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CLASSIFICATION OF BINARY SYSTEMATIC CODES
OF SMALL DEFECT

ALBERTO RAVAGNANI

In this paper non-trivial non-linear binary systematic AMDS codes
are classified in terms of their weight distributions, employing only ele-
mentary techniques. In particular, we show that their length and minimum
distance completely determine the weight distribution.

1. Introduction

Let q be a prime power and let Fq denote the finite field with q elements. A
(non-linear) code of length n ∈ N≥1 over the field Fq is a subset C ⊆ Fn

q with at
least two elements. We omit the adjective non-linear for the rest of the paper.
A code C ⊆ Fn

q is said to be linear if it is a vector subspace of Fn
q. Define the

Hamming distance on Fn
q by d : Fn

q×Fn
q→ N with

d(v,w) := |{1≤ i≤ n : vi 6= wi}|,

where v = (v1, ...,vn) and w = (w1, ...,wn). The minimum distance d(C) of a
code C ⊆ Fn

q is the integer

d(C) := min{d(v,w) : v,w ∈C,v 6= w}.

A code of length n, |C| codewords and minimum distance d is said to be of
parameters [n, |C|,d]. The weight of a vector v∈Fn

q is the integer wt(v) := |{1≤
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i≤ n : vi 6= 0}|, where v = (v1, ...,vn). Let C⊆ Fn
q be a code containing zero. For

any i ∈ N such that 0 ≤ i ≤ n we denote by Wi(C) the number of codewords in
C having weight exactly i. The collection {Wi(C)}0≤i≤n is said to be the weight
distribution of C, and the Wi(C)’s are called weights. The following bound is
well-known ([11], Theorem 1).

Proposition 1.1 (Singleton bound). Let C ⊆ Fn
q be a code of minimum distance

d. Then |C| ≤ qn−d+1.

Definition 1.2. A code C ⊆ Fn
q which attains the Singleton bound is said to be

an MDS codes (MDS stands for Maximum Distance Separable). A code C⊆ Fn
q

with minimum distance d and cardinality qn−d is said to be an AMDS code
(AMDS stands for Almost MDS).

Hence, AMDS codes are codes that almost reach the Singleton bound. They
have been introduced and studied for the first time in [1].

The remainder of the paper is organized as follows. Section 2 contains some
preliminary results on the parameters of MDS and AMDS binary codes. We
introduce systematic codes in Section 3, where we also classify binary system-
atic AMDS codes with respect to their parameters. In Section 4 we prove that
length and minimum distance completely determine the weight distribution of
such codes, and compute them explicitly.

2. Preliminaries

First, as an application of the well-known Hamming bound (see [9], Theorem
1.1.47), we prove powerful restrictions on the size of MDS and AMDS codes.

Proposition 2.1. Let C⊆ Fn
q be a code of minimum distance d ≥ 3 and |C|= qk

words.

1. If C is an MDS code, then k ≤ q−1.

2. If C is an AMDS code, then k ≤ q2 +q−2.

Proof. Set s(C) := n− d− k+ 1, so that s(C) = 0 if C is MDS, and s(C) = 1
if C is AMDS. Remove from the codewords of C the last d− 3 components,
obtaining a code, say D, of length n− d + 3, minimum distance at least 3, and
|C|= qk codewords. Applying the Hamming bound to D we get

qn−d+1−s(C) [1+(n−d +3)(q−1)]≤ qn−d+3.

Straightforward computations give the thesis.
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The following classification of binary MDS codes is a well-known result in
coding theory (see for instance [7], Problem 5.32). Another proof using different
techniques can be found in [5].

Theorem 2.2 (Classification of binary MDS codes). Let C ⊆ Fn
2 be any MDS

code of minimum distance d. Then, up to traslation, C is one of the following
MDS codes.

1. The n-times repetition code, with d = n≥ 3.

2. The parity-check code of the code Fk
2, k = n−1.

3. The code Fn
2.

Proposition 2.1 and Theorem 2.2 will be employed in the following sections
to determine the possible parameters and weight distributions of binary system-
atic AMDS codes.

Definition 2.3. Codes C,D over a finite field Fq are said to be P-equivalent if
they have the same parameters, i.e., [n(C), |C|,d(C)] = [n(D), |D|,d(D)]. Codes
C,D over Fq and containing zero are said to be W-equivalent if they have the
same length and the same weight distribution.

Remark 2.4. Notice that if C and D are linear W -equivalent codes, then they
are also P-equivalent. For non-linear codes containing zero, this result is not
true in general (see Example 2.5).

Example 2.5. The two binary codes

{00000,11001,00111} , {00000,10011,11001}

contain the zero codeword, have the same weight distribution, and different min-
imum distances.

3. Parameters of binary systematic AMDS codes

Here we study binary systematic AMDS codes providing a classification in
terms of their parameters. Let us briefly recall the definition of systematic code.

Definition 3.1. Let n be a positive integer and q a prime power. A code C ⊆ Fn
q

is said to be systematic if there exists a function ϕ : Fk
q→ Fn−k

q such that:

1. ϕ(0) = 0,

2. C = {(v,ϕ(v)) : v ∈ Fk
q}.
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The function ϕ is a systematic encoding function. A code C as in the definition
has qk codewords.

Remark 3.2. Notice that condition 1. is not always required in the definition of
systematic code in the literature. On the other hand, up to a translation, we can
always assume that 1. holds without loss of generality.

Systematic codes turn out to be very useful in the applications (see [10] and
[2] among others) and powerful bounds on their parameters have been recently
discovered (see e.g. [3]).

We study first binary systematic AMDS codes of minimum distance one and
two, providing a characterization.

Proposition 3.3. A code C ⊆ Fn
2 of minimum distance d = 1 and 2k codewords

(k≥ 1) is systematic and AMDS if and only if there exists a function ψ : Fk
2→ F2

with the following properties:

(a) ψ(0) = 0,

(b) ψ is not the parity-check function,

(c) C = {(v,ψ(v)) : v ∈ Fk
2}.

As a consequence, for any n≥ 2, there are 22n−1−1−1 such codes.

Proof. Assume that C is systematic and AMDS. Let ψ := ϕ , the encoding func-
tion of Definition 3.1. We clearly have ψ(0) = 0. By contradiction, assume
that ϕ is the parity-check function. Consider two vectors v,w ∈ Fk

2 such that
d(v,w) = 1. We have wt(v) 6≡ wt(w) (mod 2) and d((v,ϕ(v)),(w,ϕ(w))) = 2.
This proves that the minimum distance of C is two, a contradiction. Now as-
sume that ψ : Fk

2 → F2 satisfies the hypothesis. We need to prove that the
code C := {(v,ψ(v)) : v ∈ Fk

2} is AMDS. By contradiction, assume that C is
not AMDS. Since d(C) trivially satisfies 1 ≤ d(C) ≤ 2, C has 2k elements and
length k+1, we have that C is an MDS code. This contradicts Theorem 2.2.

Proposition 3.4. The following facts hold.

1. A code C ⊆ Fn
2 of minimum distance d = 2 and 2k elements (k ≥ 2) is

systematic and AMDS if and only if there exists a function ψ : Fk
2 → F2

2
such that:

(a) ψ(0) = 0,

(b) ψ(v) 6= ψ(w) for any v,w ∈ Fk
2 such that d(v,w) = 1,

(c) C = {(v,ψ(v)) : v ∈ Fk
2}.
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2. A subset C ⊆ Fn
2 is an AMDS systematic code with two elements if and

only if it is of the form {0,(1,v)} with n≥ 2, v ∈ Fn−1
2 and wt(v) = n−2.

Proof. If C is systematic and AMDS, let ψ := ϕ , the encoding function of Def-
inition 3.1. Properties (a), (b) and (c) are easily checked. On the other hand,
assume that ψ : Fk

2→ F2
2 satisfies (a), (b), (c). By (a), the code C := {(v,ψ(v)) :

v ∈ Fk
2} is systematic. By (b), the code C has not minimum distance one. By the

Singleton bound, we have d(C) ∈ {2,3}. If C has minimum distance three, then
it is an MDS code. On the other hand, Theorem 2.2 states that a binary MDS
code of parameters [k+2,2k,3] does not exist (k≥ 2). Hence d(C) = 2 and C is
AMDS. The last part of the claim is immediate.

Now we focus on the P-classification of binary systematic AMDS codes
with minimum distance at least three. We start by proving that the size of any
such a code has to be very small.

Lemma 3.5. Let C be a binary systematic AMDS code of minimum distance
d ≥ 3 and length n. Then k := n− d ∈ {1,2,3,4}. Moreover, if k ∈ {2,3,4},
then d ∈ {3,4}.

Proof. Proposition 2.1 gives k ∈ {1,2,3,4}. If k ∈ {2,3}, then the Plotkin
bound ([9], Theorem 1.1.45) implies d ∈ {3,4}. If k = 4, then the same bound
gives d ∈ {3,4,5}. The case k = 4 and d = 5 is ruled out by the Hamming bound
([9], Theorem 1.1.47).

Theorem 3.6 (P-classification). Let C be a binary systematic AMDS code of
length n and minimum distance d. Then (n,d) is one of the following pairs:

(a) (n,1), with n≥ 3,

(b) (n,2) with n≥ 4,

(c) (d +1,d) with d ≥ 1,

(d) (5,3),

(e) (6,4),

(f) (6,3),

(g) (7,4),

(h) (7,3),

(i) (8,4).

Moreover, for any such a pair (n,d) there exists a binary systematic AMDS code
of length n and minimum distance d.

Proof. Assume that (n,d) are the length and the minimum distance of a bi-
nary systematic AMDS code. Combining Proposition 3.3, Proposition 3.4 and
Lemma 3.5 we easily see that (n,d) must be one of the pairs in the list.
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We need to show that, for any pair (n,d) in the list, there exists a binary
systematic AMDS code with length n and minimum distance d. Proposition 3.3
and Proposition 3.4 produce examples of binary systematic AMDS codes with
the parameters of (a), (b) and (c). Notice that, for any n≥ 5 and d ≥ 3 odd, the
parity-check code of a code with length n and minimum distance d has length
n+1 and minimum distance d +1. As a consequence, it is enough to prove the
theorem for the pairs (5,3), (6,3) and (7,3). For each tern [5,22,3], [6,23,3]
and [7,24,3] we give in Table 1 a generator matrix of a binary linear systematic
code having these parameters. We point out that the code of parameters [7,24,3]
in the table is the Hamming code H(q = 2,r = 3) (see [8], page 23).

[n,2k,d] → [5,22,3] [6,23,3] [7,24,3]

Generator
matrix →

[
0 1 0 1 1

1 0 1 0 1

] 
0 0 1 0 1 1

0 1 0 1 0 1

1 0 0 1 1 0




1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


Table 1: Binary systematic codes of parameters [5,22,3], [6,23,3] and [7,24,3]

4. Weight distributions of binary systematic AMDS codes

Here we focus on the W -classification of binary systematic AMDS codes of
minimum distance at least three and more than two codewords. By Lemma 3.5,
it is enough to study the weight distributions of codes of parameters (n,d) ∈
{(5,3),(6,4),(6,3),(7,4),(7,3),(8,4)}. We will treat the pairs (5,3) and (6,4)
by using a computational approach (the computations take only a few seconds
on a common laptop), and the other cases theoretically. The following lemma is
proved by exhaustive research.

Lemma 4.1. The weight distribution of any binary systematic AMDS code of
length n and minimum distance d, with (n,d) ∈ {(5,3),(6,3)}, depends only on
n and d, and it is given in Table 2. Moreover, any such a code is linear.

Now we focus on the other pairs (n,d) ∈ {(6,4),(7,4),(7,3),(8,4)} from
a theoretical viewpoint. We notice that exhaustive search does not produce any
result in a resonable time on a common computer when analyzing the cases
(n,d) = (7,3) and (n,d) = (8,4). Let us first recall the definition of weight
distribution of a code.
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Values of (n,d) Non-zero weights of any binary systematic code
C with length n and minimum distance d

(5,3) W0(C) = 1, W3(C) = 2, W4(C) = 1

(6,3) W0(C) = 1, W3(C) = 4, W4(C) = 3

Table 2: Partial W -classification of binary systematic AMDS codes.

Definition 4.2. Let C ⊆ Fn
q be a code over a finite field Fq. For any integer i ∈

{0,1, ...,n} define the integer Bi(C) by |C| ·Bi(C) := |{(v,w)∈C2 : d(v,w) = i}|.
The collection {Bi(C)}n

i=0 is called the distance distribution of C.

Remark 4.3. In the notation of Definition 4.2, if C is a linear code then its
weight distribution and its distance distribution agree, i.e., Wi(C) = Bi(C) for
any i ∈ {0,1, ...,n}.

Lemma 4.4. A binary systematic AMDS code C of length n = 7 and minimum
distance d = 3 has the following weight and distance distribution.

W0(C) = 1 W4(C) = 7 B0(C) = 1 B4(C) = 7

W1(C) = 0 W5(C) = 0 B1(C) = 0 B5(C) = 0

W2(C) = 0 W6(C) = 0 B2(C) = 0 B6(C) = 0

W3(C) = 7 W7(C) = 1 B3(C) = 7 B7(C) = 1

Proof. We clearly have |C| = 24 = 16, and so the parameters of C attain the
Hamming bound ([9], Theorem 1.1.47). Such a code is said to be a perfect
code (see [8], Chapter 6 and [4], Chapter 11). By [8], Theorem 37 at page 182
and the following remark, C has the same weight distribution of the well-known
Hamming code H(q = 2,r = 3) of parameters [7,24,3] (see [8], pag. 23). The
weight distribution of this simple linear code is well-known.

The following result is immediate.

Lemma 4.5. Let n be a positive integer and let v,w∈Fn
2. Then d(v,w)=wt(v)+

wt(v)−2v ·w, where v ·w = |{1≤ i≤ n : vi = wi = 1}|. In particular, the integer
wt(v)−wt(w) is odd if and only if d(v,w) is odd.

Theorem 4.6 (W -classification). Any binary systematic AMDS code of mini-
mum distance at least three and cardinality at least four has exactly one of the
weight distributions listed in Table 3. Moreover, each of those weight distribu-
tion corresponds to a binary systematic AMDS code.
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[n,2k,d]→ [5,22,3] [6,22,4] [6,23,3] [7,23,4] [7,24,3] [8,24,4]

W0(C) 1 1 1 1 1 1

W1(C) 0 0 0 0 0 0

W2(C) 0 0 0 0 0 0

W3(C) 2 0 4 0 7 0

W4(C) 1 3 3 7 7 14

W5(C) 0 0 0 0 0 0

W6(C) - 0 0 0 0 0

W7(C) - - - 0 1 0

W8(C) - - - - - 1

Table 3: Weight distribution of any binary systematic AMDS codes C with min-
imum distance at least three and cardinality at least four.

Proof. Combining Theorem 3.6, Lemma 4.1 and Lemma 4.4, we see that it is
enough to show that any binary systematic AMDS code of parameters (n,d) ∈
{(6,4),(7,4),(8,4)} is the parity-check code of an AMDS systematic code of
parameters (n− 1,d − 1). Let C be a binary systematic AMDS code of pa-
rameters (n,d) ∈ {(6,4),(7,4),(8,4)}. Denote by E the code obtained by re-
moving from the codewords of C the last component. Notice that E is either
an MDS code, or a systematic AMDS code. By Theorem 2.2, the first case is
ruled out. Hence E is a systematic AMDS code of parameters (n− 1,d− 1) ∈
{(5,3),(6,3),(7,3)} (respectively). Clearly, there exists a function f : E → F2
such that C = {(e, f (e) : e∈E)}. We will prove that f is the parity-check funtion
on E, examining the three cases separately.

1. Assume (n,d) = (6,4), so that E has length n−1 = 5 and minimum dis-
tance d− 1 = 3. We clearly have f (0) = 0. By Lemma 4.1, E has two
codewords of weight three and one of weight four. Let w ∈ E of weight
three. Since C has minimum distance 4, f (w) = 1. Let w′ be the codeword
of E of weight 4, and fix w ∈ E of weight 3. By Lemma 4.5, we have
d(w′,w) ∈ {3,5}. If d(w′,w) = 5 = n− 1, then w = (1,1,1,1,1)−w′,
which contradicts wt(w) = 4. So d(w′,w) = 3. Since C has minimum
distance 4 and f (w) = 1, we must have f (w′) = 0.

2. Assume (n,d) = (7,4), so that E has length n−1 = 6 and minimum dis-
tance d−1 = 3. Again, f (0) = 0. By Lemma 4.1, E has four codewords
of weight 3 and three of weight 4. Since C has minimum distance 4, we
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have f (w) = 1 for any w ∈ E of weight 3. Now fix a codeword w ∈ E
of weight 3 and let w′ ∈ E be any codeword of weight 4. By Lemma
4.5, we have d(w′,w) ∈ {3,5}. The case d(w′,w) = 5 is ruled out by Re-
mark 4.3. Indeed, Lemma 4.1 states that E is linear, and so its distance
distribution agrees with its weigh distribution (given in Lemma 4.1). As
a consequence, there are no codewords in E whose Hamming distance
is five. Since C has minimum distance 4 and f (w) = 1, we must have
f (w′) = 0.

3. Assume (n,d) = (8,4), so that E has length n− 1 = 7 and minimum
distance d − 1 = 3. We clearly have f (0) = 0. Since d(C) = 4, we
get f (w) = 1 for any w ∈ E of weight 3. Let w′ ∈ E be any codeword
of weight 4 and w ∈ E a fixed codeword of weight 3. By Lemma 4.5
and Lemma 4.4, we have d(w′,w) ∈ {3,7}. The case d(w′,w) = 7 is
easily ruled out. Since f (w) = 1 and C has minimum distance 4, we
have f (w′) = 0. Finally, fix a codeword w′ ∈ E of weight 4. We have
d(w′,1111111︸ ︷︷ ︸

7

) = 3. Since f (w′) = 0, it is clear that f (1111111︸ ︷︷ ︸
7

) = 1.

Remark 4.7. We notice that the W -classification of Theorem 4.6 may be ob-
tained also in the following way. Define an isometry on Fn

q as a map i : Fn
q→ Fn

q
preserving the Hamming distance between elements of Fn

q. Codes C,D ⊆ Fn
q

are said to be isometric if D = i(C) for some isometry i. If we combine [6],
Theorem 7.17 and [6], Table 7.2, we can easily see that for any pair (n,d) ∈
{(5,3),(6,4),(6,3),(7,4),(8,3),(8,4)} there exists a unique, up to isometry,
binary code of length n, minimum distance d, and 2n−d codewords. Since
isometric codes have the same distance distribution, we deduce that the W -
classification of binary systematic AMDS codes must produce a unique equiv-
alence class for each pair (n,d) in the list. As a consequence, it is enough to
compute the weight distribution of just one code for each pair in order to get
the whole W -classification. On the other hand, we notice that the proof here
proposed uses elementary techniques, while the classification of [6] refers to
non-trivial results of design and group theory.
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