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APPROXIMATION PROPERTIES OF TWO DIMENSIONAL
BERNSTEIN-STANCU-CHLODOWSKY OPERATORS

TUNCER ACAR - ALI ARAL

In this paper, as a generalization of Bernstein-Stancu type operators of

two variable, we introduce a new positive linear operator C,(f 0B oBr (f5x,y)
called Bernstein-Stancu-Chlodowsky on a triangular domain, with mo-
bile boundaries, which extends to [0,0) X [0,00) as n — co. We give some
shape properties that are preserved and also obtain weighted approxima-
tion properties of these operators.

1. Introduction

The approximation operators on triangles with all immobile straight sides were
largely studied due to their applications in many fields inside applied mathe-
matics. Most of them was considered as generalizations of Bernstein polynomi-
als. Because of the fact that Bernstein polynomials have simple structure, these
polynomials are used for important applications in the branches of mathemat-
ics, physics, computer science and a lot of area. Therefore, many researchers
studied in this direction and constructed generalizations of these polynomials.
For example, in 1968 Stancu [6] introduced one of these generalizations as

Buap (fix) = gf(';m) ( ) (1 (1
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for each real a, 8 such that 0 < a < f8 and called Bernstein-Stancu polynomi-
als. Similar to B, (f;x), B, o g (f;x) also converges to continuous function f(x)
uniformly in [0, 1].

As another generalization, Bernstein polynomials were defined on an un-
bounded interval by I. Chlodowsky [2] in 1937 as

Ca(f:x) :gnof(;bn) (’Z) (If) (1 —;;>H, )

where f is a function defined on [0,0) and bounded on every finite interval
[0,b] C [0,00) and (by),,~; is a positive increasing sequence with the properties

b
b, — o and — — 0 as n — oo, 3)
n

In addition to Bernstein polynomials of function of one variable, two di-
mensional generalizations of these polynomials have been studied increasingly.
Recently, Gadjiev and Ghorbanalizadeh [3] introduced the two dimensional gen-
eralization of Bernstein-Stancu type polynomials with shifted knots on the tri-

angle 8 = { (1) 12+ < B3y > 125 L

n n—k
k+oy I+0n\ iy
§%:04, B, i :x,y) = < 7 ) ; x,y), 4
n (fsx,y) kE:O' IE:O'f nt B nt B pma,ﬁ( y) @)

where

P (69) = (n—;ﬁ)" <Z> (n;k>
(a%p) (a%p) (7 =)

and o, 3,04, B, (k = 1,2) are positive real numbers provided 0 < o < o) <
Bi<Band0<oa<op <P <B.

As approximation properties of bivariate positive linear operators, shape
preserving properties of them were studied extensively because of applications
in many areas. We refer [1] and [5].

In the present paper, inspired by all the above ideas and (4), we introduce
two dimensional Bernstein-Stancu-Chlodowsky operators on triangle with mo-
bile boundaries. As distinct from the other studies about two dimensional Ben-
stein type operators on a triangle domain, we study on a triangular domain, with
mobile sides, which extends to [0,0) x [0,0) as n — co. We study the shape pre-
serving and convergence properties of these operators and we give the theorems
in weighted space.
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2. Preliminaries
We will use the following notations. Let
Ag={(xy):x+y<a,xy=0}

be a triangle with the fixed boundary x +y = a for any a > 0 and (b,) be a
sequence of positive numbers with the properties (3) and «, 8 are positive real
numbers such that a < 8, we denote by AZ’a’ﬁ the triangular domain

o
AZ*“’ﬁ—{(x,y) x+y<a, x,y>—— Ll }

where a is a positive number such that "Hé"b >a> J‘fﬁ by, we will consider

n+2o
n+pB

also triangle Ay %P with the mobile boundaries x-+ y= byandx=y= ﬁbn,

A +20€ o
A%B — : L nreey >4
n {(x7y) x+y— n‘l—ﬁ ny 'x7y_ n+B n}

which tends to R2 = {(x,y) : x,y > 0} as n — oo. It is clear that AFP A, and
KB C LB,
Let
px,y)=1+27+)

and denote by C, (Ri) the space of all functions f, which are continuous and
satisfies the inequality

(e, < Myp(x,y),

where My is a constant depending on function f only.
Denote also by Cg (R%) a subspace of functions f € Cp(R?%), for which

fxy)
xty—eo | 22 +y?

These spaces are linear normed spaces with norm

Il = sup L)

—_ 5
(X,)’)GRi 1 +X2 +y2 ( )

For x,y € AY P , we introduce the Bernstein-Stancu-Chlodowsky operators
for a function f of two variables as follows:

Cre PP (fix,y)

n n—k

_ZZf<OC3x+ﬁ3 ﬁbn,OB +ﬁ3 +[3 ) flixﬂ(xy) (6)
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k.l _(n +ﬁ n o k
A =(58) () G -55)
y <y_ o > <n+za x+y>"“
b, n +B n—+ ﬁ b,
and f € Cp (Ri), o, B, ., B, (r=1,2,3) are positive real numbers provided
O<a<ou<fi<f.0<a<m<p<fandaz+fz=1
It is obviously that the family of operators Cy 10 (f3x,y) is linear and

positive and with the special cases of a, and f3,, we obtain some well-known
two dimensional Bernstein polynomials.

where

1. If wetake ¢ =y = oy = 03 = 1 = o = B = 0 with b, = 1, we get the
usual two dimensional Bernstein polynomials on the triangle Ay,

2. If wetake @ = a; = o = o3 = 31 = B, = B = 0, we get the usual two
dimensional Bernstein-Chlodowsky polynomials on the triangle A, given
in [4],

3. If we take a3 = 0 with b, = 1, we get the two dimensional Bernstein-
Stancu polynomials on the triangle A given in [3].

3. Shape preserving properties

In this section we study convexity property of the operators by showing that
ceorb-Pr (f3x,y) is convex of order (i, j) if f(x,y) is convex of order (i, j) for
O0<i+j<2.

We first recall a usual definition of convexity for bivariate functions.

For f € C(Ay), (x,y) €Ajandh e RT, A (’ 7 is defined by

A0 F(xy) = Fe+hy) — F(x,),
(0,1)

Ah i f(x7y) :f(x7y+h) _f(xay)7
ANV £, y) = Fle+ by +h) + F(ny) — Fe+h,y) — F(x,y+h),
AP0 £(x,)
A,(f’o)f (x,y)

We know the following definition:

f(x+2h,y) =2f(x+h,y) + f(x,y),
fO,y+2h) =2f(x,y+h)+ f(x,y).
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Definition 3.1. f(x,y) is convex of order (i, ), i,j € N, 0 < i+ j < 2, if for
heR, Al f >0,
Remark 3.2. If f € C'"/(A) and for all (x,y) € A;
8i+jf
8xi8yj (x,}’) > 07
then f(x,y) is convex of order (i, j).

Based on Definition 3.1 and Remark 3.2, we give the following theorem.

Theorem 3.3. Let f € C't/ (A,?’B) such that i, j € Nand 0 < i+ j < 2. Then the
following statements hold:

i) If f(x,y) is convex of order (1,0) (resp. (0,1)), then Cff’a”ﬁ’ﬁ'(f;x,y) is
also convex of order (1,0) (resp.(0,1)).

(
ii) If f(x,y) is convex of order (2,0) (resp. (0,2)), then Cy" o, ﬁ’(f x,y) is
o,

also convex of order (2,0) (resp.(0,2)).
iii) If f(x,y) is convex of order (1,1), then co-orb-Br (fsx,y) is also convex of
order (1,1).

Proof. We get expressions of the derivatives of Cy' 0P By easy computation,
we have the equalities

acgyarvﬁvﬁr ’ n n—k
SV 603 Y o0 ()
X k=01=0
n—1n—k—1 oy
+), Y [f(01,70) — £(00.%0)]P, g 5 (), @)
k=0 =0
9C %% PP f.
3 (f:x.y) —a3Zny 0,%) P ,,aﬁ(xy)
y —01=0
n—1n—k—1 i
+Y ) [f(00,71) — f(00,70)1P, 0 p () ®)
k=0 =0

n

92C%® 10 BBy X —
(f y Z XX 0-07}/0 nlaﬁ(x y)

n
ox? ;
n—ln—k—1

+205 Y Y [:(01,10) = £ (00, 0)] Py g (5:3)
k=0 =0

n—2n—k—2
+Z Z (02,7%) —2f (01, %) + f (G0, W) r naﬁ(x ), )
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82C(x (th Br(f X y n n—k
ay ;; yy GOvYO naﬁ(xy)
—1n—k—1
+20632 Y [A(00.1) = £ (00, 1) Pl g (£,)
k=0 [=0

n—=2n—k=2
+Z Z 607’}/2 2f(007%)+f(607’}/0)] n(xﬁ( 7y)7 (10)

aZCa‘x:BBr(fxy n n—k
n—1n—k—1
+a3 ) Y [fi(o0,1)— fi (00, Yo)]P,,a,;(x y)
k=0 (=0
n—1n—k—1
+o3Y Y [fi(o100)— fy(GO,}’O)]P,,aﬁ(X y)
k=0 (=0
n—2n—k—2
+Y Y [f(01,7) = £ (00, 71) = £ (01,1) + £ (00, 10)] g (%:3), (1D)
k=0 (=0
where
k+ o 052
= b, s =Q
00 = 03X+ B —— o) 1 %y+l33 +B
k+1+o0 [+14+ 0
= b, , =y+p—b,
o1 3x + P n+ B N 3y + B3 "t B
k+2+ o0 [+24 0
0y = o3x+ 3 PG an P =0osy+f3 i B
and
Y n (n+B\" (n—1\/n—k—1
Pt = (B (" ()
Xi_a kl_a ln—i—ZOC_x—i— n—k—1—1
b, n+p b, n+p n+p by ’
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Note that
b *
GZ—Gl_Gl—Go_nﬁj_ﬁnl_hERJraYZ_?’l_?’l %= ﬁj-lgzh eR*,
2B3b, 2B3by,
0, — 0y = —heRTandp—y = =hteR".
2 0 n+ By 1 =% n+ B 1

For the proof of i), we consider the equality (7) (resp. (8)). Since f(x,y) is
convex of order (1,0) (resp. (0,1)),

f(o1,%) — f(60,7) = 0 (resp. f (00, %) — f (00, %) = 0)

by Definition 3.1. Since f € C1:0) (A7 ) (resp. feC01 (Aaﬁ)) fx(00,7) >0
r a,or,B,B8r

(resp. fy(00,%) > 0). Hence, we have % > 0 (resp. ‘m’iyf > 0)

which implies the convexity of order (1,0) (resp. (0,1)) of C;**" BB (f5x,y) by

Remark 3.2.

For the proof of ii), we consider the equality (9) (resp. (10)). Since f(x,y)
is convex of order (2,0) (resp. (0,2)),

f(o2,0)—2f(o1,%) + f (00, %) >0
(resp.f (00, %) —2f (00, 71) + f (60, %) > 0)

by Definition 3.1. Since f € C(>9) (Afj"ﬁ) (resp. f € C(02) (A,Of’ﬁ)), Srx (00, 10) >
0 (resp. fyy (00, %) = 0) and fi(o1,%) — fx (00, %) = 0 (resp. fy(00,1) —

a,ar,B.Br ar,B.Br
fy(00,7%) > 0). Hence, we have % > 0 (resp. M > 0) which

implies the convexity of order (2,0) (resp. (0,2)) of Cy*" ﬁ ﬁ' (f;x,y) by Re-
mark 3.2.

For the proof of iii), we consider the equality (11). Since f(x,y) is convex
of order (1,1),

f(o1,m)—f (00, 71) = f(01,%) + f (00, 7) >0

by Definition 3.1. And since f € C(LD (A ) fry (00,7%) > 0and f,(00,71) —
aZCa .ar,B.Br (f x7y)
dxdy =
0 which implies the convexity of order (1,1) of Cy 0 Pr (f5x,y) by Remark
3.2. 0

fx(00,7%) >0and f; (o1, %) — fy (00, %) > 0. Hence, we have

Furthermore, as a corollary of Theorem 3.3, if we choose the az = 0, so
that condition of differentiability of f is not needed, we can easily prove the
following result.



22 TUNCER ACAR - ALI ARAL
Corollary 3.4. Let f € C (A,O,‘ P )suchthati,j € Nand 0 < i+ j<2.

1. If f(x,y) is convex of order (1,0) (resp.(0,1)), then Cg’a"’ﬁ’ﬁ’(f;x,y) is
also convex of order (1,0) (resp.(0,1)).

2. If f(x,y) is convex of order (2,0) (resp.(0,2)), then coorb-Pr (fix,y) is
also convex of order (2,0) (resp.(0,2)).

3. If f(x,y) is convex of order (1,1), then C,?’a"’ﬁ’ﬁ’(f;x,y) is also convex
of order (1,1).

4. Convergence properties

Lemma 4.1. Let f = f(1,7) € Co(R2). For all n € N and (x,y) € ALP, the
operator Cy 0B (fsx,y) has the following properties

Ce PP (1x,y) =1, (12)

@0 BB (s (n+P) (o —a)
G (t;x,y) = oax+ i B, Bsx + i B B3bn, (13)
C2%PBr(z;x,y) —a3y+( I[;)B + <“+ﬁ‘j)ﬁ3bn, (14)

CEoPPr (12 x,y) = 2

2
o2 1+ 2psa " +B)+ﬁ32<n+ﬁ) n—l]

n+p n+pBi n
+x {2[33043”" — B0 ”*flé”)l 2 4 B3 b, (1+2a1)}
+<niﬁ> Slaara(@) o
Creb B (2iny) =y* o + 200 ) o <Zi§2>2n;1]
|20 By el — pRog B g2 (B b, (14200 |
+<n-1|9-[32> i5 [(a—az)z—a(%ﬂ)]. (16)

Also this sequence of linear positive operators acts from Cp (R?) to C, (R2).



TWO DIMENSIONAL BERNSTEIN-STANCU-CHLODOWSKY OPERATORS. 23

Proof. We only give the proof for the cases Cj; 0B "(

and C&-%F-Pr (t%;x,). Others are similar.
For the sake of convenient notation in the proof, we will use the following
definition:

aarﬁﬁr(

1;x,y), 1;X,y)

n

- E (e

By the binomial expansion and (17) it is obvious that
n
C*P(1;x,y) = C»%PPr(1;x,y) Zanaﬁ x,y)=1. (18)
We can also obtain
S Kk
CrPtxy) =Y Y~y p (%)
(S EQG)
n = \k)n\b, n+p
X"ik<n_k> <y_ a )’(n+2a_x+y>"’<’
=0 [ bn n+ﬁ n+ﬁ bn

B <n:B>n <ljn_n—fﬁ>

X o
(5:-75) <19>
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()R ()5 (E-2%5)
() (k) (B

()

N
=
|

S
+| 2
=
N—

(-25) (55)
- (lf_jﬁ> <+B>
+1<b‘j—cﬁ><+ﬁ>

From (6) and (17)-(19) we get

= o3xC%P (1;x,y) + p

Caarﬁﬁrtxy

n n—k

2 )

(OC3X + ﬁ}
k=01=0

nf;
+ B

+061 k.l

+l3
o1 B3
b}’lC'aJ3 t; ) +
R RY PG

4By

a)

=03x+
3 n+pi

)nkl

N
ntB by

(20)

b CHP (1;x,y)

(a1 —
n+p

B3bn'
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Again using (6) and (17)-(20), we obtain

=0 k=01=
n—k k+
ZZ o nzp',;laﬁ(xy)

by [C,‘i"ﬁ (t:x,y) + %Cff’ﬁ(l;x,y)}

n n
;Zaszxzpﬁlaﬁ X,y +222ﬁ3063x 1 bup l,cllaﬁ(xy)
n

2o, n
=05C,"" (L;x,y) +2P306x
5C P (1x,y) +2B305 PG
2a o
by)? [C,?"ﬁ (%3x,) + 7103"[3 (t:x,y) + nécr?"ﬁ(l;x,y)}
n n+pB x o o
b - 2
o (50) G i) 5
n n—1/[x n+p
by)? =
rOtmn? | (r-325) ()
o 20 o o?
i x ”'f'zﬁ_i_ 1(”;‘/3) x —i—%
by n+B) n n b, n+p n
2

o3 +2B303 nth +B3 <n+ﬁ>

n
n+ B

+ (B3

2x2 + 2ﬁ3 (07234
n

n—1

n+ B n+pi n
bulon =) o (0t B)n—1)by | po(n+B)(1+20)
N R e i S L R PRV A b”]

+<n—l;ﬁ ) B3 [(a—al)Z_a<%+1>}.

Let us show that C-% PP (f3x,) acts from Cp(R?%) to Cp (R?%). If £ € Cp(R%)
then we can write from (5)

k4 oy [+
’f<a3x+l33n+ﬁlbm oy + B3 +ﬁ2bn>‘
2 2
<Ifl, 1+<a3x+B3 ey )+<a3y+B3 Py )]

o,o,B,B,

Applying the operator G, to both side of this inequality and using the
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properties of linearity and monotonicity we get

CaerB b (fix.y)|

<l (G0 BB (150,3) + OB (12,3, 5) + CHO BB (P, ) )

By (12), (13) and (14)

Cr BB (frx. )| < M7 A1l (144 +3%)

since % is bounded by (3). Here M} is a constant depending on function f
only. O

Now we can prove the following result.

Lemma 4.2. For any fixed a > 0, the relation

lim max C’?»ar’ﬁ-ﬁr(f;x,y)—f(x,y) =0

" (ey)ear P
holds for all functions f € C(R?).
Proof. From (12), (13) and (14), we see that

Cg’a”ﬁ’ﬁr(l;x,y) —1= O,

o n+pB
max Cr(lx7ar7ﬁ7ﬁr t;x7y _x’ — (a— bn> <(X3+ ﬁ3 - 1)
(vy)eas ™ () n+p ntpi
by
+ o —x),
P Bs(ou — )

o, 0,8, (. _ ‘: @ ﬂ _
max |C, (T3x,y) =y <a n+an> <a3+n Bs—1

(x)ear + B2

+n_‘b_nﬁ2ﬁ3(062—06).
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From (15) and (16) we get
max |CEZOPB (2 4 ik y) — (12 +12) ‘
(xy)ean®?
2 2
<& <”+ﬁ> n (n+ﬁ)2—2
n+ P (n+p2)
b, n—i—ﬁ b, I’l—|—ﬁ
+al2 + b, (14+204)+2 b, (1420
B gy TR TR ey )

(o) ot ()
n+ B P \n+B %

Therefore, using these equalities and (3) we obtain

lim max [C*%PP(1;xy)—1|=0,

7 ey ean P

lim max
"7 () eaq ™

Co PP (1;x,y) — x| = 0,

C;Laﬁﬁ?ﬁr(f;x;y) —y = O (21)

lim max
O ey ean P

Also, if we consider the equality a3 + 3 = 1 then we have

lim max |[CE%PP (2 4 12 x y) — (x®+y*)| =0. (22)

7 (e y)edn P

Consider the sequence of operators

Culpinyy = L Gy i () e ar®?
e f(x,y) it (xy) €AN\ALYP
Then obviously
ICaf = flla, = max |CEFHPP(fix,y) = f(x,y) (23)

(e)eas™”

and using (21) and (22) we obtain

lim ||[C%% PP (1;x,y) —1|| =0,
n—oo "

lim ||C%% PP (1:x,y) —x|| =0,
n—soo .

lim ||C%%PBPr(z:x,y)—y|| =0,
n—yoo

a
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C,?"“”ﬁ'ﬁf (t2 + Tz;x,y) — (x2 —i—y2) 0.

lim =
n—oo Aa
Since all conditions of two dimensional Korovkin’s type theorem (see [7])
1s satisfied, we obtain
lim [|[Cof = fll5, =0
n—oo

for every continuous function f.
Consequently, (23) gives

lim max
n—soo (x,y)EAZ’aﬁ

Cre PP (fix,y) = flx,y)]| =0

and proof is completed. O

Theorem 4.3. Let f € C,(R2). Then the relation

) PP (fix,y) = f(x) .
m sup =
n—so0 (x7y)€Ag>B (1 +x2 _|,_y2) 1+a

holds for any a0 > 0.

Proof. For any function f € C,(R%) and any & > 0, we can write

Cr PP fix,y) — f(x,y)’

(x;?zgﬁ (1+x24y2)1+a
< s [GEPP () sl
(xy)ean®P
P (fx9) - £, y)‘ o
! (x7y>eAS;’1?\Ag-%B (14x24y2)l+a =1,+1,.

The first term I,/l —+0asn —coby Lemma4.2.
Consider the term I,:.
First of all, given € > O there exists a positive number a > 0 such that

1

—— <& 24
ifx+y>a.
For I,;/ , we can have the following inequality
o Cr‘fvamﬁ,ﬁr (f5x,) £(x,y)]
n S sup o oida T Sup 2 4 2 1+o
yearhager TFRHYITE 0 ep e (12245
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From Lemma 4.1, we know that if f € C,(R%), then C,‘f"a”ﬁ’ﬁ*(f) € Cp(R3).
And also using the inequality (24) we obtain

1

) s

(xy)eALP\AL AP
< (M f + M;;*) €

Here M}* is a constant depending on f only. This completes the proof. O
Theorem 4.4. Let f € Cg (R%). Then we have

CLe BB x,y) = f(x,y)
1+x24y? -

lim sup
—00 "
" (k) eAP

Proof. From the definition of Cg (R%), we have

f(x,y)

— = 25
xty—eo | +x2 432 25)

and

7 (a3x+ By p, oy + By % )
lim h T —o. (26)

) (o b0

Therefore, by (25), for € > 0 we can choose a large a > 0 such that
[Fxy)] <e(l+27+y7), (27)

if x+y > a. And by (26), for a given € > 0, there exists a number rng such that

k+oy +062
ozx + by, +
‘f( 3X ﬁ3n+[31 > 03y + B3 ———- " By >

2 2
1+(063x+[33 igibn> +<Ot3y+ﬁz _1_22 ) ], (28)

if n > ny.



30 TUNCER ACAR - ALI ARAL

Since

C}gx,ocrﬁ’ﬁr (f’x’y) —f(x,Y)‘
1+x2+y?

sup
(x.y)cAFP

‘Cg{,(xnﬁsﬁr (f’x’y) — f(xay)‘
S sup

(xy)eay®P L+a? 42

Cg,ar,ﬁaﬁr(f;x’y) —f(xay)‘ / 4
14x2+y?

+ sup
(vy)ehiP\apP

n n

and by Lemma 4.2 it sufficient to show that [, — 0 as n — co.
By (27) and (28)

C,f"“”ﬁ’ﬁ'(f;m)(
1+x24y?

I” < sup ’f(xay)’ + sup

n 2 2
LV R RS CLIWEE

o5
1+x24y2

<&+ sup
(x)eBiP\apP

Cgaaraﬁaﬁr(l;x’y) + Crflxyarvﬁvﬁr (tz;x’y) + C;lxyar-ﬁvﬁr (Tz;x’y)
1+x%+y?

=& (1 + sup
(xy)ebiP\aze?

C}flx:ahﬁ:ﬁr(l;x’y) + C;?ﬁahﬁ.ﬁr (tz;x’y) + Cgvarvﬁvﬁr(,rz;x’y)
<Cg,
1+x%+y?

<e+e sup
(xy)ebiP\aze s

where C independent on n so I,Z < Ce which completes the proof. O
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