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1.

In recent years, there have been a few papers written on the existence of peri-
odic solutions, nontrivial periodic solutions and positive periodic solutions for

PERIODIC SOLUTIONS FOR A SECOND ORDER

NONLINEAR NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATION WITH VARIABLE DELAY

ABDELOUAHEB ARDJOUNI - AHCENE DJOUDI

In this paper we study the existence of periodic solutions of the second
order nonlinear neutral differential equation with functional delay
d? d
SO+ p (1) Tx (O +a (1) hx ()

= %g(t,x(t—f(t)))Jrf(;’x(t) x(t—1(0)).

We invert the given equation to obtain an integral, but equivalent, equa-
tion from which we define a fixed point mapping written as a sum of a
large contraction and a compact map. We show that, under suitable con-
ditions, such maps fit very nicely into the framework of Krasnoselskii-
Burton’s fixed point theorem so that the existence of periodic solutions is
concluded.
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several classes of functional differential equations with delays, which arise from
a number of mathematical ecological models, economical and control models,
physiological and population models and other models, see [1]-[26] and the
references therein.

In this paper, we are interested in the analysis of qualitative theory of peri-
odic solutions of delay differential equations. Motivated by the papers [1]-[9],
[12]-[14], [19]-[21], [24]-[26] and the references therein, we focus on the ex-
istence of periodic solutions for the second order nonlinear neutral differential
equation

2
%X(t) +p(1) %x(t) +q(t)h(x(1))
:%g(l‘,x(t—‘L’(t)))+f(t,x(t)7x(t_q;(t)))7 (1)

where p, g are positive continuous real-valued functions. The function g : R x
R — R is differentiable, 4 : R — R and f : R x R x R — R are continuous with
respect to its arguments.

To reach our desired end we have to transform (1) into an equivalent integral
equation that does not change the basic structure and properties of the given one
and from which we construct a fixed point mapping. In so many cases such
a transformation tends to be a hard task. Nevertheless, getting an appropriate
mapping is fundamental to the method employed in this paper. The transforma-
tion of (1) yields a mapping which splits in the sum of a large contraction and a
compact map suitable for applying Krasnoselskii-Burton’s fixed point theorem
in such a way that the existence of periodic solutions is concluded.

The organization of this paper is as follows. In Section 2, we introduce
some notations and lemmas, and state some preliminary results needed in later
sections, then we give the Green’s function of (1), which plays an important role
in this paper. Also, we present the inversion of (1) and Krasnoselskii-Burton’s
fixed point theorem. In Section 3, we present our main result on existence.

2. Preliminaries
For T > 0, let Pr be the set of all continuous scalar functions x, periodic in ¢ of

period T. Then (P, ||.||) is a Banach space with the supremum norm

Il := sup|x(r)| = sup |x(z)].
teR t€[0,T]

Since we are searching for periodic solutions for equation (1), it is natural to
assume that

pt+T)=p(t), qt+T)=q(t), t(t+T)=1(t), (2)
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where 7 is a continuous scalar function, and 7 (¢) > t* > 0. Also, we assume

T T
/ p(s)ds >0, / q(s)ds > 0. 3)
0 0

Functions g (¢,x) and f(¢,x,y) are periodic in ¢ with period T. They are also
supposed to be globally Lipschitz continuous in x and in x and y, respectively.
That is,

gt+T.x)=g(t.x), f(t+T,xy)=f(t,x,y), 4)
and there are positive constants ki, ko, k3 such that
lg (t,.x) —g (t,y)| < ki [lx— ]|, ®)

and
’f(trx)y) _f(t7Z7W)‘ < k2 ”x_ZH +k3 Hy_WH . (6)

Lemma 2.1 ([20]). Suppose that (2) and (3) hold and

R, {exp <f0Tp(u)du> — 1}
OiT

21, (N

where

)

t+T s
R; = max / exp (i p (u)du) q(s)ds
t€0.T] e exp (fOTp (u) du) -1

0, = <1+exp <'/0Tp(u)du>)2R%.

Then there are continuous T -periodic functions a and b such that b(t) > 0,

fOT a(u)du >0 and

d
a(t)+b(t)=p(t), Eb(r)Jra(t)b(t) =q(t), fort e R.
Lemma 2.2 ([25]). Suppose the conditions of Lemma 2.1 hold and ¢ € Pr. Then

the equation
2

d
) +p(0) Sx () +q()x(1) = 6 (1),
has a T-periodic solution. Moreover, the periodic solution can be expressed by

+T
x(1)= G(t,5)9 (s)ds,
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where

[lexp[['b(v)dv+ [ a(v)dv]du
et 1o (600) 1
’+Texp{f,”b (Mdv+ [T a ()dv]du

)

" Toxo () —1] [exp (7 bayda) 1]

Corollary 2.3 ([25]). Green’s function G (8) satisfies the following properties

G(t,s)=

®)

G(t,t+T)=G(t,t), Gt+T,s+T)=G(t,s),
exp ([ b(v)dv)

exp (foTb(v)dv) 1
exp ([ a(v)dv) .

exp <f0Ta(v) dv) —1

The following lemma is fundamental to our results.

d
aG(t,s) =a(s)G(t,s)—

2 o= b)) +

Lemma 2.4. Suppose (2)—(4) and (7) hold. If x € Pr, then x is a solution of
equation (1) if and only if

:/IHTG(t,s)q(s)H(x(s))ds
t+T
+/¢ {g(s,x(s—7(s))[E(t,5) —a(s)G(t,s)]

+G(1,5) f (5,x(s),x(s —T(s))) } s, 9)
where (b () dy)
E(t,s) = —PU oW A4y (10)
exp (fOTb(v) dv) -1
and

H (x(s)) = x(s) = h(x(s))- (11)

Proof. Let x € Pr be a solution of (1). Rewrite (1) as

2 d
i ()+p()dt x(t)+q(t)x(t)

=q()H (x(1)) + %g(t,X(f —T(0))) +f (t,x(1),x (1 = 7(2))).
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From Lemma 2.2, we have
x(t):/IHTG(t,s)q(s)H(x(s))ds
+/ZZ+TG(t,S) [;Sg(s,x(s— 7(5)))+ f(s,x(s),x(s— ‘L'(s)))] ds. (12)

Performing an integration by parts, we have

/HTG(t,s) aasg(s,x(s— 7(s)))ds = —/IHT [aasG(t,s)] g(s,x(s—1(s)))ds

= /ttJrTg(s,x(s— 7(5)))[E(t,s) —a(s)G(t,s)]ds, (13)

where E is given by (10). We obtain (9) by substituting (13) in (12). Since each
step is reversible, the converse follows easily. This completes the proof. OJ

Lemma 2.5 ([25]). Let A = [y p(u)du, B=T?exp (; ) In(q (u))du>. If

A% > 4B, (14)

then we have
T T 1
min{/ a(u)du,/ b(u)du} > 3 (A— \/A2f4B) =1,
0 0
T T 1
max{/ a(u)du,/ b(u)du} < 3 <A+\/A2—4B) = m.
0 0
Corollary 2.6 ([25]). Functions G and E satisfy

T T exp (fOTp(u)du) o
WSG(LS)S 1) ; |E(t,s)]§el_1,

In the analysis, we employ a fixed point theorem in which the notion of a
large contraction is required as one of the sufficient conditions. The following
definition, due to Burton, can be found in [8], [9].

Definition 2.7 (Large Contraction). Let (M,d) be a metric space and consider
B :M — M. Then B is said to be a large contraction if given ¢, ¢ € M with
O # @ thend (Bo,Bp) <d(¢,e) and if for all € > 0, there exists a § < 1 such
that

(9,0 €M, d(9,9) > €] =d(Bo,Bp) <5d(9,9).
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The next theorem is also a result of T. A. Burton. This captivating theorem,
which constitutes a basis for our main result, is a reformulated version of Kras-
noselskii’s fixed point theorem and has been used successfully in existence and
stability in differential functional equations (see [[8], Theorem 3] and [9]).

Theorem 2.8 (Krasnoselskii-Burton). Let Ml be a closed bounded convex non-
empty subset of a Banach space (B, ||.||). Suppose that A and B map M into M
such that

(i) x,y € M, implies Ax+ By € M,

(ii) A is compact and continuous,

(iii) B is a large contraction mapping.
Then there exists z € M with z = Az + Bz.

We will use this theorem to prove the existence of periodic solutions for
equation (1).

3. Existence of periodic solutions

Obviously, if we want to apply Theorem 2.8, then we need to define a Ba-
nach space B, a closed bounded convex subset M; of B and construct two
mappings, one is a large contraction and the other is compact. So, we let
(B, .1]) = (Pr,]|-]]) and M, = {@ € B : ||@|| < L}, where L is positive constant.
We express equation (9) as

¢ (1) = (Bo) (1) +(A@) (1) := (Co) (1),

where A, B : My — B are defined by

t+T
(Ap) (1) = /t {g(s, @ (s = 7(5))[E (2,5) —a(s) G(1,9)]

+G(t,5) f (5,9(s), @ (s —7(5)))} ds, (15)
and
t-+T
(Bo) ()= [ Glt.5)a(s)H(p(s))ds. 16)
To simplify notations, we introduce the following constants
T exp (fOTp (u) du) o N )
o T B=g— 0 tgf&%‘qm’ [rer[lg;]l )],

u :tle%";}‘a@)‘a p1 :trer[l&?“g(tvo)’v p2 :[g?&);]‘f(taoao)‘ (17)



NONLINEAR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 109

We need the following assumptions
aocT <1, (18)

JT [(kiL+p1) (B+pa)+o((k2+k3) L+ p2)] <L, (19)
(]— l)L

max (|H (=L)|,|H (L)]) < =,

(20)

where J is constant with J > 3.

We begin with the following proposition (see [1]) and for convenience we
present, below, its proof. Let L be a fixed number. In the next proposition
we prove that, for a well chosen function /4, the mapping H in (11) is a large
contraction on M. So, let us make the following assumptions on the function
h:R—R.

(H1) A is continuous on Uy, = [—L, L] and differentiable on (—L,L).

(H2) h is strictly increasing on Uy.

(H3) sup ' (s)<1.

se(—L,L)
Proposition 3.1. Let h: R — R be a function satisfying (HI)—(H3). Then the
mapping H in (11) is a large contraction on the set M.

Proof. Let ¢, € M with ¢ # ¢. Then ¢ (1) # ¢ () for some ¢ € R. Define
the set

D(¢,0):={teR:¢()# (1)}

Note that ¢ (7) € Uy for all t € R whenever ¢ € M. Since A is strictly increasing

B () —h(0()  h(6 () —h(p(1)
o) —01)  ol-el) O D

holds for all € D (¢, @). On the other hand, for allz € D (¢, ¢), we have
(HO) (1) — (Ho) (1) = |¢ (1) = (¢ (1)) — @ (1) +h (@ (1))|

—lo)-p |1 (MEIZIEW) o

For each fixed r € D (¢, @), define the set U; C Uy, by

_J (0(),0(),ifo(1)>e(t), "
Ul_{ @), 00). o)), P09

The mean value theorem implies that for each fixed t € D (¢, @) there exists a
real number ¢; € U; such that
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By (H2) and (H3), we have

1> sup KW (t)>suph'(t) >h'(¢,) > infh' (s)> inf H'(r)>0. (23)
te(=L,L) tel; sel; te(=L,L)

Consequently, by (21)—(23), we obtain

I(H¢)(f)—(H<P)(t)|§‘1— inf 1 (u)|[¢ (1) — @ (1)l (24)

ue(—L,L)

forallz € D(¢, ). Hence, the mapping H is a large contraction in the supre-
mum norm. Indeed, fix € € (0,1) and assume that ¢ and ¢ are two functions in
M satisfying
I¢—¢ll= sup [¢p(r) (1)=&
1€D(9,9)

If ¢ (r) — @ (r)] < &/2forsomet € D(¢, ), then from (23) and (24), we get

(HY) (1)~ (H) ) <6 () —o ) < 3 lo—0l. @)

Since A is continuous and strictly increasing, the function 4 (u + %) —h(u) at-
tains its minimum on the closed and bounded interval [—L,L]. Thus, if § <
| (1) — @ (¢)| for some 7 € D (¢, @), then from (H2) and (H3) we conclude that

T () —e(1)
where,
A :imm{h(u%)_h( ), uel-L1]} >0,
Therefore, from (22), we have
[(He)(t)—(He) ()| < (1-2) (¢ — ol (26)

Consequently, it follows from (25) and (26) that

[(Ho) (1) = (Ho) ()] <nll¢ —oll,
where |
n :max{2,1—l} < 1.
The proof is complete. O

Example 3.2 ([1]). If Mg 1 = {@ €B: @] <5 '/*} and h(u) = °, then the
mapping H defined by (11) is a large contraction on the set M-1/4.
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We shall prove that the mapping C has a fixed point which solves (1), when-
ever its derivative exists.

Lemma 3.3. Suppose that conditions (2)—(7), (14) and (19) hold. Then A :
M; — My, is compact.

Proof. Let A be defined by (15). Obviously, .A¢ is continuous and it is easy
to show that (A@) (r+T) = (A@) (¢). Observe that in view of (5) and (6), we
have

|g(t,x)| < \g(t,x)—g(t,O)—i—g(t,O)\
< lg(t,x) —g(2,0)| + 12 (1,0)]
< ki [lxl[+p1-

Similarly,

|f(t,x, )| < [f(1,x,y) = f(2,0,0) + £ (2,0,0)]
< \f(t,x,y)—f(t,0,0)]—Hf(t,0,0)\
<k ||x]| + &3 [y]l + p2-

So, for any ¢ € M, we have

t+T
|(A(P)(f)|§/t {lg (s, (s—T())IIE (t,5)]+]a(s)] |G (2,s)]]
+[G(#,9)][f (5,9 (s), (s —7(s)))|}ds
t+T
<[+ (KiL+p1) (B+ 1) + & (ko ) L+ pa) ds

STI(L+pr) (B+ua) + (ks k)Lt po)] < 5 < L.

That is Ap € M.

To see that A is continuous, we let ¢,y € M. Given € > 0, take 1 = &£/N
with N =T [k (B + par) + o (ka + k3)] where &y, k> and k3 are given by (5) and
(6). Now, for || — y|| < 1, we obtain

t+T
[Ap— Ay < [ ki (B+pa)lo— vy +a(k+k)|le—yl]ds

<Nlo-vy|<e.

This proves that A is continuous.
To show that the image of .4 is contained in a compact set. Let ¢, € M,
where n is a positive integer. Then, as above, we see that

[ A@a [ < L.
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Next we calculate % (A@,) (t) and show that it is uniformly bounded. By mak-
ing use of (2), (3) and (4) we obtain by taking the derivative in (15) that

d
o (Ag) (1
— ) e (11— (1)
t+T
[ el puls—7(s)
x [—b(r)E(m) —als) (—f)<f><?<”s)+ MH @
s (—b(t)G(t,s)JrW) £ (5,0 (5)  @u (s = (5))) ds.

Consequently, by invoking (5), (6) and (17), we obtain

d
o (A (1)

<B(kiL+p1)
+T[(kiL+p1) AB+u(Aa+B))+ (Aa+B) ((ky+k3) L+ ps)]
SD’

for some positive constant D. Hence the sequence (LA¢,) is uniformly bounded
and equicontinuous. The Ascoli-Arzela theorem implies that a subsequence
(A@,,) of (Ag@,) converges uniformly to a continuous 7-periodic function.
Thus A is continuous and A (M) is contained in a compact subset of M. [

Lemma 3.4. For B defined in (16), suppose that (HI)—(H3), (18) and (20) hold.
Then B : M — My is a large contraction.

Proof. Let B be defined by (16). Obviously, B¢ is continuous and it is easy to
show that (B@) (t+T) = (Be) (t). So, for any ¢ € M, we have

t+T
[(Bo) (1)] S/, G (t,5)l|q (s)| |H (¢ (s))|ds
(J—1)L

< aoT max (JH (~L)],JH (L)]) < *—

<L,
by (18) and (20). Then, for any ¢ € M, we have
|Be|| < L.

Thus B € M. Consequently, we have B : M; — M.
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It remains to show that 3 is large contraction. From the proof of Proposition
3.1 we have for ¢,y € My, with ¢ # v

((Bo) (1) = (By) ()| < acT|¢ -yl <[l¢—vyl.

Then ||Be — By|| < ||¢ — y||. Now, let € € (0,1) be given and let ¢,y € M,
with ||@ — y|| > €. From the proof of the Proposition 3.1 we have found 6 < 1
such that

[(Bo) (1) = (By) (1) < o TS @ -y < Slo—yl.

Then ||[Be — By|| < § ||¢ — y||. Consequently, B is a large contraction. O

Theorem 3.5. Let (Pr,||.||) be the Banach space of continuous T-periodic real
valued functions and My, = {¢ € Pr : ||@|| < L}, where L is positive constant.
Suppose (H1)—(H3), (2)—(7), (14) and (18)—(20) hold. Then equation (1) has a
T-periodic solution ¢ in the subset M.

Proof. By Lemma 3.3, the operator A : M; — M is compact and continuous.
Also, from Lemma 3.4, the operator B : M; — M is a large contraction. More-
over, if @,y € M, we see that

J-1)L

<L.
7 =

L
e+ Byl < [Agl| + 1Byl < 5 +
Thus A + By € M.
Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satis-
fied. Thus there exists a fixed point ¢ € M, such that ¢ = 4@+ B¢. By Lemma
2.4 this fixed point is a solution of (1) and the proof is complete. O
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