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MINIMAX SOLUTIONS FOR A PROBLEM
WITH SIGN CHANGING NONLINEARITY

AND LACK OF STRICT CONVEXITY

PAOLA MAGRONE

A result of existence of a nonnegative and a nontrivial solution is
proved via critical point theorems for non smooth functionals. The equa-
tion considered presents a convex part and a nonlinearity which changes
sign.

1. Introduction and main results

Let us consider the problem{
−div(Ψ′(∇u)) = λu+b(x)|u|p−2u in Ω,

u = 0 on ∂Ω,
(P)

where λ is a real parameter, Ω is a bounded open subset of RN , N ≥ 2, b(x) ∈
C(Ω) changes sign in Ω. Finally 2 < p < 2∗ = 2N

N−2 , and we will assume that
Ψ : RN→R is a convex function of class C1 satisfying the following conditions:

Entrato in redazione: 25 settembre 2013

AMS 2010 Subject Classification: 35J65, 58E05.
Keywords: Non strict convexity, sign changing, linking theorem.



160 PAOLA MAGRONE

(Ψ1) lim
ξ→0

Ψ(ξ )

|ξ |2
=

1
2

;

(Ψ2) ∃ µ > 0 : µ|ξ |2 ≤Ψ(ξ )≤ 1
µ
|ξ |2 for every ξ ∈ RN ;

(Ψ3) lim
|ξ |→∞

Ψ′(ξ ) ·ξ −2Ψ(ξ )

|ξ |2
= 0;

Moreover the function b(x) has to be strictly positive in a non zero measure set,
and the zero set must be ”thin”, in other words b(x) must satisfy the following
conditions:

(b1) Ω+ := {x ∈Ω : b(x)> 0} is a nonempty open set,

(b2) Ω0 := {x ∈Ω : b(x) = 0} has zero measure.

Conditions (b1) and (b2) imply that b+(x) = b(x)+b−(x) 6≡ 0 and that, since b
is continuous, the set Ω0 is closed in Ω.

Let us also denote by (λk) the eigenvalues of−∆ with homogeneous Dirich-
let boundary condition.
In the model case Ψ(ξ ) = 1

2 |ξ |
2, there is a wide literature on problem (P).

To cite only some of the existing results, in [2] the authors found positive so-
lutions to (P) in case that λ1 < λ < Λ∗, with Λ∗ suitably near to λ1. In the
following many other papers ([1], [2], [3], [5], [6]) were devoted to prove exis-
tence of (possibly infinitely many) solutions for λ ∈ [λ1,Λ

∗] or also for every λ ,
in case the nonlinearity satisfies some oddness assumption. A result concerning
all λ different from the eigenvalues of the Laplacian under some quite general
assumptions can be found in [11], while in [8] the authors proved a result of
existence of a nontrivial solution (possibly changing sign) for every λ .

On the other hand, only a small literature is available when dealing with
equations with a non strictly convex principal part. In this framework, in [7] the
author applies non smooth variational methods in presence of subcritical, pos-
itive, nonlinearities; while using similar techniques a nonlinearity with critical
growth was considered in [9].

The aim of this paper is to extend to the setting of non strictly convex functionals
some of the results contained in [2] (existence of a positive solution for λ < λ1)
and [8] (existence of a nontrivial solution for any λ .)

Problem (P) can be treated by variational techniques. Indeed, weak solutions
u of (P) can be found as critical points of the C1 functional J : H1

0 (Ω)→ R
defined as

J(u) =
∫

Ω

Ψ(∇u)dx− λ

2

∫
Ω

u2 dx− 1
p

∫
Ω

b(x)|u|p dx. (1)
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The key point here is that, although Ψ shares some properties with this typical
case, there is no assumption of strict convexity with respect to ξ .

For instance, one could consider

Ψ(ξ ) = ψ(ξ1)+
1
2

N

∑
j=2

ξ
2
j , (2)

where

ψ(t) =


1
2 t2 if |t|< 1,

|t|− 1
2 if 1≤ |t| ≤ 2,

1
2 |t|

2−|t|+ 3
2 if |t|> 2.

If we look at the principal part of J as the energy stored in the deformation u,
this means that the material has a plastic behavior when 1≤ |D1u| ≤ 2. We refer
the reader to [13, Chapter 6] for a discussion of several models of plasticity.

As shown in [7, 9], it may happen that Palais Smale sequences, even if
bounded in H1

0 (Ω)-norm, do not admit any subsequence which converges stro-
ngly in this norm. And there is no way to prevent the interaction between the
area where Ψ loses strict convexity and the values of ∇u. A possibile strategy is
to look for compactness in a weaker norm (L2∗).
Let us introduce the following notations: let k ≥ 1 be such that λk ≤ λ < λk+1
and let e1, . . . ,ek be eigenfunctions of −∆ associated to λ1, . . . ,λk, respectively.
Finally, let E− = span{e1, ...,ek} and E+ = E⊥− . The main results of this paper
are the following:

Theorem 1.1. Let N ≥ 2 and let Ψ : RN → R be a convex function of class
C1 satisfying (Ψ1),(Ψ2),(Ψ3). Moreover let the function b(x) verify (b1),(b2).
Then, for every λ ∈]0,λ1[, problem (P) admits a nontrivial and nonnegative
weak solution u ∈ H1

0 (Ω).

Theorem 1.2. Let N ≥ 2 and let Ψ : RN → R be a convex function of class C1

satisfying (Ψ1),(Ψ2),(Ψ3) and let λ ≥ λ1. Moreover let the function b(x) verify
(b1),(b2) and the following assumptions:∫

Ω

b(x)|v|p ≥ 0 ∀ v ∈ E−. (3)

∃ e ∈ E⊥− \{0} :
∫

Ω

b(x)|v|p dx≥C
∫

Ω

|v|p dx ∀ v ∈ E−⊕ span{e}. (4)

Then problem (P) admits a nontrivial weak solution u ∈ H1
0 (Ω).
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Remark 1.3. Arguing as in section 2 of [9] we can deduce the following prop-
erties for Ψ, up to modifying the constant µ :

Ψ
′(ξ ) ·ξ ≥ µ|ξ |2 ∀ ξ ∈ RN , (5)

|Ψ′(ξ )| ≥ µ|ξ | ∀ ξ ∈ RN (6)

|Ψ′(ξ )| ≤ 1
µ
|ξ | ∀ ξ ∈ RN (7)

Furthermore (Ψ3) yields that ∀ σ > 0, ∃Mσ ∈ R :

Ψ
′(ξ )ξ −2Ψ(ξ )≤ σ |ξ |2 +Mσ (8)

2. The variational framework

Let Ω be a bounded open subset of RN , N ≥ 2, with Lipschitz boundary and let
λ ∈ R. Let us define the following functional J : H1

0 (Ω)→ R

J(u) =
∫

Ω

Ψ(∇u)dx− λ

2

∫
Ω

u2 dx− 1
p

∫
Ω

b(x)|u|p dx.

By (Ψ1), (Ψ2) the functional J is of class C1 on H1
0 (Ω). We wish to apply

variational methods to functional J, but, as already mentioned, it is well known
that the Palais Smale (PS) condition for a functional which is not strictly convex
is not satisfied on H1

0 (Ω). So it is convenient to extend the functional J to L2∗

with value +∞ outside H1
0 (Ω).

In other words we define the convex, lower semicontinuous functional (still de-
noted J)

J : L2∗(Ω)−→]−∞,+∞]

J(u) =


∫

Ω

Ψ(∇u)dx− λ

2

∫
Ω

u2 dx− 1
p

∫
Ω

b(x)|u|p dx if u ∈ H1
0 (Ω) ,

+∞ if u ∈ L2∗(Ω)\H1
0 (Ω)

(9)

This setting will allow us to recover PS condition.
This functional can be written as J = J0 + J1, where

J0 =
∫

Ω

Ψ(∇u)dx,

is proper, convex and l.s.c., while

J1 =−
λ

2

∫
Ω

u2 dx− 1
p

∫
Ω

b(x)|u|p dx,
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is of class C1. We will use the following definitions ([12], [7]) of critical point
and PS sequence for functionals of the type J = J0 + J1:

Definition 2.1. Let X be a real Banach space, u ∈ X is a critical point for J if
J(u) ∈ R and −J′1(u) ∈ ∂J0, where ∂J0 is the subdifferential of J0 at u.

Definition 2.2. Let X be a real Banach space and let c ∈ R. We say that uk is
a Palais Smale sequence at level c ((PS)c sequence for short) for J if J(uk)→ 0
and there exists αk ∈ ∂J0 with (αk + J′1(uk))→ 0 in X∗.

The following proposition (see [7]) assures that the critical points of the
extendend functional already defined gives the solutions of our problem.

Proposition 2.3. Let u ∈ L2∗(Ω,RN). Then u is a critical point of J if and only
if u ∈ H1

0 (Ω) and u is a weak solution of (P).

Proof. Let v ∈ L2∗ . Then v ∈ ∂J0, if and only if u ∈ H1
0 (Ω) and

−div(Ψ′(∇u)) = v

that is a reformulation of definition 2.1.

Moreover we will apply the compactness result contained in [7], which we
recall.
Let us define the functional E : W 1,2

0 (Ω,RN)→ R as

E(u) =
∫

Ω

Ψ(∇u)dx

Theorem 2.4. Assume that Ω is bounded. If {uh} is weakly convergent to u
in W 1,2

0 (Ω,RN) with E({uh})→ E({u}), then u is strongly convergent to u in
L2∗(Ω).

3. Proof of main results

Since Ψ′(0) = 0, of course 0 is a solution of (P). Therefore we are interested in
nontrivial solutions. In order to find nonnegative solutions of (P),we consider
the modified functional J : L2∗(Ω)→]−∞, +∞] defined as

J(u) =


∫

Ω

Ψ(∇u)dx− λ

2

∫
Ω

(u+)2 dx− 1
p

∫
Ω

b(x)(u+)p dx if u ∈ H1
0 (Ω) ,

+∞ if u ∈ L2∗(Ω)\H1
0 (Ω)
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Proposition 3.1. Let Ψ : RN → R be a convex function of class C1 satisfying
(Ψ2) with µ > 0, and (6). Then each critical point u ∈ L2∗ of J is a nonnegative
solution of (P).

Proof. Since by Proposition 2.3 we already know that the critical points of J
are solutions of our problem, it is only left to prove that the modified functional
will give nonnegative solutions. By (Ψ2) one has

µ

∫
Ω

|∇u−|2 dxdx≤
∫

Ω

Ψ
′(∇u) · (−∇u−)dxdx

= λ

∫
Ω

u+(−u−)dxdx+
∫

Ω

(u+)p−1(−u−)dxdx = 0

whence the assertion.

Remark 3.2. From now on, to simplify notations, we will keep on using the
functional J instead of J, since it is understood what has been proved in Propo-
sition 3.1.

Proof of Theorem 1.1
We aim to apply to J a nonsmooth version of Mountain Pass Theorem [12]. First
of all, let us observe that, by (Ψ1), we have∫

Ω
Ψ(∇u)dx∫

Ω
|∇u|2 dx

→ 1
2

as u→ 0 in L2∗ .

Then, as in the case Ψ(ξ ) = 1
2 |ξ |

2 treated in [2, 8], we deduce that there exist
ρ > 0 and α > 0 such that J(u) ≥ α whenever ‖u‖ = ρ . On the other hand,
there exists e ∈ L2∗ with e≥ 0 a.e. in Ω such that

lim
t→+∞

J(te) =−∞ ,

again, this is proved in [2] in the case Ψ(ξ ) = 1
2 |ξ |

2, but by (Ψ2) the assertion
is true also in our case.

By the Mountain Pass theorem, there exist a sequence (uk) in L2∗ and a sequence
(wk) in L(2∗)′(Ω) strongly convergent to 0 such that (see definition 2.2)∫

Ω

Ψ
′(∇uk)(∇v−∇uk)dx≥ λ

∫
Ω

uk(v−uk)dx+
∫

Ω

b(x)|uk|p−1(v−uk)dx

+
∫

Ω

wk(v−uk)dx ∀ v ∈ L(2∗)′ (10)
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Taking v = 0 and v = 2uk as tests in the previous inequality yield∫
Ω

Ψ
′(∇uk)∇uk dx = λ

∫
Ω

(uk)
2 dx+

∫
Ω

b(x)|uk|p dx+
∫

Ω

wkuk dx ∀ v ∈ L(2∗)′ .

(11)
Furthermore also the following relation holds:

lim
k→∞

(∫
Ω

Ψ(∇uk)dx− λ

2

∫
Ω

(uk)
2 dx− 1

p

∫
Ω

b(x)(uk)
p dx
)
= c > α. (12)

Let us write the expression pJ(uk)− J′(uk)uk :

p
∫

Ω

Ψ(∇uk)dx− p
2

λ

∫
Ω

(uk)
2 dx−

∫
Ω

b(x)(uk)
p dx−

∫
Ω

Ψ
′(∇uk) ·∇uk dx

+λ

∫
Ω

(uk)
2 dx+

∫
Ω

b(x)(uk)
p dx

=
∫

Ω

(p−2)Ψ(∇uk)dx+
∫

Ω

[
2Ψ(∇uk)−Ψ

′(∇uk) ·∇uk
]

dx

−λ

( p
2
−1
)∫

Ω

(uk)
2 dx = (p−2)c−

∫
Ω

wkuk dx+C (13)

By (8) and (Ψ2) one gets

µ(p−2−σ)
∫

Ω

|∇uk|2 dx−λ

( p
2
−1
)

λ

∫
Ω

(uk)
2 dx≤ pc−

∫
Ω

wkuk +C (14)

so
µ(p−2−σ)

∫
Ω

|∇uk|2 dx≤ λ

( p
2
−1
)∫

Ω

(uk)
2 dx+C (15)

where the quantity (p− 2−σ) is strictly positive since σ is arbitrarily small.
Our aim is to prove the boundedness of the H1

0 norm of the Palais Smale se-
quences, so arguing by contradiction, let us assume that

||uk|| → ∞ as k→+∞.

Dividing (12) by ||uk||p yields

liminf
{

p
∫

Ω
Ψ(∇uk)

||uk||p
dx− λ p

2

∫
Ω
(uk)

2 dx
||uk||p

dx− 1
p

∫
Ω

b(x)
(

uk

||uk||

)p

dx
}
= 0.

Since p > 2 and (Ψ2) holds, the first two terms go to zero. So

limsup
(∫

Ω

b(x)
(

uk

||uk||

)p

dx
)
= 0. (16)
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Since b is bounded, (16) yields that(
uk

||uk||

)
→ u0

strongly in Lp and weakly in H1
0 (Ω). Arguing by contradiction let us suppose

that u0 ≡ 0. Dividing (15) by ||uk||2 yields

µ(p−2−2σ)≤ λ

( p
2
−1
) 1
||uk||2

∫
Ω

(uk)
2 dx+

C
||uk||2

(17)

the right hand side goes to zero, which leads to a contradiction since p− 2−
2σ > 0 and µ > 0, so u0 must not be identically zero.

Now let φ ∈C∞
0 (Ω

+) be a compact support function, φ ≥ 0 and φ 6≡ 0. Let
us use the function tφv, v ∈ H1

0 (Ω) as a test in (10):

∀ v ∈ H1
0 (Ω) :

∫
Ω+

Ψ
′(∇uk)(tφ∇v+ tv∇φ −∇uk)

≥ λ

∫
Ω+

uk(tvφ −uk)+
∫

Ω+
b(x)(uk)

p−1(tvφ −uk)+
∫

Ω+
wk(tvφ −uk).

Then let us divide the previous inequality by t and then let t go to +∞ :∫
Ω+

Ψ
′(∇uk)(φ∇v)+Ψ

′(∇uk)v∇φ

≥ λ

∫
Ω+

ukvφ +
∫

Ω+
b+(x)(uk)

p−1vφ +
∫

Ω

wkvφ ∀ v ∈ H1
0 (Ω) (18)

On the other hand, if t →−∞, one gets the opposite inequality, so we can
deduce that the equality holds in the last expression, that is∫

Ω+
Ψ
′(∇uk)(φ∇v)+Ψ

′(∇uk)v∇φ

= λ

∫
Ω+

ukvφ +
∫

Ω+
b+(x)(uk)

p−1vφ +
∫

Ω

wkvφ ∀ v ∈ H1
0 (Ω). (19)

Now let us choose v= uk and divide both handsides of (19) by ||uk||p. It is easily
seen that the terms containing λ and wk go to 0 as k→+∞. Then∫

Ω+

Ψ′(∇uk)∇ukφ

||uk||p

goes to 0 since p > 2 and (7) holds.

On the other hand, by (7), since p > 2 and φ is of class C∞ in Ω+ bounded,
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1
||uk||p

∫
Ω+

Ψ
′(∇uk)uk∇φ ≤C

||uk||
||uk||p−1

||uk||L2

||uk||

The term ||uk||L2
||uk|| is bounded, while ||uk||

||uk||p−1 converges to 0.

By (19) We can conclude that∫
Ω+

1
||uk||p

b+(x)(uk)
p
φ 7→ 0 as k→ ∞.

Applying Fatou’s Lemma yields

liminf
∫

Ω+

1
||uk||p

b+(x)(uk)
p
φ ≤ 0

and since the integrand is nonnegative, this means that up
k

||uk||p must tend to 0, a.e.

in Ω+ as k→∞. Arguing in the same way up
k

||uk||p → 0 a.e. as k→∞, in Ω−. This

yields that up
k

||uk||p → 0 a.e. in Ω since the remaining part is negligible. This is in
contradiction with the fact that it converges to a nonzero function u0.

Then uk must have bounded norm in H1
0 (Ω) and admits a subsequence weakly

converging in L2∗ .
According to (10) and taking v = u as a test function yields∫
Ω

Ψ
′(∇uk)(∇u−∇uk)dx

≥ λ

∫
Ω

uk(u−uk)dx+
∫

Ω

b(x)(uk)
p−1(u−uk)dx+o(1)

so as k→ ∞ the right hand-side terms go to zero, and we obtain

liminf
∫

Ω

Ψ
′(∇uk)(∇u−∇uk)dx≥ 0. (20)

On the other hand, by convexity∫
Ω

Ψ(∇u)dx≥
∫

Ω

Ψ(∇uk)dx+
∫

Ω

Ψ
′(∇uk)(∇u−∇uk)dx (21)

So by (20) and (21)

limsup
∫

Ω

Ψ(∇uk)dx≤ limsup
(∫

Ω

Ψ(∇u)dx−
∫

Ω

Ψ
′(∇uk)(∇u−∇uk)dx

)
≤
∫

Ω

Ψ(∇u)dx− liminf
∫

Ω

Ψ
′(∇uk)(∇u−∇uk)dx≤

∫
Ω

Ψ(∇u)dx



168 PAOLA MAGRONE

By lower semicontinuity and convexity

liminf
∫

Ω

Ψ(∇uk)dx≥
∫

Ω

Ψ(∇u)dx (22)

We can conclude that ∫
Ω

Ψ(∇uk)dx→
∫

Ω

Ψ(∇u)dx.

By Theorem 2.4 uk admits a subsequence strongly converging in L2∗ , which
concludes the proof of PS condition and of Theorem 1.1.

Proof of Theorem 1.2

We are now concerned with the existence of (possibly sign-changing) nontrivial
solutions u of (P). Let (λk) denote the sequence of the eigenvalues of −∆ with
homogeneous Dirichlet condition, repeated according to multiplicity.

Since the case 0 < λ < λ1 is already contained in Theorem 1.1, we may assume
that λ ≥ λ1. Let k≥ 1 be such that λk ≤ λ < λk+1, e1, . . . ,ek are eigenfunctions
of −∆, as defined in the introduction. Finally, let E− = span{e1, ...,ek} and
E+ = E⊥− .

Consider the functional J defined in (9) We aim to apply the version of the
Linking Theorem for convex functional presented by Szulkin in [12]. Since∫

Ω
Ψ(∇u)dx∫

Ω
|∇u|2 dx

→ 1
2

as u→ 0 in H1
0 (Ω),

as in the case Ψ(ξ ) = 1
2 |ξ |

2 treated in [8], we deduce that there exist ρ > 0 and
α > 0 such that J(u) ≥ α whenever u ∈ E+ with ‖u‖ = ρ . On the other hand,
there exists e ∈ H1

0 (Ω)\E− such that

lim
‖u‖→∞

u∈Re⊕E−

J(u) =−∞

Again, this is proved in [8] when Ψ(ξ ) = 1
2 |ξ |

2, but by (Ψ2) the assertion is true
also in our case. Finally, it is clear that J(u)≤ 0 for every u ∈ E−.

By the Linking type theorem in [12] (Theorem 3.4), there exist a PS se-
quence (uk) in H1

0 (Ω) and we can continue, up to minor changes, as in the proof
of Theorem 1.1 to prove that there exists a subsequence of (uk) strongly con-
verging in L2∗ . This concludes the proof of Theorem 1.2, since the nontriviality
of the solution comes directly from the characterization of the critical level of
the solution.
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