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A REMARK ON λ -INTERTWINING HYPONORMAL
OPERATORS.

VASILE LAURIC

We extend a result concerning λ -commuting normal operators with
empty point spectrum. More precisely, we prove that for a hyponormal
operator T with empty point spectrum for which there exists a Hilbert-
Schmidt operator K such that T K = λKT ∗+µK for some λ ,µ ∈ C, im-
plies K = 0.

LetH be a complex, separable, infinite dimensional Hilbert space, and let L(H)
denote the algebra of all linear bounded operators on H, let K denote the two-
sided ideal of all compact operators on H, and let C2(H) denote the Hilbert-
Schmidt class. An operator T in L(H) is called normal if T ∗T = T T ∗, hy-
ponormal if T ∗T ≥ T T ∗, class A if |T |2 ≤ |T 2|, (where |T | = (T ∗T )

1
2 ), and

paranormal if ||T x||2 ≤ ||T 2x|| · ||x|| for all x ∈ H. It is obvious or easy to see
that each of these classes is included into the next one in the order that they
were enumerated. The “λ -commuting” property has its history related to the
Invariant Subspace Problem of operators on Hilbert space. It was proved by V.
Lomonosov [6] that any nontrivial operator T (i.e. that is not a scalar multiple
of the identity) that commutes with a nonzero operator K has a nontrivial hy-
perinvariant subspace. Subsequently, the result was improved by Lomonosov
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and many other authors to operators that λ -commute, that is T K = λKT, see
for instance [3], [4], [7].

In [5] it was proved the following result concerning λ -commuting normal
operators.

Theorem 1.1 ([5]). If T ∈ L(H) is a normal operator with empty point spec-
trum and K is a compact operator such that T K = λKT for some complex
number λ , then K = 0.

In [1], the authors attempted to extend several results involving λ -commu-
ting operators.

Theorem 1.2 ([1]). If T ∈ L(H) is a paranormal operator with empty point
spectrum and K is a finite rank operator such that T K = λKT for some complex
number λ , then K = 0.

In [1] it was also provided an example that shows that certain generalization
of the above result is impossible. Namely, let l2 be the Hilbert space consisting
of all square-sumable complex sequences, let T be the unilateral shift, let |λ |>
1, and let K be the diagonal operator with entries ( 1

|λ | ,
1
|λ |2 , . . .). One can easily

verify that the unilateral shift is hyponormal, therefore paranormal, K is trace
class, therefore compact, and T K = λKT.

Recall that a nontrivial invariant subspace for an operator T ∈ L(H) is a
closed subspaceM, (0) 6=M 6=H, such that TM⊆M.

Theorem 1.3. If T1, T ∗2 ∈ L(H) are hyponormal operators such that T1 and
T2 have no nontrivial invariant subspace and K is a Hilbert-Schmidt operator
satisfying T1K = λKT2 +µK for some complex numbers λ and µ, then K = 0.

Proof. The idea of the proof was first used by Furuta in [2], and for complete-
ness we include some calculations. It is well known that C2(H) is a Hilbert
space with the scalar product

〈X ,Y 〉= tr(XY ∗).

For S1, S2 ∈ L(H), let ∆S1,S2 : C2(H)→C2(H) be the operator defined by

∆S1,S2(X) = S1X−XS2.

An elementary calculation shows that the adjoint operator of ∆S1,S2 is

(∆S1,S2)
∗(X) = S∗1X−XS∗2,

that is (∆S1,S2)
∗ = ∆S∗1,S

∗
2
, and consequently, its self-commutator

[(∆S1,S2)
∗,∆S1,S2 ](X) = [S∗1,S1]X−X [S∗2,S2],
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where [S∗,S] denotes the self-commutator of S, i.e., S∗S−SS∗.
Let ∆0 = ∆T1,λT2 with T1,T2 as in the hypothesis of the theorem and λ ∈ C.

The calculations above imply

〈[∆∗0,∆0](X),X〉= tr([∆∗0,∆0](X) ·X∗) = tr(D1XX∗)−|λ |2 · tr(X(D2)X∗)

= tr(X∗D1X)−|λ |2tr(XD2X∗),

where Di = [T ∗i ,Ti], i = 1,2.
Since D1 ≥ 0 and D2 ≤ 0, tr(X∗D1X) ≥ 0 and tr(XD2X∗) ≤ 0 and conse-

quently the operator ∆0 is a hyponormal operator on C2(H).
Thus, if K ∈ C2(H) such that T1K = λKT2+µK, that is (∆0−µ)K = 0, then

(∆0−µ)∗K = 0,

or equivalently T ∗1 K = λKT ∗2 + µK, which further implies that K∗(T1− µ) =
λT2K∗. Multiplying this last equality to right side by K and using again

(T1−µ)K = λKT2,

one obtains

λT2K∗K = K∗(T1−µ)K = K∗λKT2 = λK∗KT2.

If λ = 0 and K 6= 0, then T1K = µK, which contradicts the hypothesis that T1
has no nontrivial invariant subspace. If λ 6= 0, then the above equality implies
that T2 commutes with |K|2 which contradicts the hypothesis that T2 has no
nontrivial invariant subspace except when K = 0.

Using similar circle of ideas as in the above proof, one can prove the fol-
lowing.

Corollary 1.4. If T ∈ L(H) is hyponormal operators such that T has empty
point spectrum and K is a Hilbert-Schmidt operator satisfying

T K = λKT ∗+µK

for some complex numbers λ and µ, then K = 0.
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