CLASSES OF SPIRALLIKE FUNCTIONS DEFINED BY THE DZIOK-SRIVASTAVA OPERATOR

TAMER M. SEOUDY

Making use of the Dziok-Srivastava operator, in this paper we introduce two classes of analytic functions and investigate convolution properties, the necessary and sufficient condition, coefficient estimates and inclusion properties for these classes.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Let $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)(0 \leq \alpha<1)$ denote the subclasses of \mathcal{A} that consists, respectively, of starlike of order α and convex of order α in \mathbb{U}. It is well-known that Let $\mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{K}(\alpha)=\mathcal{K}(0) \subset \mathcal{K}$.

If $f(z)$ and $g(z)$ are analytic in \mathbb{U}, we say that $f(z)$ is subordinate to $g(z)$, written $f(z) \prec g(z)$ if there exists a Schwarz function ω, which (by definition)

Entrato in redazione: 3 settembre 2013

AMS 2010 Subject Classification: 30C45.
Keywords: Analytic function, Hadamard product, Starlike function, Convex function, Subordination, Dzoik-Srivastava operator.
Thanks a lot to My Prof. Dr. M. K. Aouf for his valuable guidance during the preparation of this paper.
is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in \mathbb{U}$, such that $f(z)=$ $g(\omega(z)), z \in \mathbb{U}$. Furthermore, if the function $g(z)$ is univalent in \mathbb{U}, then we have the following equivalence, (cf., e.g.,[5], [17] and [18]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

For functions f given by (1) and g given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{2}
\end{equation*}
$$

the Hadamard product or convolution of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{3}
\end{equation*}
$$

Making use of the principal of subordination between analytic functions, we introduce the subclasses $\mathcal{S}^{\alpha}[A, B]$ and $\mathcal{K}^{\alpha}[A, B]$ of the class \mathcal{A} for $|\alpha|<\frac{\pi}{2}$ and $-1 \leq B<A \leq 1$ which are defined by (see [3], [4] and [19])

$$
\begin{equation*}
\mathcal{S}^{\alpha}[A, B]=\left\{f \in \mathcal{A}: e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)} \prec \cos \alpha\left(\frac{1+A z}{1+B z}\right)+i \sin \alpha(z \in \mathbb{U})\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}^{\alpha}[A, B]=\left\{f \in \mathcal{A}: e^{i \alpha} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \cos \alpha\left(\frac{1+A z}{1+B z}\right)+i \sin \alpha(z \in \mathbb{U})\right\} \tag{5}
\end{equation*}
$$

We note that

$$
\mathcal{S}^{0}[A, B]=\mathcal{S}[A, B], \mathcal{K}^{0}[A ; B]=\mathcal{K}[A ; B](-1 \leq B<A \leq 1)
$$

where the classes $\mathcal{S}[A, B]$ and $\mathcal{K}[A ; B]$ are introduced and studied by many authors (see [1], [11], [13], [14], and [22]).

For complex parameters $a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\left(b_{j} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ;\right.$ $j=1, \ldots, s$), we define the generalized hypergeometric function

$$
{ }_{q} F_{s}\left(a_{1}, \ldots, a_{i}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)
$$

by the following infinite series (see [23]):

$$
{ }_{q} F_{S}\left(a_{1}, \ldots, a_{i}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{q}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{s}\right)_{k}} \frac{z^{k}}{k!}
$$

$$
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\} ; z \in U\right)
$$

where $(x)_{k}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}= \begin{cases}1 & (k=0) \\ x(x+1) \ldots(x+k-1) & (k \in \mathbb{N})\end{cases}
$$

Dziok and Srivastava [9] considered a linear operator $H\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right)$: $\mathcal{A} \rightarrow \mathcal{A}$ defined by the following Hadamard product:

$$
\begin{equation*}
H\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=h\left(a_{1}, \ldots, a_{i}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) * f(z) \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
h\left(a_{1}, \ldots, a_{i}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=z_{q} F_{s}\left(a_{1}, \ldots, a_{i}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) \tag{7}\\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
\end{gather*}
$$

If $f(z) \in \mathcal{A}$ is given by (1), then we have

$$
\begin{equation*}
H\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=z+\sum_{k=2}^{\infty} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{k}\left[a_{1} ; b_{1}\right]=\frac{\left(a_{1}\right)_{k-1} \ldots\left(a_{q}\right)_{k-1}}{\left(b_{1}\right)_{k-1} \ldots\left(b_{s}\right)_{k-1} k!} \tag{9}
\end{equation*}
$$

If, for convenience, we write

$$
H_{q, s}\left[a_{1} ; b_{1}\right]=H\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right),
$$

then one can easily verify from the definition (6) or (8) that (see [9]):

$$
\begin{equation*}
z\left(H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}=a_{1} H_{q, s}\left[a_{1}+1 ; b_{1}\right] f(z)-\left(a_{1}-1\right) H_{q, s}\left[a_{1} ; b_{1}\right] f(z) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(H_{q, s}\left[a_{1} ; b_{1}+1\right] f(z)\right)^{\prime}=b_{1} H_{q, s}\left[a_{1} ; b_{1}\right] f(z)-\left(b_{1}-1\right) H_{q, s}\left[a_{1} ; b_{1}+1\right] f(z) \tag{11}
\end{equation*}
$$

It should be remarked that the linear operator $H_{q, s}\left[a_{1} ; b_{1}\right]$ is a generalization of many other linear operators considered earlier. In particular, for $f \in \mathcal{A}$, we have
(i) $H_{2,1}(a, b ; c) f(z)=\left(I_{c}^{a, b} f\right)(z)\left(a, b \in \mathbb{C} ; c \notin \mathbb{Z}_{0}^{-}\right)$, where the linear operator $I_{c}^{a, b}$ was investigated by Hohlov [12];
(ii) $H_{2,1}(\delta+1,1 ; 1) f(z)=D^{\delta} f(z)(\delta>-1)$, where D^{δ} is the Ruscheweyh derivative of $f(z)$ (see [21]);
(iii) $H_{2,1}(\mu+1,1 ; \mu+2) f(z)=F_{\mu}(f)(z)=\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t$ with $\mu>$ -1 , where F_{μ} is the Libera integral operator (see [2], [15] and [16]);
(iv) $H_{2,1}(a, 1 ; c) f(z)=L(a, c) f(z)\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$, where $L(a, c)$ is the Carlson-Shaffer operator (see [6]);
(v) $H_{2,1}(\lambda+1, c ; a) f(z)=I^{\lambda}(a, c) f(z)\left(a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-} ; \lambda>-1\right)$, where $I^{\lambda}(a, c)$ is the Cho-Kwon-Srivastava operator (see [7]);
(vi) $H_{2,1}(\mu, 1 ; \lambda+1) f(z)=I_{\lambda, \mu} f(z)(\lambda>-1 ; \mu>0)$, where the operator $I_{\lambda, \mu}$ is the Choi-Saigo-Srivastava operator (see [8]) which is closely related to the Carlson-Shaffer [6] operator $L(\mu, \lambda+1)$;
(vii) $H_{2,1}(1,1 ; n+1) f(z)=I_{n} f(z)(n>-1)$, where I_{n} is Noor operator of $n-t h$ order (see [20]).

Next, by using Dziok-Srivastava operator $H_{q, s}\left[a_{1} ; b_{1}\right]$, we introduce the following classes of analytic functions for $s, q \in \mathbb{N}_{0},|\alpha|<\frac{\pi}{2}$ and $-1 \leq B<A \leq 1$:

$$
\begin{equation*}
\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]=\left\{f \in \mathcal{A}: H_{q, s}\left[a_{1} ; b_{1}\right] f(z) \in \mathcal{S}^{\alpha}[A, B]\right\} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]=\left\{f \in \mathcal{A}: H_{q, s}\left[a_{1} ; b_{1}\right] f(z) \in \mathcal{K}[A, B]\right\} \tag{13}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
f(z) \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right] \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right] \tag{14}
\end{equation*}
$$

In this paper, we investigate convolution properties of $\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ and $\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ associated with the operator $H_{q, s}\left[a_{1} ; b_{1}\right]$. Using convolution properties, we find the necessary and sufficient condition, coefficient estimates and inclusion properties for these classes.

2. Convolution Properties

Unless otherwise mentioned, we assume throughout this paper that $-1 \leq B<$ $A \leq 1,|\alpha|<\frac{\pi}{2},|\zeta|=1$ and $\Gamma_{k}\left[a_{1} ; b_{1}\right]$ is defined by (9). To prove our convolution properties, we shall need the following lemmas due to Bhoosnurnath and Devadas [3, 4].

Lemma 2.1 ([3]). The function $f(z)$ defined by (1) is in the class $\mathcal{S}^{\alpha}[A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[f(z) *(1-M z) \frac{z}{(1-z)^{2}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\frac{e^{i \alpha}+(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha} \tag{16}
\end{equation*}
$$

Lemma 2.2 ([4] Lemma 3 with $n=1$). The function $f(z)$ defined by (1) is in the class $\mathcal{K}^{\alpha}[A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[f(z) *(1-N z) \frac{z}{(1-z)^{3}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\frac{2 e^{i \alpha}+[(A+B) \cos \alpha+i 2 B \sin \alpha] \zeta}{(A-B) \zeta \cos \alpha} \tag{18}
\end{equation*}
$$

Theorem 2.3. A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ is that

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} \frac{(k-1+k B \zeta) e^{i \alpha}-(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k-1} \neq 0 \quad(z \in \mathbb{U}) \tag{19}
\end{equation*}
$$

Proof. From Lemma 2.1, we find that $f(z) \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[H_{q, s}\left[a_{1} ; b_{1}\right] f(z) *(1-M z) \frac{z}{(1-z)^{2}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{20}
\end{equation*}
$$

where M is given by (16). From (8), the left hand side of (20) may be written as

$$
\begin{aligned}
& \frac{1}{z}\left[H_{q, s}\left[a_{1} ; b_{1}\right] f(z) *\left(\frac{z}{(1-z)^{2}}-\frac{M z^{2}}{(1-z)^{2}}\right)\right] \\
= & \frac{1}{z}\left[z\left(H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}-M\left\{z\left(H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}-H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right\}\right] \\
= & 1-\sum_{k=2}^{\infty} \frac{(k-1+k B \zeta) e^{i \alpha}-(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k-1} .
\end{aligned}
$$

Thus, the proof of The Theorem 2.3 is completed.

Theorem 2.4. A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ is that

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} k \frac{(k-1) e^{i \alpha}-[(A-k B) \cos \alpha-i(k-1) B \sin \alpha] \zeta}{(A-B) \zeta \cos \alpha} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k-1} \neq 0(z \in \mathbb{U}) \tag{21}
\end{equation*}
$$

Proof. From Theorem 2.3, we find that $f(z) \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[H_{q, s}\left[a_{1} ; b_{1}\right] f(z) *(1-N z) \frac{z}{(1-z)^{3}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{22}
\end{equation*}
$$

where N is given by (18). From (8), the left hand side of (22) becomes

$$
\begin{aligned}
& \frac{1}{z}\left[H_{q, s}\left[a_{1} ; b_{1}\right] f(z) *\left(\frac{z}{(1-z)^{3}}-\frac{z^{2}}{(1-z)^{3}}\right)\right] \\
= & \frac{1}{z}\left[\frac{1}{2} z\left(z H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime \prime}-\right. \\
& \left.N\left\{\frac{1}{2} z\left(z H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime \prime}-z\left(H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}\right\}\right] \\
= & 1-\sum_{k=2}^{\infty} k \frac{(k-1) e^{i \alpha}-[(A-k B) \cos \alpha-i(k-1) B \sin \alpha] \zeta}{(A-B) \zeta \cos \alpha} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k-1},
\end{aligned}
$$

this proves Theorem 2.4.

3. Coefficient Estimates and Inclusion Properties

Unless otherwise mentioned, we assume throughout this section that $a_{i}>0(i=$ $1, \ldots, q)$ and $b j>0(j=1, \ldots, s)$.

As an applications of Theorems 2.3 and 2.4, we next determine coefficient estimates and inclusion properties for a function of the form (1) to be in the classes $\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ and $\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$.

Theorem 3.1. If the function $f(z)$ defined by (1) belongs to $\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$, then

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(k-1+\left|A+i B \sin \alpha-k B e^{i \alpha}\right|\right) \Gamma_{k}\left[a_{1} ; b_{1}\right]\left|a_{k}\right| \leq(A-B) \cos \alpha \tag{23}
\end{equation*}
$$

Proof. Since

$$
\left|1-\sum_{k=2}^{\infty} \frac{(k-1+k B \zeta) e^{i \alpha}-(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha} \Gamma_{k}\left[a_{1} ; b_{1}\right] a_{k} z^{k-1}\right|
$$

$$
\geq 1-\sum_{k=2}^{\infty}\left|\frac{(k-1+k B \zeta) e^{i \alpha}-(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha}\right| \Gamma_{k}\left[a_{1} ; b_{1}\right]\left|a_{k}\right|
$$

and

$$
\begin{aligned}
& \left|\frac{(k-1+k B \zeta) e^{i \alpha}-(A \cos \alpha+i B \sin \alpha) \zeta}{(A-B) \zeta \cos \alpha}\right| \\
& =\frac{\left|(k-1) e^{i \alpha}-\left(A \cos \alpha+i B \sin \alpha-k B e^{i \alpha}\right)\right|}{(A-B) \cos \alpha} \\
& \leq \frac{(k-1)+\left|A \cos \alpha+i B \sin \alpha-k B e^{i \alpha}\right|}{(A-B) \cos \alpha}
\end{aligned}
$$

the result follows from Theorem 2.3.
Similarly, we can prove the following theorem.
Theorem 3.2. If the function $f(z)$ defined by (1) belongs $\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$, then

$$
\begin{array}{r}
\sum_{k=2}^{\infty} k\{(k-1)+|(A-k B) \cos \alpha-i(k-1) B \sin \alpha|\} \Gamma_{k}\left[a_{1} ; b_{1}\right]\left|a_{k}\right| \\
\leq(A-B) \cos \alpha \tag{24}
\end{array}
$$

We will discuss two inclusion relations for the classes $\mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$ and $\mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$. To prove these results we shall require the following lemma:

Lemma 3.3 ([10]). Let h be convex (univalent) in \mathbb{U}, with $\Re\{\gamma h(z)+\eta\}>0$ for all $z \in \mathbb{U}$. If p is analytic in \mathbb{U}, with $p(0)=h(0)$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma p(z)+\eta} \prec h(z) \Rightarrow p(z) \prec h(z) .
$$

Theorem 3.4. Suppose that

$$
\begin{equation*}
\mathfrak{R}\left\{e^{-i \alpha} \frac{z}{1+B z}\right\}>-\frac{a_{1}}{(A-B) \cos \alpha} \quad(z \in \mathbb{U}) \tag{25}
\end{equation*}
$$

If $f \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1}+1 ; A, B\right]$, with $H_{q, s}\left[a_{1} ; b_{1}\right] f(z) \neq 0(z \in \mathbb{U})$, then $f \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$.
Proof. Suppose that $f \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1}+1 ; A, B\right]$, and define the function

$$
\begin{equation*}
p(z)=e^{i \alpha} \frac{z\left(H_{q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{H_{q, s}\left[a_{1} ; b_{1}\right] f(z)} \quad(z \in \mathbb{U}) . \tag{26}
\end{equation*}
$$

Then p is analytic in \mathbb{U} with $p(0)=e^{i \alpha}$, and using the relation (10), from (26) we obtain

$$
\begin{equation*}
e^{-i \alpha} p(z)+a_{1}-1=a_{1} \frac{H_{q, s}\left[a_{1}+1 ; b_{1}\right] f(z)}{H_{q, s}\left[a_{1} ; b_{1}\right] f(z)} . \tag{27}
\end{equation*}
$$

Differentiating logarithmically (27) with respect to z and then using (26), we deduce that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{e^{-i \alpha} p(z)+a_{1}-1} \prec \cos \alpha\left(\frac{1+A z}{1+B z}\right)+i \sin \alpha=h(z) . \tag{28}
\end{equation*}
$$

From (25), we see that $\Re\left\{e^{-i \alpha} h(z)+a_{1}-1\right\}>0, z \in \mathbb{U}$. Since the function $h(z)$ is convex (univalent) in \mathbb{U} with $h(0)=e^{i \alpha}$, according to Lemma 3.3 the subordination (28) implies $p(z) \prec h(z)$, which proves that $f \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$.

From the duality formula (14), the above theorem yields the following inclusion:

Theorem 3.5. Suppose that (25) holds and $H_{q, s}\left[a_{1} ; b_{1}\right] f(z) \neq 0$ for all $z \in \mathbb{U}$. If $f \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1}+1 ; A, B\right]$, then $f \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right]$.

Proof. Applying (14) and Theorem 3.4, we observe that

$$
\begin{aligned}
f \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1}+1 ; A, B\right] & \Longleftrightarrow z f^{\prime} \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1}+1 ; A, B\right](\text { from (14)) } \\
& \Longleftrightarrow z f^{\prime} \in \mathcal{S}_{q, s}^{\alpha}\left[a_{1} ; A, B\right](\text { by Theorem 3.4) } \\
& \Longleftrightarrow f \in \mathcal{K}_{q, s}^{\alpha}\left[a_{1} ; A, B\right],
\end{aligned}
$$

which evidently proves Theorem 3.5.
Remark 3.6. (i) Taking $q=2, s=1, a_{1}=n+1(n>-1)$ and $a_{2}=b_{1}=1$ in Theorems 2.3, 3.1 and 3.4, respectively, we obtain the results obtained by Bhoosnurmath and Devadas [4, Theorems 1,3 and 4, respectively];
(ii) Taking $q=2, s=1, a_{1}=n+1(n>-1), a_{2}=b_{1}=1, \alpha=0$ and $\bar{\zeta}=-\zeta$ in Theorems 2.3, 3.1 and 3.4 , respectively, we obtain the results obtained by Ahuja [1 , Theorems 1,3 and 5 , respectively];
(iii) For special choices for $a_{i}(i=1, \ldots, q)$ and $b_{j}(j=1, \ldots, s)$, where $q, s \in \mathbb{N}_{0}$, we can obtain corresponding results for different linear operators which are defined in the introduction.

REFERENCES

[1] O. P. Ahuja, Families of analytic functions related to Ruscheweyh derivatives and subordinate to convex functions, Yokohama Math. J. 41 (1993), 39-50.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[3] S. S. Bhoosnurmath - M. V. Devadas, Subclasses of spirallike functions defined by subordination, J. of Analysis Madras 4 (1996), 173-183.
[4] S. S. Bhoosnurmath - M. V. Devadas, Subclasses of spirallike functions defined by Ruschweyh derivatives, Tamkang J. Math. 28 (1) (1997), 59-65.
[5] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientic Book Publ., Cluj-Napoca, 2005.
[6] B. C. Carlson - D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[7] N.E. Cho - O. H. Kwon - H. M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470-483.
[8] J. H. Choi - M. Saigo - H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[9] J. Dziok - H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[10] P. J. Eenigenburg - S. S. Miller - P. T. Mocanu - M. O. Reade, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
[11] R. M. Goel - B. S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math. 12 (1981), 634-647.
[12] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Ucebn. Zaved. Mat. 10 (1978), 83-89 (in Russian).
[13] W. Janowski, Some extremal problems for certain families of analytic functions, Bull. Polish Acad. Sci. 21 (1973), 17-25.
[14] W. Janowski, Some extremal problems for certain families of analytic functions, Annl. Polon. Math. 28 (1973), 297-326.
[15] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-658.
[16] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[17] S. S. Miller - P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, 2000.
[18] S. S. Miller - P. T Mocanu, Subordinates of differential superordinations, Complex Variables 48 (10) (2003), 815-826.
[19] S. V. Nikitin, A class of regular functions, current problems in function theory (Russian) 188, 143-147, Rostov-Gos. Univ. Rostov-on-Don, 1987.
[20] K. I. Noor, On new classes of integral operator, J. Nat. Geom., 16 (1-2) (1999), 71-80.
[21] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[22] H. Silverman - E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 1 (1985), 48-61.
[23] H. M. Srivastava - P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley \& Sons, Inc.), New York, 1985.

TAMER M. SEOUDY
Department of Mathematics
Faculty of Science
Fayoum University
Fayoum 63514, Egypt
e-mail: tms00@fayoum.edu.eg

