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COEFFICIENT ESTIMATES OF BI-BAZILEVIC̆ FUNCTIONS
DEFINED BY SRIVASTAVA-ATTIYA OPERATOR

GANGADHARAN MURUGUSUNDARAMOORTHY

In this paper, we introduce and investigate two new subclasses of
the function class Σ of bi-univalent functions defined in the open unit
disk, which are associated with the generalized Srivastava-Attiya opera-
tor, satisfying subordinate conditions. Furthermore, we find estimates on
the Taylor-Maclaurin coefficients |a2| and |a3| for functions in these new
subclasses. Several (known or new) consequences of the results are also
pointed out.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form:

f (z) = z+
∞

∑
n=2

anzn, (1)

which are analytic in the open unit disk

U= {z : z ∈ C and |z|< 1}.
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Further denote by S, the class of all functions in A which are univalent in U.
Some of the important and well-investigated subclasses of the univalent function
class S include (for example) the class S∗(α) of starlike functions of order
α,(0 ≤ α < 1) in U and the class K(α) of convex functions of order α(0 ≤
α < 1) in U. It is well known (see [3, 4]) that every function f ∈ S has an
inverse f−1, defined by

f−1( f (z)) = z (z ∈ U)

and

f ( f−1(w)) = w
(
|w|< r0( f ); r0( f )=

1
4

)
,

where

g(w) = f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f (z) and f−1(z) are
univalent in U. Let Σ denote the class of bi-univalent functions in U given by
(1).

An analytic function f is subordinate to an analytic function g, written by
f (z)≺ g(z), provided there is an analytic function w defined on U with w(0) = 0
and |w(z)| < 1 satisfying f (z) = g(w(z)). Ma and Minda [23] unified various
subclasses of starlike and convex functions for which either of the quantity

z f ′(z)
f (z)

or 1+
z f ′′(z)

f ′(z)

is subordinate to a more general superordinate function. For this purpose, they
considered an analytic function φ with positive real part in the unit disk U,
φ(0) = 1,φ ′(0) > 0, and φ maps U onto a region starlike with respect to 1
and symmetric with respect to the real axis. The class of Ma-Minda starlike
functions consists of functions f ∈A satisfying the subordination z f ′(z)

f (z) ≺ φ(z).
Similarly, the class of Ma-Minda convex functions of functions f ∈A satisfying
the subordination 1+ z f ′′(z)

f ′(z) ≺ φ(z).
A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type

if both f and f−1 are respectively Ma-Minda starlike or convex. These classes
are denoted respectively by S∗

Σ
(φ) and KΣ(φ).In the sequel, it is assumed that

φ is an analytic function with positive real part in the unit disk U, satisfying
φ(0) = 1,φ ′(0)> 0, and φ(U) is symmetric with respect to the real axis. Such
a function has a series expansion of the form

φ(z) = 1+B1z+B2z2 +B3z3 + · · · , (B1 > 0). (3)
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The study of operators plays an important role in the geometric function
theory and its related fields. Many differential and integral operators can be
written in terms of convolution of certain analytic functions. It is observed that
this formalism brings an ease in further mathematical exploration and also helps
to understand the geometric properties of such operators better. The convolution
or Hadamard product of two functions f1, f2 ∈ A is denoted by f1 ∗ f2 and is
defined as

( f1 ∗ f2)(z) = z+
∞

∑
n=2

an,1an,2zn, (4)

where f1(z) = z+
∞

∑
n=2

an,1zn and f2(z) = z+
∞

∑
n=2

an,2zn.

We recall here a general Hurwitz-Lerch Zeta function Φ(z,s,a) defined in
[33] by

Φ(z,s,a) :=
∞

∑
n=0

zn

(n+a)s (5)

(a∈C\Z−0 ;s∈C,when |z|< 1;R(s)> 1 when |z|= 1) where, as usual, Z−0 :=
Z\{N}, (Z := {0,±1,±2,±3, . . .} and N := {1,2,3, . . .}). Several interesting
properties and characteristics of the Hurwitz-Lerch Zeta function Φ(z,s,a) can
be found in [7], and the references stated therein (see also [9, 20, 32]). Srivastava
and Attiya [32] (also see [2, 15]) introduced and investigated the linear operator:

J µ

b :A→A

defined in terms of the Hadamard product by

J µ

b f (z) = Gµ

b ∗ f (z) (6)

(z ∈ U;b ∈ C\{Z−0 }; µ ∈ C; f ∈ A), where, for convenience,

Gµ

b (z) := (1+b)µ [Φ(z,µ,b)−b−µ ] (z ∈ U). (7)

We recall here the following relationships (given earlier by [32]) which fol-
low easily by using (1), (6) and (7)

J µ

b f (z) = z+
∞

∑
n=2

(
1+b
n+b

)µ

anzn. (8)

Motivated essentially by the Srivastava-Attiya operator, Murugusundaramoor-
thy [24] introduced the generalized integral operator J m,k

µ,b given by

J m,k
µ,b f (z) = z+

∞

∑
n=2

Cm
n (b,µ,k)anzn. (9)
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where

Ψn =Cm
n (b,µ,k) = |

(
1+b
n+b

)µ m!(n+ k−2)!
(k−2)!(n+m−1)!

| (10)

and (throughout this paper unless otherwise mentioned) the parameters µ,b
are constrained as b ∈ C \ {Z−0 }; µ ∈ C,k ≥ 2 and m > −1. It is of interest
to note that J1,2

µ,b is the Srivastava-Attiya operator and Jm,k
0,b is the well-known

Choi-Saigo- Srivastava operator (see [21]). Suitably specializing the parameters
m,k,µ and b in J m,k

µ,b f (z) we can get various integral operators introduced by
Alexander [1]and Bernardi[6]Libera and Livingston[17, 18]. Further we get the
Jung-Kim-Srivastava integral operator [14] closely related to some multiplier
transformation studied by Flett [10].

Several authors have discussed various subfamilies of Bazilevic̆ functions
[29] of type λ from various perspective. They discussed it from the perspective
of convexity, inclusion theorem, radii of starlikeness, and convexity boundary
rotational problem, subordination just to mention few. The most amazing thing
is that, it is difficult to see any of this authors discussing the coefficient inequal-
ities, and coefficient bounds of these subfamilies of Bazilevic̆ function most
especially when the parameter λ is greater than one (λ is real).

Recently there has been triggering interest to study bi-univalent function
class Σ and obtained non-sharp coefficient estimates on the first two coefficients
|a2| and |a3| of (1). But the coefficient problem for each of the following Taylor-
Maclaurin coefficients:

|an| (n ∈ N\{1,2}; N := {1,2,3, · · ·}

is still an open problem (see [3–5, 16, 25, 34]). Many researchers (see [12,
13, 22, 27, 30, 31, 35, 36]) have recently introduced and investigated several
interesting subclasses of the bi-univalent function class Σ and they have found
non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.
Motivated by the earlier work of Deniz [11], in the present paper we introduce
new subfamilies of bi-Bazilevic̆ functions of the function class Σ, involving gen-
eralized integral operatorJ m,k

µ,b and find estimates on the coefficients |a2| and |a3|
for functions in the new subclass of the function class Σ. Several related classes
are also considered, and connection to earlier known (or new) results are made.

Definition 1.1. Let h : U−→ C be a convex univalent function in U such that

h(0) = 1 and ℜ
(
h(z)

)
> 0 (z ∈ U).

Suppose also that the function h(z) is given by

h(z) = 1+
∞

∑
n=1

Bnzn (z ∈ U). (11)
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A function f ∈ Σ given by (1) is said to be in the class Bm,k,β
Σ,µ,b (λ ,h) if the fol-

lowing conditions are satisfied:

eiβ

(
z1−λ (J m,k

µ,b f (z))′

[J m,k
µ,b f (z)]1−λ

)
≺ h(z)cosβ + isinβ (12)

and

eiβ

(
w1−λ (J m,k

µ,b g(w))′

[J m,k
µ,b g(w)]1−λ

)
≺ h(w)cosβ + isinβ (13)

where β ∈ (−π

2 , π

2 );λ ≥ 0;z,w ∈ U and the function g is given by (2).

Example 1.2. If we set h(z) = 1+Az
1+Bz ,−1≤ B < A≤ 1, then the class

Bm,k,β
Σ,µ,b (λ ,h)≡ B

m,k,β
Σ,µ,b (λ ,A,B) which is defined as f ∈ Σ,

eiβ

(
z1−λ (J m,k

µ,b f (z))′

[J m,k
µ,b f (z)]1−λ

)
≺ 1+Az

1+Bz
cosβ + isinβ ,

and

eiβ

(
w1−λ (J m,k

µ,b g(w))′

[J m,k
µ,b g(w)]1−λ

)
≺ 1+Aw

1+Bw
cosβ + isinβ ,

Example 1.3. If we set h(z) = 1+(1−2α)z
1−z , 0≤ α < 1 then the class

Bm,k,β
Σ,µ,b (λ ,h)≡ B

m,k,β
Σ,µ,b (λ ,α) which is defined as f ∈ Σ,

ℜ

[
eiβ

(
z1−λ (J m,k

µ,b f (z))′

[J m,k
µ,b f (z)]1−λ

)]
> α cosβ

and

ℜ

[
eiβ

(
w1−λ (J m,k

µ,b g(w))′

[J m,k
µ,b g(w)]1−λ

)]
> α cosβ

On specializing the parameters λ one can state the various new subclasses
of Σ as illustrated in the following examples.

Example 1.4. For λ = 0 and a function f ∈ Σ, given by (1) is said to be in the
class Bm,k,β

Σ,µ,b (h) if the following conditions are satisfied:

eiβ

(
z(J m,k

µ,b f (z))′

J m,k
µ,b f (z)

)
≺ h(z)cosβ + isinβ (14)
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and

eiβ

(
w(J m,k

µ,b g(w))′

J m,k
µ,b g(w)

)
≺ h(w)cosβ + isinβ (15)

where β ∈ (−π

2 , π

2 );z,w ∈ U and the function g is given by(2).

Example 1.5. For λ = 1 and a function f ∈ Σ, given by (1) is said to be in the
class Gm,k,β

Σ,µ,b (h) if the following conditions are satisfied:

eiβ
(
J m,k

µ,b f (z))′
)
≺ h(w)cosβ + isinβ (16)

and
eiβ
(
(J m,k

µ,b g(w))′
)
≺ h(w)cosβ + isinβ (17)

where β ∈ (−π

2 , π

2 );z,w ∈ U and the function g is given by (2).

It is of interest to note that for k = 2 and m = 1 with µ = 0, b = 0, the class
Bm,k,β

Σ,µ,b (λ ,h) reduces to the following new subclasses:

Example 1.6. For λ = 0 and β ∈ (−π

2 , π

2 ) a function f ∈ Σ, given by (1) is said
to be in the class B1,2,β

Σ,0,0 (0,h)≡S∗Σ(β ,h) if the following conditions are satisfied:

eiβ
(

z f ′(z)
f (z)

)
≺ h(z)cosβ + isinβ and eiβ

(
wg′(w)
g(w)

)
≺ h(w)cosβ + isinβ ,

where z,w ∈ U and the function g is given by (2).

Example 1.7. For λ = 1 and β ∈ (−π

2 , π

2 ), a function f ∈ Σ, given by (1) is
said to be in the class B1,2,β

Σ,0,0 (1,h) ≡ H∗Σ(β ,h) if the following conditions are
satisfied:

eiβ ( f ′(z)
)
≺ h(z)cosβ + isinβ and eiβ (g′(w))≺ h(w)cosβ + isinβ ,

where z,w ∈ U and the function g is given by (2)

Remark 1.8. As mentioned in Example 1.2, 1.3 we state some new analogous
subclasses Bm,k,β

Σ,µ,b (A,B); B
m,k,β
Σ,µ,b (α); Gm,k,β

Σ,µ,b (A,B); G
m,k,β
Σ,µ,b (α); S∗

Σ
(β ,A,B); S∗

Σ
(β ,α);

H∗
Σ
(β ,A,B) andH∗

Σ
(β ,α) for the classes defined in Examples 1.4 to 1.7 respectively

by setting h(z) = 1+Az
1+Bz , −1≤ B < A≤ 1, (or h(z) = 1+(1−2α)z

1−z , 0≤ α < 1).

In the following section we find estimates on the coefficients |a2| and |a3|
for functions in the bi-bazilevic function class Bm,k,β

Σ,µ,b (λ ,h) of the function class
Σ.

In order to derive our main results, we shall need the following lemmas:
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Lemma 1.9 (see [26]). If p ∈ P, then |pk| ≤ 2 for each k, where P is the family
of all functions p analytic in U for which R(p(z))> 0, where p(z) = 1+ p1z+
p2z2 + · · · for z ∈ U.

Lemma 1.10 (see [8, 28]). Let the function φ(z) given by φ(z) =
∞

∑
n=1

Bnzn,(z ∈

U) be convex in U.Suppose that the function h(z) given by h(z) =
∞

∑
n=1

hnzn,is

holomorphic in U.If h(z)≺ φ(z),(z ∈ U) then |hn| ≤ |B1|,(n ∈ N).

2. Coefficient Bounds for the Function Class Bm,k,
Σ,µ,b(β ,λ ,h)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions
in the bi-bazelvic class Bm,k

Σ,µ,b(β ,λ ,h).

Theorem 2.1. Let the function f (z) given by (1) be in the class Bm,k
Σ,µ,b(β ,λ ,h).

Then

|a2|5

√
2|B1|cosβ[

(λ −1)(λ +2)Ψ2
2 +2(λ +2)Ψ3

] (18)

and

|a3|5
|B1|cosβ

(λ +2)Ψ3
+
|B1|2 cos2 β

(1+λ )2Ψ2
2
. (19)

Proof. It follows from (12) and (13) that

eiβ

(
z1−λ (J m,k

µ,b f (z))′

[J m,k
µ,b f (z)]1−λ

)
= p(z)cosβ + isinβ (20)

and

eiβ

(
w1−λ (J m,k

µ,b g(w))′

[J m,k
µ,b g(w)]1−λ

)
= q(w)cosβ + isinβ , (21)

where the functions

p(z)≺ h(z) (z ∈ U) and q(w)≺ h(w) (w ∈ U)

are in the above-defined class P and have the following forms:

p(z) = 1+ p1z+ p2z2 + · · · (22)

and
q(w) = 1+q1w+q2w2 + · · · (23)
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respectively. Now, equating the coefficients in (20) and (21), we get

eiβ (1+λ )Ψ2a2 = p1 cosβ , (24)

eiβ
[
(λ −1)(λ +2)

2
Ψ

2
2a2

2 +(λ +2)Ψ3a3

]
= p2 cosβ (25)

−eiβ (λ +1)Ψ2a2 = q1 cosβ (26)

and

eiβ
[(

2(λ +2)Ψ3 +
(λ −1)(λ +2)

2
Ψ

2
2

)
a2

2− (λ +2)Ψ3a3

]
= q2 cosβ (27)

From (24) and (26), we find that

a2 =
p1 cosβe−iβ

(λ +1)Ψ2
=−q1 cosβe−iβ

(λ +1)Ψ2
, (28)

which implies
p1 =−q1. (29)

and
2(λ +1)2

Ψ
2
2a2

2 = (p2
1 +q2

1)cos2
β e−2iβ . (30)

Adding (25) and (27), by using (28) and (29), we obtain

eiβ [(λ −1)(λ +2)Ψ2
2 +2(λ +2)Ψ3

]
a2

2 = (p2 +q2)cosβ . (31)

Thus,

a2
2 =

(p2 +q2)cosβ[
(λ −1)(λ +2)Ψ2

2 +2(λ +2)Ψ3
]e−iβ . (32)

Applying Lemma 1.9 for the coefficients p2 and q2, we immediately have

|a2|2 =
2|B1|cosβ[

(λ −1)(λ +2)Ψ2
2 +2(λ +2)Ψ3

] . (33)

This gives the bound on |a2| as asserted in (18).
Next, in order to find the bound on |a3|, by subtracting (27) from (25), we

get
eiβ [2(λ +2)Ψ3a3−2(λ +2)Ψ3a2

2
]
= (p2−q2)cosβ . (34)

It follows from (28), (29) and (34) that

a3 =
(p2−q2)cosβ e−iβ

2(λ +2)Ψ3
+

(p2
1 +q2

1)cos2 β e−i2β

2(1+λ )2Ψ2
2

.
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Applying Lemma 1.9 once again for the coefficients p2 and q2, we readily get

|a3|5
|B1|cosβ

(λ +2)Ψ3
+
|B1|2 cos2 β

(1+λ )2Ψ2
2
.

This completes the proof of Theorem 2.1.

Putting λ = 0 in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let the function f (z) given by (1) be in the class Bm,k,β
Σ,µ,b (h). Then

|a2|5

√
|B1|cosβ

2Ψ3−Ψ2
2

(35)

and

|a3|5
|B1|cosβ

2Ψ3
+
|B1|2 cos2 β

Ψ2
2

. (36)

Putting λ = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.3. Let the function f (z) given by (1) be in the class Gm,k,β
Σ,µ,b (h). Then

|a2|5

√
|B1|cosβ

3Ψ3
(37)

and

|a3|5
|B1|cosβ

3Ψ3
+
|B1|2 cos2 β

4Ψ2
2

. (38)

Taking k = 2 and m = 1 with µ = 0, b = 0, in Corollary 2.2 and 2.3, we get
the following corollaries.

Corollary 2.4. Let the function f (z) given by (1) be in the class S∗
Σ
(β ,h). Then

|a2|5
√
|B1|cosβ (39)

and

|a3|5
|B1|cosβ

2
+ |B1|2 cos2

β . (40)

Corollary 2.5. Let the function f (z) given by (1) be in the classH∗
Σ
(β ,h). Then

|a2|5
√
|B1|cosβ

3
(41)

and

|a3|5
|B1|cosβ

3
+
|B1|2 cos2 β

4
. (42)
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3. Corollaries and Consequences

By setting h(z) = 1+Az
1+Bz ,−1≤ B < A≤ 1, in Theorem 2.1, we state the following

Theorem .

Theorem 3.1. Let the function f (z) given by (1) be in the class Bm,k,β
Σ,µ,b (λ ,A,B).

Then

|a2|5

√
2(A−B)cosβ[

(λ −1)(λ +2)Ψ2
2 +2(λ +2)Ψ3

] (43)

and

|a3|5
(A−B)cosβ

(λ +2)Ψ3
+

(A−B)2 cos2 β

(1+λ )2Ψ2
2

. (44)

Putting λ = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let the function f (z) given by (1) be in the class Bm,k,β
Σ,µ,b (A,B).

Then

|a2|5

√
(A−B)cosβ

2Ψ3−Ψ2
2

(45)

and

|a3|5
(A−B)cosβ

2Ψ3
+

(A−B)2 cos2 β

Ψ2
2

. (46)

Putting λ = 1 in Theorem 3.1, we have the following corollary.

Corollary 3.3. Let the function f (z) given by (1) be in the class Gm,k,β
Σ,µ,b (A,B).

Then

|a2|5

√
(A−B)cosβ

3Ψ3
(47)

and

|a3|5
(A−B)cosβ

3Ψ3
+

(A−B)2 cos2 β

4Ψ2
2

. (48)

Taking k = 2 and m = 1 with µ = 0, b = 0, in Corollary 3.2 and 3.3, we get
the following corollaries.

Corollary 3.4. Let the function f (z) given by (1) be in the class S∗
Σ
(β ,A,B).

Then
|a2|5

√
(A−B)cosβ (49)

and

|a3|5
(A−B)cosβ

2
+(A−B)2 cos2

β . (50)
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Corollary 3.5. Let the function f (z) given by (1) be in the class H∗
Σ
(β ,A,B).

Then

|a2|5
√

(A−B)cosβ

3
(51)

and

|a3|5
(A−B)cosβ

3
+

(A−B)2 cos2 β

4
. (52)

Further, by setting h(z) = 1+(1−2α)z
1−z , 0 ≤ α < 1 in Theorem 2.1 we get the

following result.

Theorem 3.6. Let the function f (z) given by (1) be in the class Bm,k,β
Σ,µ,b (λ ,α).

Then

|a2|5

√
4(1−α)cosβ[

(λ −1)(λ +2)Ψ2
2 +2(λ +2)Ψ3

] (53)

and

|a3|5
2(1−α)cosβ

(λ +2)Ψ3
+

4(1−α)2 cos2 β

(1+λ )2Ψ2
2

. (54)

Putting λ = 0 in Theorem 3.6, we have the following corollary.

Corollary 3.7. Let the function f (z) given by (1) be in the class Bm,k,β
Σ,µ,b (α).

Then

|a2|5

√
2(1−α)cosβ

2Ψ3−Ψ2
2

(55)

and

|a3|5
(1−α)cosβ

Ψ3
+

4(1−α)2 cos2 β

Ψ2
2

. (56)

Putting λ = 1 in Theorem 3.6, we have the following corollary.

Corollary 3.8. Let the function f (z) given by (1) be in the class Gm,k,β
Σ,µ,b (α).

Then

|a2|5

√
2(1−α)cosβ

3Ψ3
(57)

and

|a3|5
2(1−α)cosβ

3Ψ3
+

(1−α)2 cos2 β

Ψ2
2

. (58)

Taking k = 2 and m = 1 with µ = 0, b = 0, in Corollary 3.7 and 3.8, we get
the following corollaries.
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Corollary 3.9. Let the function f (z) given by (1) be in the class S∗
Σ
(β ,α). Then

|a2|5
√

2(1−α)cosβ (59)

and
|a3|5 (1−α)cosβ +4(1−α)2 cos2

β . (60)

Corollary 3.10. Let the function f (z) given by (1) be in the class H∗
Σ
(β ,α).

Then

|a2|5
√

2(1−α)cosβ

3
(61)

and

|a3|5
2(1−α)cosβ

3
+(1−α)2 cos2

β . (62)
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