A family of integral operators

Theorem 6.1. Let the function f(z) defined by (1) be in the class $\overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$ and let c be a real number such that c > -1. Then the function F(z) defined by

$$F(z) = \frac{c+1}{z^c} \int_{0}^{z} t^{c-1} h(t) dt + \frac{c+1}{z^c} \int_{0}^{z} t^{c-1} g(t) dt \quad (c > -1)$$
 (21)

also belongs to the class $\overline{S}_{H_{a,s}}([\alpha_1]; \gamma)$.

Proof. Let the function f(z) be defined by (1). Then from the representation (21) of F(z), it follows that

$$F(z) = z + \sum_{n=2}^{\infty} d_n z^n + \sum_{n=1}^{\infty} \zeta_n \overline{z^n},$$

where

$$d_n = \left(\frac{c+1}{c+n}\right)|a_n|$$
 and $\zeta_n = \left(\frac{c+1}{c+n}\right)|b_n|$.

Therefore, we have

$$\begin{split} &\sum_{n=2}^{\infty} \Psi_n\left(\alpha_1\right) d_n + \sum_{n=1}^{\infty} \Psi_n\left(\alpha_1\right) \zeta_n \\ &= \sum_{n=2}^{\infty} \Psi_n\left(\alpha_1\right) \left(\frac{c+1}{c+n}\right) |a_n| + \sum_{n=1}^{\infty} \Psi_n\left(\alpha_1\right) \left(\frac{c+1}{c+n}\right) |b_n| \\ &\leq \sum_{n=2}^{\infty} \Psi_n\left(\alpha_1\right) |a_n| + \sum_{n=1}^{\infty} \Psi_n\left(\alpha_1\right) |b_n| \leq (1-\alpha) \,, \end{split}$$

since $f(z) \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$. Hence, by Theorem 2.2, $F(z) \in \overline{S}_{H_{q,s}}([\alpha_1]; \gamma)$. This completes the proof.

Remark 6.2. Specializing the parameters $q; s; \alpha_1, \dots, \alpha_q$ and β_1, \dots, β_s in the above results, we obtain the corresponding results for the corresponding classes defined in the introduction.

REFERENCES

- [1] R. A. Al-Khal, Goodman-Ronning-type harmonic univalent functions based on Dziok-Srivastava operator, Appl. Math. Sci. 5 (12) (2011), 573–584.
- [2] H. A. Al-Kharsani R. A. Al-Khal, *Univalent harmonic functions*, J. Inequal. Pure and Appl. Math. 8 (2) (2007), 1–8.
- [3] B.C. Carlson D.B. Shaffer, *Starlike and prestarlike hypergeometric functions*, J. Math. Anal. Appl. 15 (1984), 737–745.
- [4] N. E. Cho O. S. Kwon H. M. Srivastava, *Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators*, J. Math. Anal. Appl. 292 (2004), 470–483.
- [5] J. H. Choi M. Saigo H. M. Srivastava, *Some inclusion properties of a certain family of integral operators*, J. Math. Anal. Appl. 276 (2002), 432–445.
- [6] J. Clunie T. Shell-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3–25.
- [7] K. K. Dixit S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math. 41(3) (2010), 261–269.
- [8] J. Dziok H. M. Srivastava, *Classes of analytic functions with the generalized hypergeometric function*, Appl. Math. Comput. 103 (1999), 1–13.
- [9] J. Dziok H. M. Srivastava, *Certain subclasses of analytic functions associated with the generalized hypergeometric function*, Integral Transform. Spec. Funct. 14 (2003), 7–18.
- [10] R. J. Libera, *Some classes of regular univalent functions*, Proc. Amer. Math. Soc. 16 (1969), 755–758.
- [11] K. I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999), 71–80.
- [12] S. Owa H. M. Srivastava, *Univalent and starlike generalized hypergeometric functions*, Canad. J. Math. 39 (1987), 1057–1077.
- [13] S. Ruscheweyh, *New criteria for univalent functions*, Proc. Amer. Math. Soc. 49 (1975), 109–115.

M. K. AOUF
Department of Mathematics
Faculty of Science,
Mansoura University
Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

A. O. MOSTAFA

Department of Mathematics Faculty of Science, Mansoura University Mansoura 35516, Egypt e-mail: adelaeg254@yahoo.com

A. SHAMANDY

Department of Mathematics
Faculty of Science,
Mansoura University
Mansoura 35516, Egypt
e-mail: shamandy16@hotmail.com

E. A. ADWAN

Department of Mathematics Faculty of Science, Mansoura University Mansoura 35516, Egypt e-mail: eman.a2009@yahoo.com