CLASSIFICATION OF GENERAL ABSOLUTE GEOMETRIES WITH LAMBERT-SACCHERI QUADRANGLES

HELMUT KARZEL - MARIO MARCHI ${ }^{1}$

Abstract

Without claiming any kind of continuity we show that an absolute geometry has either a singular, a hyperbolic or an elliptic congruence, i.e. for any quadruple (a, b, c, d) of distinct points contained in a plane with $\overline{d, a} \perp \overline{a, b} \perp \overline{b, c} \perp \overline{c, d}$ $((a, b, c, d)$ is then called Lambert-Saccheri quadrangle $)$ if $a^{\prime}:=(a \perp \overline{c, d}) \cap \overline{c, d}$ then either $a^{\prime}=d$ (singular case), or $\left.a^{\prime} \in\right] c, d[$ (hyperbolic case) or $d \in] c, a^{\prime}[$ (elliptic case).

Introduction.

In their attempt, to deduce the parallel postulate from the other axioms of Euclid, G. Saccheri and H. J. Lambert considered quadrangles (a, b, c, d) with three orthogonal angles α, β, γ and for the forth angle δ they made the three hypotheses: $\delta=R, \delta<R$ and $\delta>R$ (where R stands for the right angle). They succeeded to show that Euclid's parallel postulate is equivalent with the hypothesis $\delta=R$, and that the hypothesis $\delta>R$ leads to a contradiction. In order to disprove the hypothesis $\delta<R$ they proved many theorems of hyperbolic geometry but failed to obtain the

[^0]desired contradiction. Of course Euclid's axiomatic and the argumentation of Saccheri and Lambert base on many visual assumptions and as we know since more than 100 years, the mentioned theorems are only valid under the claim of continuity conditions like the Archimedian axiom. M. Dehn [1] gave in 1900 examples of geometries where the hypothesis $\delta=R$ is valid but not the parallel postulate and examples with $\delta>R$.

In this paper we consider absolute planes $(E, \mathcal{E}, \alpha, \equiv)$ in the sense of [4] p. 96. E denotes the set of points, \mathscr{E} of lines, α stands for the order structure and \equiv for the congruence. We claim that the axioms I1, I3, E1, A1, A2, V1, V2,.., V7 of [4] are valid. The order structure which is in [4] a function α from the set of triples $(\mathscr{E}, E, E)^{\prime}:=\{(G, a, b) \in$ $\mathcal{E} \times E \times E \mid a, b \notin G\}$ in the cyclic group $(\{1,-1\}, \cdot)$ of order 2 $((G \mid a, b):=\alpha(G, a, b)=1$ resp. $(G \mid a, b)=-1$ expresses that the points a, b are on the same resp. on different "sides" of the line G) can also be replaced by a betweenness function (cf. e.g. [2] p. 389). If a, b, c are collinear points with $a \neq b, c$ then $(a \mid b, c)=-1$ or $=1$ respectively, means that a is between b and c or c is a point on the halfine $\overrightarrow{a, b}$ respectively. By $] a, b[$ we denote the open segment, i.e. the set of all points between a and b and $[a, b]:=] a, b[\cup\{a, b\}$ is the closed segment. If $[a, b]$ and $[c, d]$ are two segments then by the axioms V2,V3 (Streckenabtragen) there is exactly one point $u \in \overrightarrow{a, b}$ such that $(a, u) \equiv(c, d)$. We set:
$|a, b|=|c, d|$ if $u=b,|a, b|<|c, d|$ if $b \in] a, u[$ hence $(b \mid a, u)=$ -1 and $|a, b|>|c, d|$ if $u \in] a, b[$.

A quadruple (a, b, c, d) of distinct complanar but non collinear points will be called $L S$ (Lambert Saccheri)-quadrangle if

$$
\overline{d, a} \perp \overline{a, b} \perp \overline{b, c} \perp \overline{c, d}
$$

In this case we set
$(a, b, c, d)^{\prime}:=a^{\prime}:=(a \perp \overline{c, d}) \cap \overline{c, d}$.
The set $L S$ of all $L S$-quadrangles (a, b, c, d) falls into the classes
$L S_{r}:=\left\{(a, b, c, d) \in L S \mid(a, b, c, d)^{\prime}=d\right\}$ of rectangles,
$L S_{h}:=\left\{(a, b, c, d) \in L S \mid(a, b, c, d)^{\prime} \in\right] c, d[\}$ of hyperbolic and
$L S_{e}:=\{(a, b, c, d) \in L S \mid d \in] c,(a, b, c, d)^{\prime}[\}$ of elliptic quadrangles which are characterized by $|a, b|=|c, d|,|a, b|<|c, d|$ and $|a, b|>|c, d|$ resp.

It is well known that $L S_{r} \neq \emptyset$ implies $L S=L S_{r}$. Then the absolute plane ($E, \mathcal{E}, \alpha, \equiv$) is called singular (cf. e.g. [3] p. 162) and the congruence Euclidean. The Euclidean planes are a subclass of the singular planes.

In this paper we give a geometric proof that, for the ordinary case, characterized by $L S_{r}=\emptyset$, we have also the statements:

$$
" L S_{h} \neq \emptyset \Rightarrow L S_{h}=L S ", \quad " L S_{e} \neq \emptyset \Rightarrow L S_{e}=L S "
$$

If $L S=L S_{h}$, or $L S=L S_{e}$, we say that the congruence " \equiv " is hyperbolic or elliptic respectively. The hyperbolic planes have hyperbolic congruence. The elliptic planes fall out of our axiomatic frame. But their congruence is elliptic.

Since in a spatial absolute geometry all planes are absolute planes and these planes are isomorphic, this classification is also here valid.

We have the main results:
Theorem 1. Let ($P, \mathcal{G}, \alpha, \equiv$) be a general absolute geometry (in the sense of [2]) then either $L S=L S_{r}$ or $L S=L S_{h}$ or $L S=L S_{e}$, i.e. the congruence " \equiv " is either Euclidean or hyperbolic or elliptic.

If $\widetilde{P}:=\{\tilde{p} \mid p \in P\}$ denotes the set of all point-reflections then:
(1) $L S=L S_{r} \Longleftrightarrow \widetilde{P}^{3}=\widetilde{P}$.
(2) If $(P, \mathcal{E}, \alpha, \equiv)$ is an Euclidean geometry (i.e. the Parallel Axiom is valid) then $L S=L S_{r}$.
(3) If $(P, \mathcal{E}, \alpha, \equiv)$ is a hyperbolic geometry (i.e. (P, \mathcal{E}, α) is an ordered space with hyperbolic incidence structure in the sense of [2] Sec.2) then $L S=L S_{h}$.
(4) If $L S_{r}=\emptyset$ then: $\forall a, b, c \in P:\{a, b, c\}$ are collinear $\Longleftrightarrow \tilde{a} \circ \tilde{b} \circ \tilde{c}$ is an involution.

Theorem 2. There are absolute geometries ($P, \boldsymbol{\mathcal { G }}, \alpha, \equiv$) such that:
(1) $L S=L S_{r}$ and $(P, \mathcal{E}, \alpha, \equiv)$ is not an Euclidean geometry (cf.[1]).
(2) $L S=L S_{h}$ and $(P, \mathcal{G}, \alpha, \equiv)$ is not a hyperbolic geometry.
(3) $L S=L S_{e}(c f .[1])$.

1. Notations and known Results.

In the absolute plane ($E, \mathcal{\mathscr { C }}, \alpha, \equiv$), given by the axioms $\mathrm{I} 1, \mathrm{I} 3, \mathrm{~A} 1, \mathrm{~A} 2$, $\mathrm{V} 1, \mathrm{~V} 2, \ldots \mathrm{~V} 7$ of [4], let $a, b, c, \ldots \in E$ and $A, B, C, \ldots \in \mathcal{E}$ denote points and lines respectively. If $a \neq b$ let $\overline{a, b} \in \mathcal{E}$ be the uniquely determined line joining a and b and let $\tilde{a}(b) \in \overline{a, b} \backslash\{b\}$ be the unique point such that $(\tilde{a}(b), a) \equiv(a, b)$ and let $\tilde{a}(a):=a$. The map

$$
\tilde{a}: E \rightarrow E ; x \mapsto \tilde{a}(x)
$$

is called point reflection. We set
$A \perp B: \Longleftrightarrow|A \cap B|=1$ and if $c \in A \cap B, a \in A \backslash B, b \in B \backslash A$ then $(a, b) \equiv(a, \tilde{c}(b)) \equiv(b, \tilde{c}(a))$
and call then A and B orthogonal.
$(a \perp B) \in \mathcal{G}$ denotes the unique line with $a \in(a \perp B)$ and $(a \perp B) \perp B$ (cf.[4] (16.9)).
If $\left\{a^{\prime}\right\}:=(a \perp B) \cap B$ is the foot of a on B let $\widetilde{B}(a):=\tilde{a}^{\prime}(a)$ then

$$
\widetilde{B}: E \rightarrow E ; x \mapsto \widetilde{B}(x)
$$

is called line reflection (cf. [4] p. 105). Let $\widetilde{\mathscr{G}}:=\{\widetilde{G} \mid G \in \mathscr{E}\}$ be the set of all line reflections.
(1.1) If \mathcal{M} denotes the group of all motions of the absolute plane ($E, \mathcal{H}, \alpha, \equiv$) then:
(1) $\mathcal{M}=\widetilde{\mathscr{G}} \circ \widetilde{\mathscr{G}} \dot{\cup} \widetilde{\mathscr{G}} \circ \widetilde{\mathscr{G}} \circ \widetilde{\mathscr{G}}(\mathrm{cf}$. [4](17.6) and (17.9)).
(2) $\mathcal{M}^{+}:=\widetilde{\mathscr{G}} \circ \widetilde{\mathscr{G}}$ is the subgroup of proper motions (cf.[4](17.18)).
(3) $\forall a, b, c, d$ with $a \neq b, c \neq d \quad \exists_{1} \sigma \in \mathcal{M}^{+}: \sigma(\overrightarrow{a, b})=\overrightarrow{c, d}$ (cf. [4](17.15)).
(4) $\forall a, b, c, x, y, z$ with $b \neq a, c, \overline{b, a} \perp \overline{b, c}$ and $y \neq x, z, \overline{y, x} \perp$ $\overline{y, z} \exists_{1} \sigma \in \mathcal{M}: \sigma(\overrightarrow{y, x})=\overrightarrow{b, a}$ and $\sigma(\overrightarrow{y, z})=\overrightarrow{b, c}$ (follows from [4](17.15) and Axiom V2).
(1.2) If $A, B, C \perp G$ and $\{a\}:=A \cap G$ then:
(1) $\tilde{a}=\widetilde{A} \circ \widetilde{G}$.
(2) There is a line D with $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C}=\widetilde{D}$ and $D \perp G$. (cf. [4](17.7) and (17.13.2)).

From (1.2) and [4](17.10) follows:
(1.3) If a, b, c are collinear then $\operatorname{Fix}(\tilde{a} \circ \tilde{b} \circ \tilde{c}) \neq \emptyset$ and if $d \in \operatorname{Fix}(\tilde{a} \circ \tilde{b} \circ \tilde{c})$ then $\tilde{a} \circ \tilde{b} \circ \tilde{c}=\tilde{d}=\tilde{c} \circ \tilde{b} \circ \tilde{a}$ and a, b, c, d are collinear.

By [4](18.3):
$(\underset{\sim}{1.4)} \widetilde{\tilde{a}(b)}=\tilde{a} \circ \tilde{b} \circ \tilde{a}, \tilde{a}(\widetilde{B})=\tilde{a} \circ \widetilde{B} \circ \tilde{a}, \widetilde{A(b)}=\widetilde{A} \circ \tilde{b} \circ \widetilde{A}, \widetilde{A(B)}=$ $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$.

Let $a \neq b$, if there is a point m or a line M with $\widetilde{m}(a)=b$ or $\widetilde{M}(a)=b$ respectively, then m is called the midpoint or M the midline of a and b respectively. The following point sets determined by a and b with $a \neq b$
are called:
$] a, b[:=\{x \in \overline{a, b} \mid(x \mid a, b)=-1\}$ open segment and $[a, b]:=$ $] a, b[\cup\{a, b\}$ closed segment,
$\overrightarrow{a, b}:=\{x \in \overline{a, b} \mid(a \mid b, x)=1\}$ and $\overrightarrow{a, b}:=\{x \in \overline{a, b} \mid(a \mid b, x)=-1\}$ halfines.
A subset $S \subseteq E$ is called convex if for all $\{a, b\} \in\binom{S}{2}$ it holds $] a, b[\subseteq S$.
Let \mathcal{C} be the set of all convex subsets of E.

From [4]p.87-89 follows:
(1.5) If $a \neq b$ then:
(1) $\overline{a, b}=\overrightarrow{a, b} \cup \dot{\cup}\{a\} \dot{\cup} \dot{\overrightarrow{a, b}},] a, b[=\overrightarrow{a, b} \cap \overrightarrow{b, a}$.
(2) $] a, b[,[a, b], a, b \in \mathcal{C}$.
(3) If $\{a, b, c\} \in\binom{E}{3}$ are collinear then: $(b \mid a, c)=-1 \Longleftrightarrow \overrightarrow{b, a \cap b, c}=\emptyset$.

By [4](16.11), (16.12) and (18.3) resp. (16.10.2) holds:
(1.6) Two distinct points a, b have exactly one midpoint m and one midline M and $(m \mid a, b)=(M \mid a, b)=-1$, i.e. $m \in] a, b[, M=(m \perp \overline{a, b}), \widetilde{m}=$ $\widetilde{a, b} \circ \widetilde{M}, \widetilde{m} \circ \tilde{a}=\tilde{b} \circ \widetilde{m}$ or $\tilde{b}=\widetilde{m} \circ \tilde{a} \circ \widetilde{m}$.
(1.7) If $A, B \perp C$ and $A \neq B$ then $A \cap B=\emptyset$.
(1.8) Let $a, b \notin C$ and $a \neq b$ then:
(1) $] a, b[\cap C \neq \emptyset \Longleftrightarrow(C \mid a, b))=-1$ (cf. [4],p.83,V1).
(2) If there is a $D \in \mathcal{E}$ with $\overline{a, b}, C \perp D$ then $(C \mid a, b)=1$ (by (1) and [4](16.10.2)).
(3) If $\overline{a, b} \cap C \neq \emptyset$ and $\{c\}:=\overline{a, b} \cap C$ then $(C \mid a, b)=(c \mid a, b)([4](13.9))$.
(4) If a, b, c, or respectively $a^{\prime}, b^{\prime}, c^{\prime}$, are distinct and collinear and if there are A, B, C distinct with $a, a^{\prime} \in A, b, b^{\prime} \in B, c, c^{\prime} \in C$ and $A \cap B=A \cap C=\emptyset$ (in particular if there is a D with $A, B, C \perp D$ - in this case we write
$\left.(a, b, c) \perp_{D}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)-\right)$ then $(a \mid b, c)=\left(a^{\prime} \mid b^{\prime}, c^{\prime}\right)([4](13.10))$.
(1.9) Let a, b, c be three distinct and collinear points, let m_{1}, m_{2}, m_{3} be the midpoints of a, b, of b, c, of a, c respectively, then:
(1) $\exists_{1} d \in \overline{a, b}$ such that $\tilde{c} \circ \tilde{a} \circ \tilde{b}=\tilde{d}$ (cf. (1.3)).
(2) If $\tilde{c} \circ \tilde{a} \circ \tilde{b}=\tilde{d}$ then $(b \mid a, c)=(c \mid d, b)$.
(3) $(b \mid a, c)=-1 \Rightarrow\left(m_{3} \mid m_{1}, m_{2}\right)=-1$.

Proof. "(1)" follows from [4](17.7) and (17.13.2).
"(2)" Since $\widetilde{m_{2}} \circ \tilde{c}=\tilde{b} \circ \widetilde{m_{2}}$ (cf.(1.4)), the points a, b, c, m_{2} are collinear and we have: $\widetilde{m_{2}}(d)=\widetilde{m_{2}} \circ \tilde{d} \circ \widetilde{m_{2}}=\widetilde{m_{2}} \circ \tilde{c} \circ \tilde{a} \circ \tilde{b} \circ \widetilde{m_{2}}=\tilde{b} \circ\left(\widetilde{m_{2}} \circ \tilde{a} \circ \tilde{b}\right) \circ \widetilde{m_{2}}=$ $\tilde{b} \circ\left(\tilde{b} \circ \tilde{a} \circ \widetilde{m_{2}}\right) \circ \widetilde{m_{2}}=\tilde{a}$, i.e. $\widetilde{m_{2}}(d)=a$. Therefore by (1.1)
$(b \mid a, c)=\left(\widetilde{m_{2}}(b) \mid \widetilde{m_{2}}(a), \widetilde{m_{2}}(c)\right)=(c \mid d, b)$.
"(3)" By (1.6) and (1.5) $\left.m_{1} \in\right] a, b\left[\subseteq \overrightarrow{b, a}\right.$, i.e. $\left(b \mid m_{1}, a\right)=1$ and
$\left.m_{2} \in\right] b, c\left[\subseteq \overrightarrow{b, c}\right.$, i.e. $\left(b \mid m_{2}, c\right)=1$. Now $(b \mid a, c)=-1$ implies $\left(b \mid m_{1}, m_{2}\right)=\left(b \mid m_{1}, a\right) \cdot(b \mid a, c) \cdot\left(b \mid c, m_{2}\right)=1 \cdot(-1) \cdot 1=-1$ thus $\left(m_{1} \mid b, m_{2}\right)=\left(m_{2} \mid b, m_{1}\right)=1$. By $\widetilde{m_{2}} \circ \widetilde{m_{3}} \circ \widetilde{m_{1}}(b)=\widetilde{m_{2}} \circ \widetilde{m_{3}}(a)=\widetilde{m_{2}}(c)=$ b we have, according to (1.3), $\widetilde{m_{1}} \circ \widetilde{m_{3}} \circ \widetilde{m_{2}}=\widetilde{m_{2}} \circ \widetilde{m_{3}} \circ \widetilde{m_{1}}=\tilde{b}$ and so by (2), $\left(m_{2} \mid m_{3}, m_{1}\right)=\left(m_{1} \mid b, m_{2}\right)=1$ and $\left(m_{1} \mid m_{3}, m_{2}\right)=\left(m_{2} \mid b, m_{1}\right)=1$. But this implies by [4] Axiom A1, $\left(m_{3} \mid m_{1}, m_{2}\right)=-1$.

2. Lambert-Saccheri Quadrangles.

A quadruple $(a, b, c, d) \in\binom{E}{4}$ is called Lambert-Saccheri quadrangle if $\overline{d, a} \perp \overline{a, b} \perp \overline{b, c} \perp \overline{c, d}$. Let $L S$ be the set of all Lambert-Saccheri quadrangles and let $(a, b, c, d) \in L S$, then also $(c, b, a, d) \in L S$ and if $(a, b, c, d)^{\prime}:=a^{\prime}:=(a \perp \overline{c, d}) \cap \overline{c, d}$ then also $\left(a^{\prime}, c, b, a\right) \in L S$.
We have the three types
$L S_{r}:=\left\{(a, b, c, d) \in L S \mid(a, b, c, d)^{\prime}=d\right\}$, $L S_{h}:=\left\{(a, b, c, d) \in L S \mid(a, b, c, d)^{\prime} \in\right] c, d[\}$ and $L S_{e}:=\{(a, b, c, d) \in L S \mid d \in] c,(a, b, c, d)^{\prime}[\}$ of LS-quadrangles: the rectangles, the hyperbolic and the elliptic ones.

Since $L S_{r} \neq \emptyset$ implies $L S=L S_{r}$ - the absolute plane $(E, \mathcal{E}, \alpha, \equiv)$ is then called singular (cf. [4] (21.3) and [3] p.162) - we consider from now on only ordinary absolute planes characterized by $L S_{r}=\emptyset$.
(2.1) For $(a, b, c, d) \in L S$ holds:
$(a, b, c, d) \in L S_{h} \Longleftrightarrow|a, b|<|c, d|$.
$(a, b, c, d) \in L S_{e} \Longleftrightarrow|c, d|<|a, b|$.
Proof. Let $D:=\overline{a, d}, C:=\overline{c, d}, D^{\prime}:=(a \perp C),\left\{a^{\prime}\right\}:=D^{\prime} \cap C, M$ the midline of b and $c, D_{1}:=\widetilde{M}(D)$ and $a_{1}:=\widetilde{M}(a)$. Then $\left\{a_{1}\right\}=$
$D_{1} \cap C\left(a_{1}, c\right) \equiv(a, b)$ thus $\left|a_{1}, c\right|=|a, b|$ and $D_{1}, D^{\prime} \perp C$ and $(M \mid b, c)=-1($ by $(1.6)),(M \mid a, b)=(M \mid c, d)=1$ by (1.8.2) implying $(M \mid a, d)=(M \mid a, b) \cdot(M \mid b, c) \cdot(M \mid c, d)=1 \cdot(-1) \cdot 1=-1$.
Therefore the point $\{m\}:=M \cap] a, d\left[\right.$ exists and we have $m \in D, D_{1}$, $(m \mid a, d)=-1$ and $(a, m, d) \perp_{C}\left(a^{\prime}, a_{1}, d\right)$ hence by (1.8.4), $\left(a_{1} \mid a^{\prime}, d\right)=$ $=(m \mid a, d)=-1$, i.e. $\left.a_{1} \in\right] a^{\prime}, d\left[\right.$ and $\left(a^{\prime} \mid a_{1}, d\right)=1$.
Now if $(a, b, c, d) \in L S_{h}$ then $\left.a^{\prime} \in\right] c, d\left[\right.$ hence $\left(a^{\prime} \mid a_{1}, c\right)=\left(a^{\prime} \mid c, d\right)$. $\left(a^{\prime} \mid a_{1}, d\right)=(-1) \cdot 1=-1$ implying $\left(a_{1} \mid a^{\prime}, c\right)=1$ and so $\left(a_{1} \mid c, d\right)=$ $\left(a_{1} \mid a^{\prime}, d\right) \cdot\left(a_{1} \mid a^{\prime}, c\right)=(-1) \cdot 1=-1$, i.e. $\left.a_{1} \in\right] c, d[$. Therefore together $|a, b|=\left|a_{1}, c\right|<|c, d|$.
If $(a, b, c, d) \in L S_{e}$ then $\left.d \in\right] a^{\prime}, c\left[\right.$ hence $\left(d \mid a^{\prime}, c\right)=-1$ and $\left(a_{1} \mid a^{\prime}, d\right)=$ -1 implies $\left(d \mid a^{\prime}, a_{1}\right)=1$. Consequently $\left(d \mid a_{1}, c\right)=\left(d \mid a^{\prime}, c\right) \cdot\left(d \mid a^{\prime}, a_{1}\right)=$ $(-1) \cdot 1=-1$, i.e. $d \in] a_{1}, c\left[\right.$ and so $|c, d|<\left|a_{1}, c\right|=|a, b|$.
(2.2) Let $\left(a, b, c_{1}, d_{1}\right),\left(a, b, c_{2}, d_{2}\right) \in L S$ with $\left.d_{1} \in\right] a, d_{2}[$. If $\left(a, b, c_{1}, d_{1}\right) \in L S_{h}$ then $\left(a, b, c_{2}, d_{2}\right) \in L S_{h}$, if $\left(a, b, c_{1}, d_{1}\right) \in L S_{e}$ then $\left(a, b, c_{2}, d_{2}\right) \in L S_{e}$.

Proof. Let $D:=\overline{a, d_{1}}, A:=\overline{a, b}, B:=\overline{b, c_{1}}\left(=\overline{b, c_{2}}\right), C_{i}:=\overline{c_{i}, d_{i}}$, let M_{1}, M_{2}, M_{3} be the midlines of b, c_{1}, of c_{1}, c_{2}, of b, c_{2} resp.. Then $M_{1}, M_{2}, M_{3}, A, C_{i} \perp B, \widetilde{M}_{3} \circ \widetilde{M}_{2} \circ \widetilde{M}_{1}(b)=\widetilde{M}_{3} \circ \widetilde{M}_{2}\left(c_{1}\right)=\widetilde{M_{3}}\left(c_{2}\right)=$ $b, b \in A$ and $D \perp A$ imply by (1.2):
(1) $\widetilde{M}_{3} \circ \widetilde{M}_{2} \circ \widetilde{M}_{1}=\widetilde{A}, \quad \widetilde{M}_{3}(D)=\widetilde{M}_{2} \circ \widetilde{M}_{1}(D), \quad \widetilde{M}_{1}(A)=C_{1}$, $\widetilde{M}_{3}(A)=C_{2}$ and $\widetilde{M}_{2}\left(C_{1}\right)=C_{2}$ and $\left.\left\{m_{1}^{\prime}\right\}:=M_{1} \cap\right] b, c_{1}\left[=M_{1} \cap B\right.$, $\left.\left\{m_{2}^{\prime}\right\}:=M_{2} \cap\right] c_{1}, c_{2}\left[=M_{2} \cap B,\left\{m_{3}^{\prime}\right\}:=M_{3} \cap\right] b, c_{2}\left[=M_{3} \cap B\right.$ resp. are the midpoints of b, c_{1} of c_{1}, c_{2} of b, c_{2} respectively.

By (1.6) $\left(M_{1} \mid b, c_{1}\right)=\left(M_{2} \mid c_{1}, c_{2}\right)=\left(M_{3} \mid b, c_{2}\right)=-1$ and by (1.8.2) $\left(M_{1} \mid b, a\right)=\left(M_{1} \mid c_{1}, d_{1}\right)=\left(M_{2} \mid c_{1}, d_{1}\right)=\left(M_{2} \mid c_{2}, d_{2}\right)=\left(M_{3} \mid c_{2}, d_{2}\right)=$ $=\left(M_{3} \mid b, a\right)=1$. Consequently $\left(M_{1} \mid a, d_{1}\right)=\left(M_{1} \mid a, b\right) \cdot\left(M_{1} \mid b, c_{1}\right)$. $\left(M_{1} \mid c_{1}, d_{1}\right)=1 \cdot(-1) \cdot 1=-1$ and in the same way $\left(M_{2} \mid d_{1}, d_{2}\right)=$ $\left(M_{3} \mid a, d_{2}\right)=-1$, i.e. the points $\left.\left\{m_{1}\right\}:=M_{1} \cap\right] a, d_{1}\left[=M_{1} \cap D,\left\{m_{2}\right\}:=\right.$ $M_{2} \cap D$ and $\left\{m_{3}\right\}:=M_{3} \cap D$ exist (cf.(1.8.1)) and we have $\left(m_{1} \mid a, d_{1}\right)=$ $\left(m_{2} \mid d_{1}, d_{2}\right)=\left(m_{3} \mid d_{2}, a\right)=-1$.

From $\left.d_{1} \in\right] a, d_{2}\left[\right.$ follows by (1.8.4) $\left.c_{1} \in\right] b, c_{2}\left[\right.$, i.e. $\left(c_{1} \mid b, c_{2}\right)=-1$ and so by (1.9.3), $\left(m_{3}^{\prime} \mid m_{1}^{\prime}, m_{2}^{\prime}\right)=-1$. Since $A, C_{i}, M_{i} \perp B$ we obtain again by (1.8.4):
(2) $\left(m_{1} \mid a, d_{1}\right)=\left(m_{2} \mid d_{1}, d_{2}\right)=\left(m_{3} \mid a, d_{2}\right)=\left(m_{3} \mid m_{1}, m_{2}\right)=-1$.

Now let $D_{1}:=\widetilde{M}_{1}(D)$ and $D_{2}:=\widetilde{M}_{2}\left(D_{1}\right)=\widetilde{M}_{2} \circ \widetilde{M}_{1}(D)$, i.e. by (1), $\widetilde{M}_{3}(D)=D_{2}$. If we set $a_{1}:=\widetilde{M}_{1}(a), a_{2}:=\widetilde{M}_{2}\left(a_{1}\right)$ and since $D=\overline{a, m_{1}}$ $=\overline{a, m_{3}}, A \perp D$ and by (1) we have:
(3) $a_{i} \in C_{i},(a, b) \equiv\left(a_{1}, c_{1}\right) \equiv\left(a_{2}, c_{2}\right), \quad D_{1}=\overline{a_{1}, m_{1}}, \quad D_{2}=$ $\overline{a_{2}, m_{3}}, C_{1} \perp D_{1}, C_{2} \perp D_{2}$ and $\widetilde{D_{2}}=\widetilde{M_{2}} \circ \widetilde{D_{1}} \circ \widetilde{M_{2}}=\widetilde{M_{2}}\left(D_{1}\right)$.

From (3) and (2) follows:
(4) $\left(D_{1} \mid a, d_{1}\right)=\left(m_{1} \mid a, d_{1}\right)=-1,\left(D_{2} \mid m_{1}, m_{2}\right)=\left(m_{3} \mid m_{1}, m_{2}\right)=$ -1 .

Since $B, D_{1} \perp C_{1}$ and $B, D_{2} \perp C_{2}$ we have:
(5) $\left(D_{1} \mid c_{1}, m_{2}^{\prime}\right)=\left(D_{2} \mid c_{2}, m_{2}^{\prime}\right)=1$.

From (2) follows $\left(d_{1} \mid a, m_{1}\right)=\left(d_{1} \mid m_{2}, d_{2}\right)=1$ and since $\left.d_{1} \in\right] a, d_{2}[$, i.e. $\left(d_{1} \mid a, d_{2}\right)=-1$ we have $\left(d_{1} \mid m_{1}, m_{2}\right)=\left(d_{1} \mid m_{1}, a\right) \cdot\left(d_{1} \mid a, d_{2}\right)$. $\left(d_{1} \mid d_{2}, m_{2}\right)=1 \cdot(-1) \cdot 1=-1$ and so $\left(m_{1} \mid d_{1}, m_{2}\right)=1$. Together with (3) and (5) follows $\left(D_{1} \mid m_{2}, m_{2}^{\prime}\right)=\left(D_{1} \mid m_{2}, d_{1}\right) \cdot\left(D_{1} \mid d_{1}, c_{1}\right) \cdot\left(D_{1} \mid c_{1}, m_{2}^{\prime}\right)=$ $\left(m_{1} \mid m_{2}, d_{1}\right) \cdot\left(a_{1} \mid d_{1}, c_{1}\right)$ hence:
(6) $\left(D_{1} \mid m_{2}, m_{2}^{\prime}\right)=\left(a_{1} \mid d_{1}, c_{1}\right)$.

Finally $\widetilde{m_{3}^{\prime}} \circ \widetilde{m_{1}^{\prime}} \circ \widetilde{m_{2}^{\prime}}\left(c_{2}\right)=c_{2}$ implies $\widetilde{m_{3}^{\prime}} \circ \widetilde{m_{1}^{\prime}} \circ \widetilde{m_{2}^{\prime}}=\widetilde{c_{2}}($ cf. (1.3)) hence by (1.9.2), $\left(m_{2}^{\prime} \mid m_{1}^{\prime}, m_{3}^{\prime}\right)=\left(m_{3}^{\prime} \mid c_{2}, m_{2}^{\prime}\right)$, by (1.8.4), $\left(m_{2} \mid m_{1}, m_{3}\right)=$ $\left(m_{3} \mid d_{2}, m_{2}\right)$ and so by (2) and Axiom A2 $\left(m_{3} \mid d_{2}, m_{2}\right)=\left(m_{2} \mid m_{1}, m_{3}\right)=1$. Since by (3), $D_{2}=\overline{a_{2}, m_{3}}$ and $d_{2}, a_{2}, c_{2} \in C_{2}$ we have $\left(D_{2} \mid m_{2}, d_{2}\right)=$ $\left(m_{3} \mid m_{2}, d_{2}\right)=1,\left(D_{2} \mid d_{2}, c_{2}\right)=\left(a_{2} \mid d_{2}, c_{2}\right)$ and by $(5),\left(D_{2} \mid c_{2}, m_{2}^{\prime}\right)=1$. Consequently $\left(D_{2} \mid m_{2}, m_{2}^{\prime}\right)=\left(D_{2} \mid m_{2}, d_{2}\right) \cdot\left(D_{2} \mid d_{2}, c_{2}\right) \cdot\left(D_{2} \mid c_{2}, m_{2}^{\prime}\right)$ implies:
(7) $\left(D_{2} \mid m_{2}, m_{2}^{\prime}\right)=\left(a_{2} \mid d_{2}, c_{2}\right)$.

If $D_{1} \cap M_{2}=\emptyset$ then by (3), $D_{2} \cap M_{2}=\emptyset$ and therefore ($D_{1} \mid m_{2}, m_{2}^{\prime}$) $=\left(D_{2} \mid m_{2}, m_{2}^{\prime}\right)=1$, i.e. by (6) and (7), $\left(a_{1} \mid d_{1}, c_{1}\right)=\left(a_{2} \mid d_{2}, c_{2}\right)$. If
$\{t\}:=D_{1} \cap M_{2} \neq \emptyset$ then by (3) $t \in D_{2}$ and so by [4] Axiom A1, $\left(D_{1} \mid m_{2}, m_{2}^{\prime}\right)=\left(D_{2} \mid m_{2}, m_{2}^{\prime}\right)$. Therefore in any case:
(8) $\left(a_{1} \mid d_{1}, c_{1}\right)=\left(a_{2} \mid d_{2}, c_{2}\right)$.

By (3) $|a, b|=\left|a_{1}, c_{1}\right|=\left|a_{2}, c_{2}\right|$ and since $a_{i}, c_{i}, d_{i} \in C_{i}$ we have:
$\left(a, b, c_{1}, d_{1}\right) \in L S_{h} \Longleftrightarrow|a, b|=\left|a_{1}, c_{1}\right|<\left|d_{1}, c_{1}\right| \Longleftrightarrow a_{1} \in$ $] c_{1}, d_{1}\left[\Longleftrightarrow-1=\left(a_{1} \mid d_{1}, c_{1}\right) \stackrel{(8)}{=}\left(a_{2} \mid d_{2}, c_{2}\right) \Longleftrightarrow a_{2} \in\right] c_{2}, d_{2}[\Longleftrightarrow$ $|a, b|=\left|a_{2}, c_{2}\right|<\left|d_{2}, c_{2}\right| \Longleftrightarrow\left(a, b, c_{2}, d_{2}\right) \in L S_{h}$ and $\left(a, b, c_{1}, d_{1}\right) \in L S_{e} \Longleftrightarrow|a, b|=\left|a_{1}, c_{1}\right|>\left|d_{1}, c_{1}\right| \Longleftrightarrow d_{1} \in$ $] c_{1}, a_{1}\left[\Longleftrightarrow-1=\left(d_{1} \mid a_{1}, c_{1}\right) \stackrel{(8)}{=}\left(d_{2} \mid a_{2}, c_{2}\right) \Longleftrightarrow d_{2} \in\right] c_{2}, a_{2}[\Longleftrightarrow$ $|a, b|=\left|a_{2}, c_{2}\right|>\left|d_{2}, c_{2}\right| \Longleftrightarrow\left(a, b, c_{2}, d_{2}\right) \in L S_{e}$.

From (2.2) follows:
(2.3) An ordinary absolute plane has either a hyperbolic congruence, i.e. for all $(a, b, c, d) \in L S$ it holds $(a, b, c, d) \in L S_{h}$ or a elliptic congruence, i.e. for all $(a, b, c, d) \in L S$ it holds $(a, b, c, d) \in L S_{e}$.

Proof. Let $(a, b, c, d),(u, x, y, z) \in L S$. We set $(a, b, c, d) \sim(u, x, y, z)$ if both quadruples are in $L S_{h}$ or both in $L S_{e}$ contained. Clearly if τ is a motion then $(a, b, c, d) \sim(\tau(a), \tau(b), \tau(c), \tau(d))$.
By (1.1.4) there is exactly one motion $\sigma \in \mathcal{M}$ with $\sigma(x)=\underset{\longrightarrow}{b}, \sigma(u) \in \vec{\longrightarrow} \vec{b}$ and $\sigma(y) \in \overrightarrow{b, c}$. Therefore we may assume $x=b, y \in \overrightarrow{b, c}$ and $u \in \overrightarrow{b, a}$ and we have to consider the three cases:

1. $u=a$ resp. $c=y$ then by (2.2), $(a, b, y, z) \sim(a, b, c, d)$ resp. $(u, b, c, z) \sim(a, b, c, d)$.
2. $u \in] a, b[$. If $U:=(u \perp \overline{b, a})$ then $(U \mid a, b)=(u \mid a, b)=-1,(U \mid a, d)$ $=(U \mid b, c)=1$ hence $(U \mid c, d)=(U \mid c, b) \cdot(U \mid b, a) \cdot(U \mid a, d)=$ $1 \cdot(-1) \cdot 1=-1$ and so $\{s\}:=U \cap] c, d[$ exists and $(u, b, c, s) \in L S$. By (2.2), $(u, b, y, z) \sim(u, b, c, s) \sim(a, b, c, d)$.
3. $a \in] u, b[$. Let $D:=(a \perp \overline{a, b})$ then in the same way,
$(D \mid y, z)=(D \mid u, b)=(a \mid u, b)=-1$ hence $\{t\}:=D \cap] y, z[$ exists and by (2.2) and case $1 .,(u, b, y, z) \sim(a, b, y, t) \sim(a, b, c, d)$.

REFERENCES

[1] M. Dehn, Die Legendre'schen Sätze über die Winkelsumme im Dreieck, Math. Ann. 53 (1900), pp. 404-439.
[2] H.Karzel, Recent developments on absolute geometries and algebraization by K loops, Discrete Math. 208/209 (1999), pp. 387-409.
[3] H. Karzel, H.-J. Kroll, Geschichte der Geometrie seit Hilbert, Wiss. Buchges., Darmstadt (1988).
[4] H. Karzel, K. Sorensen, D. Windelberg, Einführung in die Geometrie, UTB 184 Vandenhoeck, Gottingen (1973).

Helmut Karzel
Zentrum Mathematik, T.U. München
D-80290 München, GERMANY
M. Marchi

Dipartimento di Matematica e Fisica
Università Cattolica
Via Trieste, 17
I-25121 Brescia, ITALY
e-mail: m.marchi@dmf.unicatt.it

[^0]: Entrato in redazione il 24 Maggio 2005.
 ${ }^{1}$ Research partially supported by Research Project of M.I.U.R. (Italian Ministry of Education, University and Research) "Strutture geometriche, combinatoria e loro applicazioni" and by the Research group G.N.S.A.G.A. of INDAM

