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VECTOR BUNDLES OF LOW RANK ON A
MULTIPROJECTIVE SPACE

DAMIAN M. MAINGI

In this paper we construct vector bundles over a multiprojective space
and study their properties. We first set out to establish the existence of
monads on a multiprojective space Pn × Pm, for all integers n,m > 0.
Then, we study the vector bundles associated to these monads.

1. Introduction

The aim the paper is to contribute to a deeper understanding of indecomposable
vector bundles on algebraic varieties. In this context, one of the most interesting
problems deals with the existence of indecomposable rank r vector bundles on
algebraic varieties. First observe that the difficulty in constructing non-splitting
vector bundles on algebraic varieties increases when the difference between the
rank of the bundle and the dimension of the variety increases. Indeed, the most
interesting problem is to find indecomposable vector bundles of low rank com-
paring with the dimension of the ambient space. In this context we have the
famous Hartshorne’s conjecture concerning the non-existence of indecompos-
able rank 2 vector bundles on n-dimensional projective spaces for n ≥ 7. This
conjecture has been one of the main motivations for a great activity in the study
of low rank vector bundles on projective spaces. On 3-dimensional projective
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spaces there are plenty of examples of indecomposable rank 2 vector bundles.
But, in spite of many efforts, in the last thirty years very few indecomposable
rank two vector bundles on n-dimensional projective spaces, n > 3 are known
e.g. [2, 8, 9]. More precisely, in positive characteristic p 6= 2, there are no known
indecomposable rank 2 vector bundles on Pn for n > 4. In positive character-
istic, N. Mohan Kumar [9] constructed many indecomposable rank 2 bundles
on P4. In characteristic zero, the Horrocks-Mumford bundle [5] is essentially
the only known indecomposable rank 2 bundle on P4. We will construct vector
bundles of low rank via monads and analyze their properties.

Monads appear in many contexts within algebraic geometry and they are
very useful in construction of vector bundles with prescribed invariants like
rank, determinants, chern class etc. Monads were first introduced by Horrocks
who showed that all vector bundles E on P3 could be obtained as the cohomol-
ogy bundle of a monad of the following kind:

0 // ⊕iOP3(ai)
A // ⊕ jOP3(b j)

B // ⊕nOP3(cn) // 0

where A and B are matrices whose entries are homogeneous polynomials of
degrees b j−ai and cn−b j respectively for some integers i, j,n.

The paper consists of 4 sections. In the first two sections we give the nec-
essary terms to put a reader into context. In the third section we establish the
existence of monads by explicit construction of the maximal rank maps on a
multiprojective space. In the fourth section we have the main result i.e. we
construct indecomposable low rank vector bundles on a multiprojective space.
Throughout the paper when we talk of X we mean a nonsingular projective va-
riety over an algebraically closed field k of characteristic zero.

2. Preliminaries

Definition 2.1. Let X be a nonsingular projective variety. A monad on X is a
complex of vector bundles:

0 // A
α // B

β
// C // 0

with α injective and β surjective.



VECTOR BUNDLES OF LOW RANK ON A MULTIPROJECTIVE SPACE 33

Definition 2.2. A monad as defined above has a display

0

��

0

��

0 // A //K //

��

E //

��

0

0 // A
α
// B //

β

��

Q //

��

0

C

��

C

��

0 0

From which we have:

(i) K = kernel(β )

(ii) Q = cokernel(β )

(iii) E = ker(β )/im(α)

(iv) rank(E ) = rank(B) - rank(A ) - rank(C )

(v) ct(E ) = ct(B) · ct(A )−1 · ct(C )−1 and particularly
c1(E ) = c1(B)− c1(A )− c1(C ).

Definition 2.3 ([7]). Let X be a nonsingular projective variety, let L be a very
ample invertible sheaf, and V,W,U be finite dimensional k-vector spaces. A
linear monad on X is a short complex of sheaves,

0 // V ⊗L −1 α //W ⊗OX
β
// U⊗L // 0

where α ∈ Hom(V,W )⊗H0L is injective and β ∈ Hom(W,U)⊗H0L is sur-
jective.

Definition 2.4 ([7]). A torsion free sheaf E on X is said to be a linear sheaf on
X if it can be represented as the cohomology sheaf of a linear monad i.e. E =
ker(β )/im(α), moreover rank(E) = w− u− v, where w = dimW , v = dimV
and u = dimU .
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Note 2.5. Let X be a non-singular irreducible projective variety of dimension d
and let H be an ample line bundle on X . For a torsion free sheaf F on X one
sets:
degH F := c1(F) ·Hd−1, µH(F) := c1(F)Hd−1

rk(F) and PF(m) := χ(F⊗OX(mH)).

Definition 2.6. Let X be an algebraic variety and let E be a torsion free sheaf
on X . Then E is L -stable if every subsheaf F ↪→ E satisfies µL (F)< µL (E),
where L is an ample invertible sheaf.

Let us now turn our attention to our main ambient variety X = Pn×Pm. We
denote by 〈h, t〉 the generators of Pic(X).
Denote by OX(a,b) := p1

∗OPn(a)⊗ p2
∗OPm(b), where p1 and p2 are natural

projections from X to Pn and Pm respectively.
For any line bundle L = OX(a,b) on X and a vector bundle E, we will write
E(a,b) = E⊗OX(a,b) and (a,b) := a[h×Pn] + b[Pn× t] to represent its cor-
responding divisor. The normalization of E on X with respect to L is defined
as follows: Set d = degL (OX(1,0)), since degL (E(−kE ,0)) = degL (E)−2k ·
rank(E) there’s a unique integer kE := dµL (E)/de such that 1− d.rank(E) ≤
degL (E(−kE ,0))≤ 0. The twisted bundle EL−norm := E(−kE ,0) is called the
L -normalization of E. Finally we define the linear functional δL on Z2 as
δL (p1, p2) := degLOX(p1, p2)
The following is a generalization of the Hoppe Criterion of stability.

Proposition 2.7 ([6]). Let X be a polycyclic variety with Picard number 2, let
L be an ample line bundle and let E be a rank r > 1 holomorphic vector bundle
over X.
If H0((

∧q E)L−norm(p1, p2)) = 0 for 1≤ q≤ r−1 and every (p1, p2)∈Z2 such
that δL ≤ 0 then E is L -stable.

Definition 2.8. A vector bundle E is said to be decomposable if it is isomor-
phic to a direct sum E1⊕E2 of two non-zero vector bundles, otherwise E is
indecomposable.

Definition 2.9. A vector bundle E on X is said to be simple if its only endomor-
phisms are the constants i.e. Hom(E,E) = k which is equivalent to h0(X ,E⊗
E∗) = 1.

Remark 2.10. a. A simple vector bundle is necessarily indecomposable ([2]).
b. If a vector bundle is stable then it is simple.

Proposition 2.11 ([1]). Let 0 → E → F → G → 0 be an exact sequence of
vector bundles. Then we have the following exact sequences involving exterior
and symmetric powers:

(a) 0−→
q∧

E −→
q∧

F −→
q−1∧

F⊗G−→ ·· · −→ F⊗Sq−1G−→ SqG−→ 0
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(b) 0−→ SqE −→ Sq−1E⊗F −→ ·· · −→ E⊗
q−1∧

F −→
q∧

F −→
q∧

G−→ 0

Proposition 2.12 (Künneth Formula). Let X = Pn×Pm then it holds:

Hr(X ,OX(c,d))∼=
⊕

p+q=r
H p(Pn,OPn(c))⊗Hq(Pm,OPm(d))

for integers p,q,r,c,d.

Lemma 2.13. If q1+q2 > 0 then hp(OX(−q1,−q2)
⊕k) = 0 where X = Pn×Pm

and for 0≤ p < dim(X)−1, k a non negative integer

Proof. By the Künneth and Bott formulae.

Lemma 2.14 ([6]). Let A and B be vector bundles canonically pulled back from
A′ on Pn and B′ on Pm then

Hq(
s∧
(A⊗B)) = ∑

k1+···+kq

{
s⊕

i=1

[
Σ

s
j=0Σ

ki
m=0Hm(∧ j(A))⊗Hki−m(∧s− j(B))

]}
.

3. Existence of Monads

The goal of this section is to prove the existence of two types of monads. One
will be constructed using an ample line bundle as a building piece and the other
using a different kind of line bundle as a building piece. We start by recalling
the existence and classification of linear monads on Pn given by Fløystad in [3].

Lemma 3.1. Let k ≥ 1. There exists monads on Pk whose maps are matrices of
linear forms,

0 // Oa
Pk(−1) α // Ob

Pk

β
// Oc

Pk(1) // 0

if and only if at least one of the following is fulfilled;
(1) b≥ 2c+ k−1 , b≥ a+ c and
(2) b≥ a+ c+ k

Proof. [3].

In the following Theorem we get our first existence result.
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Theorem 3.2. Let X = Pn×Pm and let L =OX(ρ,σ) be an ample line bundle
on X. Denote by N = h0(OX(ρ,σ))− 1. Let α,β ,γ be positive integers such
that at least one of the following conditions holds
(1) β ≥ 2γ +N−1, and β ≥ α + γ ,
(2) β ≥ α + γ +N.
Then, there exists a linear monad on X of the form

0 //Oα
X (−ρ,−σ)

A //Oβ

X
B //Oγ

X(ρ,σ) //0

Proof. For any ample invertible sheaf L =OX(ρ,σ) we have an embedding

i∗ : X = Pn×Pm ↪→ P(H0(X ,OX(ρ,σ)))∼= P(
n+ρ

ρ )·(m+σ

σ )−1

such that i∗(OX(1))'L .
Suppose that one of the conditions is satisfied. Then, by Fløystad[3], there exists
a linear monad

0 // Oα

PN (−1) A // Oβ

PN
B // Oγ

PN (1) // 0

on PN .
Notice that

A ∈ Hom(Oα

PN (−1),Oβ

PN )∼= H0(PN ,OPN (1)αβ )

∼= H0(X ,L )αβ ∼= HomX(L
−1α

,Oβ

X )

B ∈ Hom(Oβ

PN ,Oγ

PN (1))∼= H0(PN ,OPN (1)βγ)∼= HomX(Oβ

X ,L
γ).

Thus, A and B induce a monad on X :

0 // L −1α Ā // Oβ

X
B̄ // L γ // 0

which proves what we want.

Note that for small cases it is not difficult to construct the matrices A and B
above explicitly. For instance, it can be done in the following case.

Corollary 3.3. Let X = Pn×Pm and L =OX(1,1). Denote by
N = h0(OX(1,1))− 1. Let α,β ,γ be positive integers such that at least one of
the following conditions holds
(1) β ≥ 2γ +N−1, and β ≥ α + γ ,
(2) β ≥ α + γ +N.
Then, there exists a linear monad on X of the form

0 // Oα
X (−1,−1) A // Oβ

X
B // Oγ

X(1,1) // 0
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Proof. Suppose β = 2γ +N − 1, and β = α + γ , that is equality on the first
condition. Then a monad of the form:

0−→Oα
X (−1,−1) A−→Oβ

X
B−→Oγ

X(1,1)−→0

exists where

B :=

 x0y0 · · · xiy j xi+1y j+1 · · · xayb
. . . . . . . . . . . .

x0y0 · · ·xiy j xi+1y j+1 · · · xayb


an r by 2r+m+n matrix and

A :=



xi+1y j+1 · · · xayb
. . . . . .

xi+1y j+1 · · · xayb

−x0y0 · · · −xiy j
. . . . . .

−x0y0 · · · −xiy j


a 2r+m+n by r+n+m matrix.

Now we are going to consider another kind of monad.

Lemma 3.4. Given four matrices f1, f2,g1 and g2 with f1 and f2 of order k by
n+ k, and g1 and g2 of order n+ k by k, as shown;

f1 =

 ya
n · · ·ya+nk

0

. .. . ..

ya
n · · ·ya+nk

0

 , f2 =

 xa
n · · ·xa+nk

0

. .. . ..

xa
n · · ·xa+nk

0



g1 =


xa+nk

0
...

. . . xa+nk
0

xa
n

. . .
...

xa
n

 , g2 =


ya+nk

0
...

. . . ya+nk
0

ya
n

. . .
...

ya
n

 ,

for any non-negative integer a, we define two matrices f and g as follows

f =
(

f1 − f2
)

and g =

(
g1
g2

)
.

Then we have:
(i) f ·g = 0 and
(ii) The matrices f and g have maximal rank
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Proof. (i) Since f1 ·g1 = f2 ·g2, then we have that

f ·g =
(

f1 − f2
)( g1

g2

)
=
(

f1g1 − f2g2
)
= 0

(ii) Notice that the rank of the two matrices drops if and only if all x0, ...,xn and
y0, ...,yn are zeros. Hence maximal rank.

Using the matrices given in the above lemma we are going to construct a monad.

Theorem 3.5. Let n and k be positive integers. Then there exists a rank 2n
vector bundle on X which is the cohomology of a linear monad on X = Pn×Pn

of the form;

M• : 0 // OX(−1,−1)k f
// OX(0,−1)n+k⊕OX(−1,0)n+k g

// OX(1,1)k // 0

Proof. The maps f and g in the monad are the matrices given in Lemma 3.4.
Notice that
f ∈ Hom(OX(−1,−1)k,OX(0,−1)n+k⊕OX(−1,0)n+k) and
g ∈ Hom(OX(0,−1)n+k⊕OX(−1,0)n+k,OX(1,1)k).
Hence by the above lemma they define the desired monad.

4. Main Results

Theorem 4.1. Any vector bundle E, given as the cohomology of a monad of the
form

M• : 0 // OX(−1,−1)k f
// OX(0,−1)n+k⊕OX(−1,0)n+k g

// OX(1,1)k // 0

where f and g are as defined on the previous page, is simple.

Proof. First of all consider the display of the monad M•,

0
��

OX(−1,−1)k

��

0 // K //

��

OX(0,−1)n+k⊕OX(−1,0)n+k // OX(1,1)k // 0

E
��

0
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where K is the Kernel of the map g. To prove that E is simple first, we are going
to prove that K is stable for some ample line bundle L .
Consider the ample line bundle L = OX(1,1) = O(L). Its class in Pic(X) =
〈[h×Pn], [Pn× t]〉 corresponds to the class 1 · [h×Pn]+1 · [Pn× t], where h and
t are hyperplanes of Pn with the intersection product induced by hn = 1 = tn and
hn+1 = 0 = tn+1.
Now from the display we get

c1(K) = c1(OX(0,−1)n+k⊕OX(−1,0)n+k)− c1(OX(1,1)k)

= (n+ k)(0,−1)+(n+ k)(−1,0)− k(1,1)

= (−n−2k,−n−2k).

Hence since L2n > 0, the degree of K is

degL K = (−n−2k)([h×Pn]+ [Pn× t]) · (1 · [h×Pn]+1 · [Pn× t])2n−1

=−(n+2k)L2n < 0.

Since degL K < 0, then (
∧q K)L−norm = (

∧q K) and it suffices by the general-
ized Hoppe Criterion (Proposition 2.7), to prove that h0(

∧q K(−p1,−p2)) = 0
for all 1≤ q≤ rank(K)−1 and p1 + p2 ≥ 0.
On twisting the horizontal exact sequence of the display of the monad by
OX(−p1,−p2) we get,

0→ K(−p1,−p2)→OX(−p1,−1− p2)
n+k⊕OX(−1− p1,−p2)

n+k

→OX(1− p1,1− p2)
k→ 0

and taking the wedge powers of the sequence (see Proposition 2.11 (a)) we have

0→
q∧

K(−p1,−p2)→
q∧
(OX(−p1,−1− p2)

n+k⊕OX(−1− p1,−p2)
n+k)

→
q−1∧

(OX(1−2p1,−2p2)
n+2k⊕OX(−2p1,1−2p2)

n+2k)→ ·· ·

Taking cohomology we have the injection:
0−→ H0(X ,

∧q K(−p1,−p2)) ↪→ H0(X ,
∧q(OX(−p1,−1− p2)

n+k

⊕OX(−1− p1,−p2)
n+k)).

Now H0(X ,
∧q(OX(−p1,−1− p2)

n+k⊕OX(−1− p1,−p2)
n+k)) = 0

by Lemma 2.14 which in turn implies that h0(
∧q K(−p1,−p2)) = 0 and thus K

is stable.
Let us now prove that E is simple.
The first step is to take the dual of the vertical short exact sequence to get

0 // E∗ // K∗ // OX(1,1)k // 0
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Tensoring by E we get

0 // E⊗E∗ // E⊗K∗ // E(1,1)k // 0

which implies that h0(X ,E⊗E∗)≤ h0(X ,E⊗K∗).
Now we dualize the horizontal sequence to get

0 // OX(−1,−1)k // OX(0,1)n+k⊕OX(1,0)n+k g
// K∗ // 0.

Now twisting by OX(−1,−1) and taking cohomology (for ease we will write
H i(OX(α,β )k) instead of H i(X ,OX(α,β )k)) and get

0−→H0(OX(−2,−2)k)−→H0(OX(−1,0)n+k)⊕H0(OX(0,−1)n+k)−→
−→H0(K∗(−1,−1))−→H1(OX(−2,−2)k)−→

−→H1(OX(−1,0)n+k)⊕H1(OX(0,−1)n+k)−→H1(K∗(−1,−1))−→
−→H2(OX(−2,−2)k)

from which we deduce H0(X ,K∗(−1,−1)) = 0 and H1(X ,K∗(−1,−1)) = 0.
Next, tensor the vertical sequence by K∗ to get

0 // K∗(−1,−1)k // K∗⊗K // K∗⊗E // 0

and taking cohomology we have

0 // H0(K∗(−1,−1)k) // H0(K∗⊗K) // H0(K∗⊗E) // H1(K∗(−1,−1)k)

But H1(K∗(−1,−1)k = 0 for n > 1.
This implies that h0(X ,K∗⊗K) = h0(X ,K∗⊗E). Since K is stable, it is

simple.
So, altogether we have: 1≤ h0(X ,E⊗E∗)≤ h0(X ,E⊗K∗) = h0(X ,K∗⊗K) = 1
and therefore E is simple.
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