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PROJECTIVE CURVES, HYPERPLANE SECTIONS
AND ASSOCIATED WEBS

EDOARDO BALLICO

An integral and non-degenerate curve C ⊂ Pr is said to be ordinary
(Gruson, Hantout and Lehmann) if the general hyperplane section H ∩C
of H is of maximal rank in H. Let g′(r,d) be the maximal integer such
that for every g∈ {0, . . . ,g′(r,d)} there is a smooth ordinary curve C⊂ Pr

with degree d and genus g. Here we discuss the relevance of old papers
to get a lower bound for g′(r,d). We prove that arithmetically Gorenstein
curves C⊂ Pr are ordinary only if either r = 2 or d = r+1 and ωC ∼=OC.
We prove that general low genus curves are ordinary.

1. Introduction

Let C ⊂ Pr be an integral and non-degenerate curve. Set d := deg(C) and let
k0(d,r) be the only positive integer such that

(r+k0(d,r)−1
r−1

)
≤ d <

(r+k0(d,r)
r−1

)
. In

[12] and [18] C is said to be ordinary if for a general hyperplane H ⊂ Pr the
set C∩H has maximal rank in H, i.e. for all t ∈ Z either h0(H,IC∩H(t)) = 0 or
h1(H,IC∩H(t))= 0, i.e. h0(H,IC∩H(t))= 0 if t ≤ k0(d,r) and h1(H,IC∩H(t))=
0 for all t > k0(d,r), i.e. h0(H,IC∩H(k0(d,r))) = 0 and h0(H,IC∩H(t)) =(r+t−1

r−1

)
− d for all t > k0(r,d), i.e. (by the Castelnuovo-Mumford lemma) if
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h0(H,IC∩H(k0(d,r))) = 0 and h0(H,IC∩H(k0(d,r)+ 1)) =
(r+k0(d,r)

r−1

)
− d. Set

π ′(r,d) := k0(d,r)d−
(r+k0(d,r)

r

)
+1. Gruson, Hantout and Lehmann proved that

pa(C)≤ π ′(r,d) if C is ordinary ([18, Théorème 1]). Let π ′′(r,d) be the maximal
integer g such that for all q ∈ {0, . . . ,g} there is an ordinary curve C ⊂ Pr with
degree d and arithmetic genus q. Let g′(r,d) be the maximal integer g such that
for all q∈ {0, . . . ,g} there is an ordinary smooth curve C⊂ Pr with degree d and
genus q. For any smooth curve C ⊂ Pr let NC denote the normal bundle of C.
Let C⊂ Pr be a smooth and non-degenerate curve such that h1(C,NC(−1)) = 0.
There is an ordinary curve C′ near C (and in particular with deg(C′) = deg(C)
and pa(C′) = pa(C)([32, Théorème 1.5] , [25, §II.3]; see Remark 3.3 for more
details). Moreover we may take C′ smooth, too. As an obvious corollary we get
that for any degree d ≥ r a general degree d smooth rational curve of Pr is ordi-
nary (see Remark 3.3). Let a(d,r) be the maximal integer ≥ 0 such that for all
0 ≤ g ≤ a(d,r) there is a smooth, connected and non-degenerate curve C ⊂ Pr

with h1(C,NC(−1)) = 0. It is known that a(d,r) ≥ 2d/(r− 2)+ o(d) if r ≥ 4
([6, Théorème 5 (2)]). This bound is asymptotically sharp (Remark 3.4). Upper
bounds and lower bounds for the integer a(d,3) are known and they asymp-
totically agree, i.e. a(d,3) = (

√
8/3)d3/2 +o(d3/2) ([32] (quoting unpublished

results due to Ellingsrud and Hirschowitz), [16, Theorems 4.10 and 5.6], [25,
II.3.7], [7]).

As far as we know the best result in P3 are the unpublished [34, Theorem
6.1] (which covers all the range A) and [16, Theorem 5.6] (which covers more
than half of the range A). Fix integers d ≥ 3 and k > 0 such that

(k+2
2

)
≤ d <(k+3

2

)
, i.e. such that k0(d,3) = k. Fix an integer g. The pair (d,g) is said to be

in the range A ([34], eq. (0.1.1), [35], eq. (0.1.1), [16], [7]) if

0≤ g≤ dk+1−
(

k+3
3

)
, (1)

i.e. if 0 ≤ g ≤ π ′(d,3). By [34, Theorem 6.1] or [16, Theorem 5.6] for all
(d,g) in the range A there is a smooth and connected curve C ⊂ Pr such that
deg(C) = d, pa(C) = g and h1(C,NC(−1)) = 0. Since such a curve C is ordinary
(Remark 3.3), [34, Theorem 6.1] and [16, Theorem 5.6] close the problem of the
existence for pairs (degree, genus) for integral (or for smooth) ordinary curves
in P3.

We feel that the picture is completely different if r ≥ 4 and that for each
r≥ 4 there are large families of integers d,g with 0≤ g≤ π ′(d,r) and such that
there is no integral, non-degenerate and ordinary curve C ⊂ Pr with deg(C) = d
and pa(C) = g (even allowing singular ordinary curves). We do not have explicit
examples. Certainly, if g is very small with respect to d, then the pair (d,g) is
realized by an ordinary curve of Pr (see Proposition 3.1 and Theorem 3.7). We
raise the following question.
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Question 1.1. Fix an integer r ≥ 4. Is π ′′(r,d)< π ′(r,d) and g′(r,d)< π ′(r,d)
if d� r?

If r < d < (r+1)r/2, then k0(d,r) = 1 and hence π ′(r,d) = d− r. The case
d < (r+1)r/2 of Theorem 3.7 gives g′(r,d) = π ′(r,d) if d < (r+1)r/2.

For any integral projective curve C ⊂ Pr the index of speciality e(C) of C
is the maximal integer e such that h1(C,OC(e)) > 0. We have e(C) < 0 if and
only if H1(C,OC) = 0. Since C is integral, we have e(C) < 0 if and only if C
is a smooth rational curve. We immediately check that e(C) =−2 if C is a line,
while e(C)=−1 if C is a smooth rational curve of degree≥ 2. We have e(C)= 0
if and only if pa(C)> 0 and h1(C,OC(1)) = 0, i.e. the embedding of C is non-
special. We recall that C is said to be arithmetically Gorenstein if it is arith-
metically Cohen-Macaulay ([29, Definition 1.2.2]) and ωC ∼= OC(e) for some
integer e (see [29, Proposition 4.1.1] for several equivalent definitions). Every
complete intersection is arithmetically Gorenstein. If r = 3 a curve is arithmeti-
cally Gorenstein if and only if it is a complete intersection ([29, Example 4.1.11
(c)], [30, Example 1.1.28 (b)]). If r ≥ 4 there are many arithmetically Goren-
stein curves which are not complete intersections. There is a complete list of all
degree, genera and minimal free resolutions of arithmetically Gorenstein curves
in P4, their Hilbert scheme is well understood and we may construct them algo-
rithmically, almost as in the case of complete intersection ([24], [13], [14], [22,
Theorem 2.6], [28]). Unfortunately, this class is not helpful for finding ordinary
curves. We prove the following result which extends [18, Théorèmes 5, 6], deal-
ing with complete intersections. We say that a curve C ⊂ Pr is linearly normal
if h1(IC(1)) = 0, i.e. if the restriction map ρC : H0(OPr(1))→H0(C,OC(1)) is
surjective. Hence arithmetically Cohen-Macaulay curves are linearly normal. If
C is non-degenerate, then C is linearly normal if and only if ρC is bijective.

Theorem 1.2. The only arithmetically Gorenstein integral ordinary curves C⊂
Pr are the plane curves (r = 2, any deg(C)≥ 2) and the linearly normal curves
C ⊂ Pr, r ≥ 3, with deg(C) = r + 1 and pa(C) > 0. The latter curves have
pa(C) = 1 and ωC ∼=OC (hence k0(deg(C),r) = 1).

If r ≥ 4 the curves are not a complete intersection, because if r ≥ 4 then
r+1 is not the product of r−1 integers ≥ 2. See Example 2.1 for a description
of all curves appearing in the statement of Theorem 1.2 when r ≥ 3.

As remarked in [12, page 200] this concept raises several interesting ques-
tions in commutative algebra and projective geometry (sometimes solved for
very different motivations).

(a) List all pairs (d,g) such that there is an ordinary integral curve C ⊂ P4

with degree d and arithmetic genus g. The same question for smooth
curves.



60 EDOARDO BALLICO

(b) List all pairs (d,g) ∈ N2 such that there is an ordinary arithmetically
Cohen-Macaulay curve (or an ordinary, smooth and arithmetically Cohen-
Macaulay curve) C ⊂ P4 with degree d and genus g.

(c) Fix an ordinary curve C ⊂ Pr, r ≥ 3. Let Pr∨ denote the set of all hyper-
planes of Pr. Set d := deg(C) and k := k0(d,r). Let B(C) be the set of
all H ∈ Pr∨ such that either h0(H,IC∩H(k))> 0 or h1(IC∩H(k+1))> 0.
This is the set of all bad hyperplanes for C and, at least if C is smooth, it
should be the exceptional set S of the web associated to C.

Concerning (b) we point out that [18, Théorème 4] gives all possible ordi-
nary arithmetically Cohen-Macaulay space curves. Let C⊂ Pr, r≥ 3, be any or-
dinary arithmetically Cohen-Macaulay curve. Set d := deg(C) and k := k0(d,r).
The Castelnuovo-Mumford lemma implies that the minimal free resolution E of
IC is very similar to the one listed in [18, Théorème 4]. There are non-negative
integers ai,bi, 1 ≤ i ≤ r, with the following property. E starts on the right with
OPr(k)a1 ⊕OPr(k + 1)b1 and then it continues with only two degrees in each
step, say OPr(k + i− 1)ai ⊕OPr(k + i)bi after i− 1 steps. It seems to be very
difficult to show that some string of integers ai,bi, 1≤ i≤ r, is realized by some
curve C.

Concerning (c) we point out that all the hyperplane sections of integral arith-
metically Cohen-Macaulay curves have the same postulation ([29, Corollary
1.3.5]). Hence one of them has maximal rank if and only if all hyperplane sec-
tions have maximal rank.

We work over an algebraically closed base field K. In section 3 we assume
char(K) = 0.

2. Proof of Theorem 1.2

Let C ⊂ Pr, r ≥ 3, be an integral and non-degenerate curve of degree r+ 1. If
pa(C) = 0, then C is a non-linearly normal smooth rational curve ([8, 4.7 (B)]).
The case pa(C)> 0 is described in [8, 4.7 (B)] (it has pa(C) = 1), but we recall
it as Example 2.1, because these curves are the ones arising in Theorem 1.2.

Example 2.1. Let Y be any integral projective curve with arithmetic genus 1.
Equivalently, take as Y either a smooth elliptic curve or a singular rational curve
with an ordinary node or an ordinary cusp as its only singularity. Since pa(C) =
1, we have h0(Y,ωY ) = 1. Since deg(ωY ) = 0 and Y is integral, we get ωY ∼=OY .
Let L be any line bundle on Y such that deg(L)= r+1. Since deg(L)> deg(ωY ),
we have h1(Y,L) = 0. Since deg(L) = r + 1 and pa(C) = 1, Riemann-Roch
for singular curves gives h0(Y,L) = r+ 1 ([31, page 130], [16, Definition 1.3],
[21, Theorem 1.3]). For any degree 2 zero-dimensional scheme Z ⊂ Y , we
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have h1(Y,IZ ⊗ L) = 0, because deg(IZ ⊗ L) = r− 1 > deg(ωY ). Hence L is
very ample. Let u : Y → Pr be the embedding induced by H0(Y,L). The curve
u(Y ) is an integral, non-degenerate and linearly normal curve with arithmetic
genus 1. Take another pair (Y ′,L′) as above and call u′ : Y ′→ Pr the embedding
associated to H0(Y ′,L′). Since u(Y ) and u′(Y ′) are linearly normal, they are
projectively equivalent if and only if there is an isomorphism f : Y ′→ Y such
that L′ ∼= f ∗(L). Now take any integral and non-degenerate curve C ⊂ Pr such
that deg(C) = r+ 1 and pa(C) > 0. Since pa(C) = 1 and C is linearly normal
([8, 4.7 (B)]), we are in the case just described with Y :=C and L :=OC(1).

For the classification of non-degenerate varieties X ⊂ Pr with deg(X) +
dim(X) = r + 2, see [24], [9], [10], [11]. For the classification of all curves
C ⊂ Pr with deg(C) = r+2, see [8].

For any integral and non-degenerate curve C ⊂ Pr let a(C) be the maximal
integer t such that h1(H,IC∩H(t))> 0 for a general hyperplane H ⊂ Pr.

Lemma 2.2. Let C ⊂ Pr, r ≥ 3, be an integral, non-degenerate and arithmeti-
cally Cohen-Macaulay curve. Let H ⊂ Pr be a general hyperplane. We have
e(C) = a(C)−1 and h1(C,OC(e(C))) = h1(H,IC∩H(a(C))).

Proof. Since dim(C) = 1 and r ≥ 3, the exact sequence

0→IC(t)→OPr(t)→OC(t)→ 0

gives h2(IC(t)) = h1(C,OC(t)) for all t ∈ Z (case r ≥ 4) or for all t ≥−3 (case
r = 3). Look at the exact sequence

0→IC(t−1)→IC(t)→IC∩H,H(t)→ 0 (2)

Since h1(IC(t)) = 0, (2) gives the exact sequence

0→ H1(H,IC∩H,H(t))→ H2(IC(t−1))→ H2(IC(t))

Since h1(C,OC(e(C)))> 0 and h1(C,OC(e(C)+1)) = 0, we get e(C) = a(C)−
1 and h1(C,OC(e(C))) = h1(H,IC∩H(a(C))).

Lemma 2.3. Let C ⊂ Pr be an integral and non-degenerate ordinary curve. Set
d := deg(C) and k := k0(d,r). We have

(r+k−1
r−1

)
≤ d <

(r+k
r−1

)
. If d =

(r+k−1
r−1

)
,

then a(C) = k−1. If d 6=
(r+k−1

r−1

)
, then a(C) = k.

Proof. The Castelnuovo-Mumford lemma applied to the set C∩H ⊂ H gives
a(C)≤ k and that strict inequality holds if d =

(r+k−1
r−1

)
. Since h1(H,IH∩C(k)) =

d−
(r+k−1

r−1

)
and h1(H,IH∩C(k−1)) = d−

(r+k−2
r−1

)
> 0, we get the lemma.
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Proof of Theorem 1.2. Since the case r = 2 is obvious, we may assume r ≥ 3.
Let A ⊂ Pr be an integral, non-degenerate curve of degree r + 1. We have
k0(r + 1,r) = 1. Assume that A is linearly normal. Hence pa(A) = 1 and
ωA∼=OA (Example 2.1). Fix any hyperplane H ⊂Pr transversal to A. Fix any set
B ⊂ Y ∩H with ](B) = r. Since ωA ∼= OA and deg(OA(1)(−B)) = r+ 1− r >
deg(ωA), we have h1(A,OA(1)(−B)) = 0. Since pa(A) = 1, Riemann-Roch
for singular curves gives h0(A,OA(1)(−B)) = deg(OA(1)(−B)) = 1 ([31, page
130], [16, Definition 1.3], [21, Theorem 1.3]). Hence H is the unique hy-
perplane containing B, i.e. any B ⊂ Y ∩H with ](B) = r spans H. Hence
h1(H,IA∩H(2)) = 0 ([19, Lemma 3.2]). Since A is integral, h0(A,OA) = 1.
Hence h1(IA) = 0. Hence the case t = 1 of (2) gives h0(H,IA∩H(1)) = 0.
Hence A is ordinary. Since A is linearly normal, we have h1(IA(1)) = 0. Since
h1(H,IA∩H(t)) = 0 for all t ≥ 2 and h2(IC(t− 1)) = h0(C,OC(t− 1)) = 0 for
all t ≥ 2, using (2) and induction on t we get that A is arithmetically Cohen-
Macaulay. Hence we checked the “if part ”.

Now we prove the “only if ” part. Let C ⊂ Pr, r ≥ 3, be an integral, non-
degenerate, ordinary and arithmetically Gorenstein curve. Since C is ordi-
nary and arithmetically Cohen-Macaulay, then pa(C) = π ′(d,r) ([18, Theorem
1]). Since OC(e(C))∼= ωC and h1(C,ωC) = 1, we have h1(H,IC∩H(a(C))) = 1
(Lemma 2.2). Set d := deg(C) and k := k0(d,r). We have

(r+k−1
r−1

)
≤ d <(r+k

r−1

)
. First assume d =

(r+k−1
r−1

)
. Lemma 2.3 gives a(C) = k− 1. We have

h1(H,IC∩H(k− 1)) = d−
(r+k−2

r−1

)
=

(r+k−2
r−2

)
. Since r ≥ 3 and k ≥ 1, we have(r+k−2

r−2

)
≥ 2, contradicting Lemma 2.2. Now assume d 6=

(r+k−1
r−1

)
. Lemma

2.3 gives a(C) = k. Since h0(H,IC∩H(k)) = 0, we have h1(H,IC∩H(k)) =
d −

(r+k−1
r−1

)
. Lemma 2.2 gives d =

(r+k−1
r−1

)
+ 1 and e(C) = k− 1. Hence

ωC ∼= OC(k− 1). Hence deg(ωC) = (k− 1)d. Since deg(ωC) = 2pa(C)− 2 =
2π ′(d,r)−2 and π ′(d,r) = 1+dk−

(r+k
r

)
, we get

(k+1)(1+
(

r+ k−1
r−1

)
) = 2

(
r+ k

r

)
(3)

Hence (k+1)
(r+k−1

r−1

)
< 2

(r+k
r

)
, i.e. (k+1)r < 2(r+k). Since r≥ 3, we get that

either k = 1 or k = 2 and r ≤ 5. If k = 1, then d = r+1. We analyzed this case.
Now assume k = 2. From (3) we get 3+ 3(r+ 1)r/2 = (r+ 2)(r+ 1), false if
r = 3,4,5.

3. Low genera

In this section we assume char(K) = 0, except in Proposition 3.2.
The following result was classically known with another language.
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Proposition 3.1. Let C⊂Pr be any integral and non-degenerate curve such that
deg(C)≤ 2r−1. Then C is ordinary.

Proof. Set d := deg(C). If d = r, then C is a rational normal curve. Each
rational normal curve C is ordinary, because any transversal hyperplane section
H ∩C of C is given by r points spanning H. Hence we may assume d > r.
We have k0(d,r) = 1. Let H ⊂ Pr be a general hyperplane section. We recall
that a finite set S ⊂ H is said to be in linearly general position if every E ⊆ S
with ](E) ≤ r− 1 is linearly independent. Since char(K) = 0, the set C∩H is
in linearly general position ([2, page 109]). Since d ≤ 2(r− 1)+ 1, we have
h1(H,IC∩H(2)) = 0 ([19, Lemma 3.2]).

Proposition 3.1 is sharp, because no canonically embedded curve C⊂ Pg−1,
g ≥ 4 (it has pa(C) = g− 1 and degree 2g− 2) is ordinary by the following
result (alternatively, either apply Theorem 1.2 and a theorem of Max Noether for
Gorenstein curves ([28]) or use that k0(2r,r) = 1 and hence π ′(g−1,2g−2) =
g−1).

Proposition 3.2. Let C ⊂ Pr, r ≥ 3, be an integral and non-degenerate curve
such that d := deg(C) < (r+1)r/2 and h1(C,OC(1)) > 0. Then C is not ordi-
nary.

Proof. Let H ⊂ Pr be a general hyperplane. Since d = ](C∩H) < (r+1)r/2,
we have h0(H,IC∩H(2)) > 0. Hence it is sufficient to prove the inequality
h1(H,IC∩H(2))> 0. By (2) it is sufficient to prove that h2(IC(1))> h2(IC(2)),
i.e. h1(C,OC(1))> h1(C,OC(2)), i.e. h0(C,ωC(−1))> h0(C,ωC(−2)) (duality
for the locally Cohen-Macaulay one-dimensional scheme C [1, 1.3, pages 5-6]).
The last inequality is true, because h0(C,ωC(−1))> 0 andOC(1) is very ample
(e.g., we have either h0(C,ωC(−2)) = 0 or h0(C,ωC(−1))≥ h0(C,ωC(−2))+r
by a lemma of Hopf ([15, page 544])).

Remark 3.3. Let C ⊂ Pr, r ≥ 3, be an integral and non-degenerate curve. Set
d := deg(C). Assume h1(C,NC(−1)) = 0, i.e. h0(C,N∨C (1)⊗ωC) = 0 (du-
ality). Hence h0(C,N∨C ⊗ωC) = 0, i.e. h1(C,NC) = 0. Since h1(C,NC) = 0,
then C is a smooth point of the Hilbert scheme Hilb(Pr) of Pr, i.e. C belongs
to a unique irreducible component, S, of the Hilbert scheme Hilb(Pr) of Pr,
dim(S) = h0(C,NC) and S is smooth at C ([30, page 64]). Now we check that
a general D ∈ S is ordinary. Let H ⊂ Pr be any hyperplane transversal to C.
The set V of all sets S ⊂ H with ](S) = d is a non-empty irreducible variety of
dimension d(r−1). Since V is irreducible, each non-empty open subset of V is
dense in V . Hence the intersection of finitely many non-empty open subsets of
V is non-empty and dense in V . The semicontinuity theorem for cohomology
([20, Theorem III.12.8]) gives the existence of a non-empty open subset U of V
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such that every S ∈ U has maximal rank in H. Let S ′ ⊂ S be any open neigh-
borhood of C formed by curves D ∈ S transversal to H. Hence H ∩D is formed
by d distinct points for all D ∈ S ′. Let u : S ′→V be the map D 7→D∩H. Since
h1(C,NC(−1)) = 0, the map u is dominant ([32, Théorème 1.5]). Hence for a
general S ⊂ H such that ](S) = d there is D ∈ S ′ such that D∩H = S. Since S
is general, for each t ∈ Z either h0(H,IS(t)) = 0 or h1(H,IS(t)) = 0. Hence D
is ordinary.

Remark 3.4. Let C⊂ Pr, r≥ 4, be a smooth and non-degenerate curve of genus
g and degree d. We have χ(NC(−1)) = 2d− (r− 3)(g− 1) (Riemann-Roch).
Hence g−1≤ 2d/(r−3) if h1(C,NC(−1)) = 0. For a fixed integer r ≥ 4 when
d� 0 2d/(r− 3) is linear in d, while π ′(r,d) ∼ d2/(2r− 2) is quadratic in d.
Hence for each fixed integer r ≥ 4 we may have h1(C,NC(−1)) = 0 only for a
quite small set of pairs (d,g). For fixed r the paper [6] asymptotically covers
this small range. If g = 0, then h1(C,NC(−1)) = 0 for the following reason. The
Euler’s sequence of TPr ([20, Theorem II.8.13]):

0→OPr →OPr(1)⊕(r+1)→ TPr→ 0

gives that TPr(−1)|C is spanned by its global sections. Since C is smooth,
NC(−1) is a quotient of TPr(−1)|C. Hence NC(−1) is spanned by its global
sections. Hence there is an exact sequence of coherent sheaves on C:

0→F →Om
C → NC(−1)→ 0

Since C is smooth and rational, we have h1(C,OC) = 0. Since dim(C) = 1, we
have h2(C,F) = 0. Hence h1(C,NC(−1)) = 0.

Lemma 3.5. Let X be an integral projective variety with dim(X)> 0 and let L
be a line bundle on X.

(a) Assume h0(X ,L) = 0. Then h0(X ,IP⊗L) = 0 and h0(X ,IP⊗L) =
h1(X ,L)+1 for all P ∈ X.

(b) Assume h0(X ,L)> 0. Let W ⊆ H0(X ,L) be any non-zero linear sub-
space. A general P ∈ X is not in the base locus of W. Fix P ∈ X which is not in
the base locus of W. Then:

1. dim(W ∩H0(X ,IP⊗L)) = dim(W )−1.

2. h0(X ,IP⊗L) = h0(X ,L)−1 and h1(X ,IP⊗L) = h1(X ,L).

Proof. Fix any Q ∈ X . Since dim({Q}) = 0 and L is a line bundle, we have
hi(X ,L|{Q}) = 0 for all i > 0 and h0(X ,L|{Q}) = 1. Hence the exact sequence

0→IQ⊗L→L→L|{Q}→ 0
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shows that either h0(X ,IQ⊗L) = h0(X ,L) and h1(X ,IQ⊗L) = h1(X ,L)+ 1
or h0(X ,IQ⊗L) = h0(X ,L)−1 and h1(X ,IQ⊗L) = h1(X ,L). Moreover, the
first case occurs if and only if Q is a base point of L. We get part (a) and the
second half of part (b). We have dim(W ∩H0(X ,IQ⊗L)) = dim(W )−1 if and
only if Q is not in the base locus of |W |. Since W 6= 0, a general P ∈ X is not in
the base locus of |W |. Hence we get the first half of part (b).

Lemma 3.6. Let S ⊂ Pm, m ≥ 2, be a finite set such that for each t ∈ Z either
h0(IS(t)) = 0 or h1(IS(t)) = 0. Fix an integer x > 0. Let A ⊂ Pm be a gen-
eral subset with cardinality x. Then for each t ∈ Z either h0(IS∪A(t)) = 0 or
h1(IS∪A(t)) = 0.

Proof. By induction on x we reduce to the case x = 1. Since h1(IS∪A(t)) = 0
for each t ≥ ](S∪A), it is sufficient to check the condition for finitely many line
bundles OPr(t). Apply Lemma 3.5.

Theorem 3.7. Fix integers d,r,g such that r ≥ 3, g ≥ 0 and d ≥ g+ r. Let
C ⊂ Pr be a general smooth curve C ⊂ Pr such that deg(C) = d, pa(C) = g, C
is non-degenerate and h1(C,OC(1)) = 0. Then C is ordinary.

In the previous statement the word “ general ” makes sense, because the set
Z(d,g,r) of all non-degenerate smooth and non-special curves in Pr with degree
d and genus g is irreducible ([19, page 62]).

Proof of Theorem 3.7. By Proposition 3.1 we may assume d ≥ 2r. Set k :=
k0(d,r) and α := d− g− r. Fix a hyperplane H ⊂ Pr. Let Z′(d,g,r) be the
closure of Z(d,g,r) in the Hilbert scheme of Pr. Set x := br/2c. Assume for the
moment x≤ g. Fix a rational normal curve D⊂ Pr transversal to H. Let W (r,0)
be the set of all curves D∪L1∪·· ·∪Lx with Li defined in the following way. Let
L1 be a secant line of D and with D∪L1 transversal to H. For each i∈ {2, . . . ,x}
define recursively the line Li as any line meeting both D and Li−1 and such that
D∪L1∪·· ·∪Li is a nodal curve of degree r+ i and arithmetic genus i transver-
sal to H. Let W (r, t) be the set of all nodal curves Y = Y1 ∪R1 ∪ ·· · ∪Rt of
degree r + x+ t and arithmetic genus x+ t with Y1 ∈W (r,0), each R j a line
intersecting D and intersecting Y1 quasi-transversally and at exactly two points
and with Y transversal to H, while R j ∩Rh = /0 for all j 6= h. Hence each curve
of W (r, t) is nodal, connected, with arithmetic genus x+ t and degree r+ x+ t.
We have W (r, t) ⊂ Z′(r + x+ t,x+ t,r) ([33], [23, Corollary 4.2 and Remark
4.1.1]). By [5, Lemma 1.4], applied to the integers k and k + 1 for any inte-
ger t ≥ 0 there are At ∈W (r, t) and Bt ∈W (r, t) intersecting H transversally
and with h0(H,IAt∩H(k)) = max{0,

(r+k−1
r−1

)
−deg(At)}, h0(H,IBt∩H(k+1)) =

max{0,
(r+k

r−1

)
− deg(Bt)}. Let A (resp. B) be the union of Ag−x (resp. Bg−x)
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and α general lines of Pr meeting D at one point. We have A ∈ Z′(d,g,r) and
B ∈ Z′(d,g,r) ([33], [23, Corollary 4.2 and Remark 4.1.1], [5, Lemma 0.2]).
Since A∩H is the union of Ag−x∩H and α general points of H and d = deg(A)≥(r+k−1

r−1

)
, we have h0(H,IA∩H(k)) = 0 (Lemma 3.6). By the semicontinuity the-

orem for cohomology ([20, Theorem III.12.8]) we get h0(H,IC∩H(k)) = 0 for
a general C ∈ Z(d,g,r). Since B∩H is the union of Bg−x ∩H and α general
points of H and d <

(r+k−1
k−1

)
, we have h1(H,IA∩H(k + 1)) = 0 (Lemma 3.6).

By the semicontinuity theorem for cohomology we get h1(H,IC∩H(k+1)) = 0
for a general C ∈ Z(d,g,r). Since Z(d,g,r) is irreducible, we get that a general
C ∈ Z(d,g,r) is ordinary.

Now assume x > g. Take a general E ∈ Z(g+ r,g,r) and a general hyper-
plane H ⊂ Pr. Proposition 3.1 gives h0(H,IE∩H(1)) = 0 and h1(H,IE∩H(t)) =
0 for all t ≥ 2. Let F ⊂ Pr be a general union of E and α lines meeting
E at a unique point. We saw that F ∈ Z′(d,g,r). Since F ∩H is a union
of E ∩H and α general points of H, Lemma 3.5 gives h0(H,IF∩H(k)) = 0
and h1(H,IF∩H(k + 1)) = 0. By the semicontinuity theorem for cohomol-
ogy we have h0(H,IC∩H(k)) = 0 and h1(H,IC∩H(k + 1)) = 0 for a general
C ∈ Z(d,g,r).

Proposition 3.8. Fix integers r,g such that r≥ 3 and 0≤ g≤ r(r−1)/2. There
is a smooth and non-degenerate ordinary curve C ⊂ Pr such that pa(C) = g,
deg(C) = g+ r, h1(C,OC(1)) = 0 and B(C) = /0.

Proof. We have k0(g + r,r) = 1 if g < r(r− 1)/2 and k0(r(r + 1)/2,r) = 2.
There is a smooth and linearly normal curve C ⊂ Pr such that deg(C) = g+ r,
pa(C) = g, h1(C,OC(1)) = 0 and with maximal rank, i.e. for all t ∈ N either
h0(IC(t))= 0 or h1(IC(t))= 0 ([3] if r = 4, [4] if r = 3, [5] for all r≥ 5). Fix any
hyperplane H ⊂ Pr. Riemann-Roch gives h0(C,OC(2)) = 2d + 1− g ≤

(r+2
2

)
by hypothesis. Hence h1(IC(2)) = 0. Since h1(C,OC(1)) = 0, the Castelnuovo-
Mumford lemma gives h1(IC(t)) = 0 for all t ≥ 3. Since deg(C) = g+ r and
h1(C,OC(1)) = 0, Riemann-Roch gives h0(C,OC(1)) = r+ 1. Since C is non-
degenerate, we get h1(IC(1)) = 0. Since C is connected, we have h1(IC) = 0.
Hence C is arithmetically Cohen-Macaulay. Since h1(IC(t)) = 0 for all t ≥ 0,
(1) gives h1(H,IC∩H(t)) = 0 for all t ≥ 1. Hence C is ordinary with B(C) = /0
if g 6= r(r + 1)/2. If g = r(r + 1)/2 we may use that h0(H,IC∩H(2)) = 0 =
h1(H,IC∩H(2)) and hence h1(H,IC∩H(3)) = 0 by the Castelnuovo-Mumford
lemma.
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