doi: 10.4418/2013.68.2.11

DIFFERENTIAL SANDWICH THEOREMS FOR p-VALENT FUNCTIONS ASSOCIATED WITH GENERALIZED MULTIPLIER TRANSFORMATIONS

RABHA M. EL-ASHWAH - MOHAMED K. AOUF ALI SHAMANDY - SHEZA M. EL-DEEB

In this paper, we obtain some applications of theory of differential subordination, superordination and sandwich results involving the operator $\mathcal{J}_{p}^{m}(\lambda,\ell)$.

1. Introduction

Let H(U) denote the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and H[a, p] denote the subclass of functions $f \in H(U)$ of the form:

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \dots \quad (a \in \mathbb{C}; \ p \in \mathbb{N} = \{1, 2, \dots\}).$$

Also, let $\mathcal{A}(p)$ denote the subclass of functions $f \in \mathcal{H}(U)$ of the form:

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \ (p \in \mathbb{N}). \tag{1}$$

Also, let $\mathcal{A}(1) = \mathcal{A}$.

If f and g are analytic function in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which is analytic in U with

Entrato in redazione: 26 ottobre 2012

AMS 2010 Subject Classification: 30C45.

Keywords: p-Valent functions, Differential subordination, Superordination, Sandwich theorems.

w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that f(z) = g(w(z)). Furthermore, if the function g is univalent in U, then we have the following equivalence (see [11] and [19]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$$
 and $f(U) \subset g(U)$.

For $k, h \in H(U)$, let $\varphi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If k(z) satisfies the second order differential subordination

$$\varphi(k(z), zk'(z), z^2k''(z); z) \prec h(z),$$
 (2)

then k(z) is a solution of the differential subordination (2). The univalent function q(z) is called a dominant of the solutions of the differential subordination, if $k(z) \prec q(z)$ for all the functions k(z) satisfying (2). A dominant $\widetilde{q}(z)$ is said to be the best dominant of (2) if $\widetilde{q}(z) \prec q(z)$ for all dominants q(z). If k(z) and $\varphi(k(z), zk'(z), z^2k''(z); z)$ are univalent functions in U and if k(z) satisfies the second order differential superordination

$$h(z) \prec \varphi(k(z), zk'(z), z^2k''(z); z),$$
 (3)

then k(z) is a solution of the differential superordination (3). The univalent function q(z) is called a subordinant of the solutions of the differential superordination, if $q(z) \prec k(z)$ for all the functions k(z) satisfying (3). A subordinant $\widetilde{q}(z)$ is said to be the best subordinant of (3) if $q(z) \prec \widetilde{q}(z)$ for all the subordinants q(z). Recently Miller and Mocanu [20] obtained conditions on the functions h,q and φ for which the following implication holds:

$$h(z) \prec \varphi(k(z), zk'(z), z^2k''(z); z) \Rightarrow q(z) \prec k(z).$$

Using the results of Miller and Mocanu [20], Bulboacă [10] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [9]. Ali et al. [1], have used the results of Bulboacă [10] (see also [3] and [4]) to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are univalent functions in U with $q_1(0) = q_2(0) = 1$.

Prajapat [24] defined a generalized multiplier transformation operator , as follows:

$$\mathcal{J}_{p}^{m}(\lambda,\ell):\mathcal{A}(p)\to\mathcal{A}(p) \ \mathcal{J}_{p}^{m}(\lambda,\ell)f(z)=z^{p}+\sum\limits_{k=p+1}^{\infty}\left(rac{p+\ell+\lambda(k-p)}{p+\ell}
ight)^{m}a_{k}z^{k}$$

$$(\lambda \ge 0; \ \ell > -p; \ p \in \mathbb{N}; \ m \in \mathbb{Z} = \{0, \pm 1, \dots\}; \ z \in U\}.$$
 (4)

It is readily verified from (4) that

$$\lambda z \left(\mathcal{J}_{p}^{m} (\lambda, \ell) f(z) \right)'$$

$$= (\ell + p) \mathcal{J}_{p}^{m+1} (\lambda, \ell) f(z) - [\ell + p (1 - \lambda)] \mathcal{J}_{p}^{m} (\lambda, \ell) f(z) \quad (\lambda > 0). \quad (5)$$

By specializing the parameters m, λ , ℓ and p, we obtain the following operators studied by various authors:

- (i) $\mathcal{J}_p^m(\lambda,\ell) f(z) = I_p^m(\lambda,\ell) f(z)$ $(\ell \ge 0, p \in \mathbb{N}, \lambda \ge 0 \text{ and } m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\})$ (see [[12]]);
- (ii) $\mathcal{J}_p^m(1,\ell)f(z) = I_p(m,\ell)f(z)$ $(\ell \ge 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [18] and [29]);
- (iii) $\mathcal{J}_p^m(\lambda,0) f(z) = D_{\lambda,p}^m f(z)$ $(\lambda \ge 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [5]);
- (iv) $\mathcal{J}_p^m(1,0) f(z) = D_p^m f(z)$ $(m \in \mathbb{N}_0 \text{ and } p \in \mathbb{N}) \text{ (see [6], [17] and [21])};$
- (v) $\mathcal{J}_p^{-m}(\lambda,\ell) f(z) = J_p^m(\lambda,\ell) f(z)$ $(\ell \ge 0, \ \lambda \ge 0, \ p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [7], [15] and [28]);
- (vi) $\mathcal{J}_{p}^{-m}(1,1) f(z) = D^{m} f(z) \quad (m \in \mathbb{Z}) \text{ (see [23])};$
- (vii) $\mathcal{J}_1^m(1,\ell) f(z) = I_\ell^m f(z)$ $(\ell \ge 0 \text{ and } m \in \mathbb{N}_0)$ (see [13] and [14]);
- (viii) $\mathcal{J}_1^m(\lambda,0) f(z) = D_{\lambda}^m f(z)$ $(\lambda \ge 0 \text{ and } m \in \mathbb{N}_0)$ (see [2]);
 - (ix) $\mathcal{J}_1^m(1,0) f(z) = D^m f(z) \quad (m \in \mathbb{N}_0)$ (see [26]);
 - (x) $\mathcal{J}_1^{-m}(\lambda,0) f(z) = I_{\lambda}^{-m} f(z)$ ($\lambda \ge 0$ and $m \in \mathbb{N}_0$) (see [22] and [8]);
 - (xi) $\mathcal{J}_1^{-m}(1,1) f(z) = I^m f(z)$ $(m \in \mathbb{N}_0)$ (see [16]).

2. Definitions and preliminaries

In order to prove our results, we shall need the following definition and lemmas.

Definition 2.1 ([20]). Let \mathcal{Q} be the set of all functions f that are analytic and injective on $\overline{U}\setminus E(f)$, where $E(f)=\{\zeta\in\partial U: \lim_{z\to\zeta}f(z)=\infty\}$ and are such that $f'(\zeta)\neq 0$ for $\zeta\in\partial U\setminus E(f)$.

Lemma 2.2 ([19]). Let q be univalent in the unit disc U and let θ and ϕ be analytic in a domain D containing q(U), with $\phi(w) \neq 0$ when $w \in q(U)$. Set

$$Q(z) = zq'(z)\phi(q(z)) \text{ and } h(z) = \theta(q(z)) + Q(z), \tag{6}$$

suppose that

(i) Q is a starlike function in U,

(ii)
$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0, z \in U.$$

If k is analytic in U with k(0) = q(0), $k(U) \subseteq D$ and

$$\theta(k(z)) + zk'(z)\phi(k(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)), \tag{7}$$

then $k(z) \prec q(z)$ and q is the best dominant of (7).

Lemma 2.3 ([27]). Let $\xi, \varphi \in \mathbb{C}$ with $\varphi \neq 0$ and let q be a convex function in U with

$$\Re\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\{0; -\Re\frac{\xi}{\varphi}\}.$$

If k is analytic in U and

$$\xi k(z) + \varphi z k'(z) \prec \xi q(z) + \varphi z q'(z), \tag{8}$$

then $k \prec q$ and q is the best dominant of (8).

Lemma 2.4 ([11]). Let q be a univalent function in U and let θ and φ be analytic in a domain D containing q(U). Suppose that

$$(i) \Re\left\{ rac{ heta'(q(z))}{\varphi(q(z))}
ight\} > 0 \ for \ z \in U,$$

(ii) $Q(z) = zq'(z)\varphi(q(z))$ is starlike univalent in U.

If $k \in H[q(0), 1] \cap Q$, with $k(U) \subseteq D$, $\theta(k(z)) + zk'(z)\varphi(k(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(k(z)) + zk'(z)\varphi(k(z)), \tag{9}$$

then $q(z) \prec k(z)$ and q is the best subordinant of (9).

Lemma 2.5 ([20]). Let q be convex univalent in U and let $\beta \in \mathbb{C}$, with $\Re\{\beta\} > 0$. If $k \in H[q(0), 1] \cap Q$, $k(z) + \beta zk'(z)$ is univalent in U and

$$q(z) + \beta z q'(z) \prec k(z) + \beta z k'(z), \tag{10}$$

then $q \prec k$ and q is the best subordinant of (10).

Lemma 2.6 ([25]). The function $q(z) = (1-z)^{-2ab}$ $(a,b \in \mathbb{C}^*)$ is univalent in U if and only if $|2ab-1| \le 1$ or $|2ab+1| \le 1$.

3. Subordinant results

Unless otherwise mentioned, we shall assume in the reminder of this paper that $\lambda \geq 0, \ \ell > -p, \ p \in \mathbb{N}, \ \alpha \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \ m \in \mathbb{Z} \ \text{and} \ z \in U$ and the powers are understood as principle values.

Theorem 3.1. Let q(z) be univalent in U, with q(0) = 1 and suppose that

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0; -\frac{p(p+\ell)}{\lambda}\Re\left(\frac{1}{\alpha}\right)\right\}. \tag{11}$$

If $f(z) \in \mathcal{A}(p)$ such that $\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)} \neq 0$ and satisfies the subordination

$$\frac{(p+\alpha)}{p} \left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell) f(z)} \right) - \frac{\alpha}{p} \left(\frac{z^p \mathcal{J}_p^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_p^m(\lambda,\ell) f(z) \right)^2} \right) \prec q(z) + \frac{\lambda \alpha z q'(z)}{p (p+\ell)}, \tag{12}$$

then

$$\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)\,f(z)} \prec q(z)$$

and q is the best dominant of (12).

Proof. Define a function k(z) by

$$k(z) = \frac{z^p}{\mathcal{J}_p^m(\lambda, \ell) f(z)} \ (z \in U), \tag{13}$$

where k(z) is analytic in U with k(0) = 1. By differentiating (13) logarithmically with respect to z, we obtain that

$$\frac{zk'(z)}{k(z)} = p - \frac{z\left(\mathcal{J}_p^m(\lambda,\ell)f(z)\right)'}{\mathcal{J}_p^m(\lambda,\ell)f(z)}.$$
 (14)

From (14) and (5), a simple computation shows that

$$\frac{(p+\alpha)}{p}\left(\frac{z^{p}}{\mathcal{J}_{p}^{m}\left(\lambda,\ell\right)f(z)}\right)-\frac{\alpha}{p}\left(\frac{z^{p}\mathcal{J}_{p}^{m+1}\left(\lambda,\ell\right)f(z)}{\left(\mathcal{J}_{p}^{m}\left(\lambda,\ell\right)f(z)\right)^{2}}\right)=k(z)+\frac{\lambda\alpha zk^{'}(z)}{p\left(p+\ell\right)},$$

hence the subordination (12) is equivalent to

$$k(z) + \frac{\lambda \alpha z k'(z)}{p(p+\ell)} \prec q(z) + \frac{\lambda \alpha z q'(z)}{p(p+\ell)}.$$

Now, applying Lemma 2.3, with $\varphi = \frac{\lambda \alpha}{p(p+\ell)}$ and $\xi = 1$, the proof is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Theorem 3.1, the condition (11) reduces to

$$\Re\left\{\frac{1-Bz}{1+Bz}\right\} > \max\left\{0; -\frac{p(p+\ell)}{\lambda}\Re\left(\frac{1}{\alpha}\right)\right\}. \tag{15}$$

It is easy to check that the function $\psi(\zeta) = \frac{1-\zeta}{1+\zeta}$, $|\zeta| < |B|$, is convex in U and since $\psi(\overline{\zeta}) = \overline{\psi(\zeta)}$ for all $|\zeta| < |B|$, it follows that the image $\psi(U)$ is convex domain symmetric with respect to the real axis, hence

$$\inf \left\{ \Re \left(\frac{1 - Bz}{1 + Bz} \right) \right\} = \frac{1 - |B|}{1 + |B|} > 0. \tag{16}$$

Then the inequality (15) is equivalent to $\frac{|B|-1}{|B|+1} \le \frac{p(p+\ell)}{\lambda} \Re\left(\frac{1}{\alpha}\right)$, hence, we obtain the following corollary.

Corollary 3.2. *Let* $f(z) \in A(p)$, $-1 \le B < A \le 1$ *and*

$$\max\left\{0;-\frac{p\left(p+\ell\right)}{\lambda}\Re\left(\frac{1}{\alpha}\right)\right\}\leq\frac{1-|B|}{1+|B|},$$

then

implies

$$\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (17).

Taking $q(z) = \frac{1+z}{1-z}$ in Theorem 3.1 (or putting A = 1 and B = -1 in Corollary 3.2), the condition (11) reduces to

$$\frac{p(p+\ell)}{\lambda}\Re\left(\frac{1}{\alpha}\right) \ge 0,\tag{18}$$

hence, we obtain the following corollary.

Corollary 3.3. Let $f(z) \in \mathcal{A}(p)$, assume that (18) holds true and

then

$$\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)} \prec \frac{1+z}{1-z}$$

and $\frac{1+z}{1-z}$ is the best dominant of (19).

Theorem 3.4. Let q(z) be univalent in U, with q(0) = 1 and $q(z) \neq 0$ for all $z \in U$, $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau \in \mathbb{C}$, with $\rho + \tau \neq 0$, $f(z) \in \mathcal{A}(p)$ and suppose that f and q satisfy the next conditions:

$$\frac{(\rho + \tau)z^{p}}{\rho \mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m}(\lambda, \ell) f(z)} \neq 0 \quad (z \in U)$$
(20)

and

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0 \ (z \in U). \tag{21}$$

If

$$1 + \zeta \eta \left\{ p - \frac{\rho z \left(\mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) \right)' + \tau z \left(\mathcal{J}_{p}^{m}(\lambda, \ell) f(z) \right)'}{\rho \mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m}(\lambda, \ell) f(z)} \right\} \prec 1 + \eta \frac{z q'(z)}{q(z)}, \tag{22}$$

then

$$\left(\frac{(\rho+\tau)z^p}{\rho\,\mathcal{J}_p^{m+1}\left(\lambda,\ell\right)f(z)+\tau\,\mathcal{J}_p^{m}\left(\lambda,\ell\right)f(z)}\right)^{\zeta}\prec q(z)$$

and q is the best dominant of (22).

Proof. Let

$$g(z) = \left(\frac{(\rho + \tau)z^p}{\rho \mathcal{J}_p^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_p^m(\lambda, \ell) f(z)}\right)^{\zeta} (z \in U), \tag{23}$$

then g(z) is analytic in U, differentiating g(z) logarithmically with respect to z, we obtain

$$\frac{zg'(z)}{g(z)} = \zeta \left\{ p - \frac{\rho z \left(\mathcal{J}_p^{m+1}(\lambda, \ell) f(z) \right)' + \tau z \left(\mathcal{J}_p^m(\lambda, \ell) f(z) \right)'}{\rho \mathcal{J}_p^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_p^m(\lambda, \ell) f(z)} \right\}. \tag{24}$$

Now, using Lemma 2.2 with $\theta(w) = 1$ and $\phi(w) = \frac{\eta}{w}$, then θ is analytic in \mathbb{C} and $\phi(w) \neq 0$ is analytic in \mathbb{C}^* . Also if we let

$$Q(z) = zq'(z)\phi(q(z)) = \eta \frac{zq'(z)}{q(z)},$$

and

$$h(z) = \theta(q(z)) + Q(z) = 1 + \eta \frac{zq'(z)}{q(z)},$$

then, Q(0) = 0 and $Q'(0) \neq 0$, and the assumption (3.11) yields that Q is a starlike function in U. From (21) we have

$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} = \Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0 \ (z \in U),$$

then, by using Lemma 2.2, we deduce that the assumption (22) implies $g(z) \prec q(z)$ and the function q is the best dominant of (22).

Taking $q(z) = \frac{1+Az}{1+Bz} \ (-1 \le B < A \le 1)$, $\rho = 0$ and $\tau = \eta = 1$ in Theorem 3.4, the condition (21) reduces to

$$\left\{1 - \frac{2Bz}{1 + Bz} - \frac{(A - B)z}{(1 + Az)(1 + Bz)}\right\} > 0,\tag{25}$$

hence, we obtain the following corollary.

Corollary 3.5. Let $f(z) \in \mathcal{A}(p)$, assume that (25) holds true, $-1 \le B < A \le 1$ and suppose that $\frac{\mathcal{I}_p^m(\lambda,\ell)f(z)}{z^p} \ne 0$ $(z \in U)$. If

$$1 + \zeta \left\{ p - \frac{z \left(\mathcal{J}_p^m(\lambda, \ell) f(z) \right)'}{\mathcal{J}_p^m(\lambda, \ell) f(z)} \right\} \prec 1 + \frac{(A - B) z}{(1 + Az)(1 + Bz)}, \tag{26}$$

then

$$\left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)}\right)^{\zeta} \prec \frac{1+Az}{1+Bz},\tag{27}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (26).

Putting $p \in \mathbb{N}$, $n = \rho = 0$, $\tau = \eta = 1$ and $q(z) = (1 + Bz)^{\frac{\zeta(A-B)}{B}}$ ($\zeta \in \mathbb{C}^*$, $-1 \le B < A \le 1$, $B \ne 0$) in Theorem 3.4 and using Lemma 2.6, it is easy to check that the assumption (21) holds, hence we obtain the next corollary:

Corollary 3.6. Let $f \in \mathcal{A}(p)$, $\zeta \in \mathbb{C}^*$, $-1 \le B < A \le 1$, with $B \ne 0$ and suppose that $\left|\frac{\zeta(A-B)}{B} - 1\right| \le 1$ or $\left|\frac{\zeta(A-B)}{B} + 1\right| \le 1$. If

$$1 + \zeta \left(p - \frac{zf'(z)}{f(z)} \right) \prec \frac{1 + \left[B + \zeta (A - B) \right] z}{1 + Bz},\tag{28}$$

then

$$\left(\frac{z^p}{f(z)}\right)^{\zeta} \prec \left(1 + Bz\right)^{\frac{\zeta(A-B)}{B}}$$

and $(1+Bz)^{\frac{\zeta(A-B)}{B}}$ is the best dominant of (28).

Putting $m = \rho = 0$, $\tau = 1$, $\eta = \frac{1}{ab}(a, b \in \mathbb{C}^*)$, $\zeta = a$, and $q(z) = (1-z)^{-2ab}$ in Theorem 3.4, hence combining this together with Lemma 2.6, we obtain the following corollary.

Corollary 3.7. Let $f(z) \in \mathcal{A}(p)$, assume that (21) holds true and $a, b \in \mathbb{C}^*$ such that $|2ab-1| \le 1$ or $|2ab+1| \le 1$. If

$$1 + \frac{1}{b} \left(p - \frac{zf'(z)}{f(z)} \right) \prec \frac{1+z}{1-z},$$
 (29)

then

$$\left(\frac{z^p}{f(z)}\right)^a \prec (1-z)^{-2ab}$$

and $(1-z)^{-2ab}$ is the best dominant of (29).

Theorem 3.8. Let q(z) be univalent in U, with q(0) = 1, $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau, \sigma, \varkappa \in \mathbb{C}$, with $\rho + \tau \neq 0$ and $f(z) \in \mathcal{A}(p)$. Suppose that f and q satisfy the next two conditions:

$$\frac{(\rho + \tau)z^{p}}{\rho \mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m}(\lambda, \ell) f(z)} \neq 0 \ (z \in U)$$
(30)

and

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\{0; -\Re\left(\frac{\sigma}{\eta}\right)\} \ (z \in U). \tag{31}$$

If

$$\mathcal{F}(z) = \left(\frac{(\rho + \tau)z^{p}}{\rho \mathcal{J}_{p}^{m+1}\left(\lambda,\ell\right)f(z) + \tau \mathcal{J}_{p}^{m}\left(\lambda,\ell\right)f(z)}\right)^{\zeta}.$$

$$\cdot \left[\sigma + \zeta \eta \left(p - \frac{\rho z \left(\mathcal{J}_{p}^{m+1} (\lambda, \ell) f(z) \right)' + \tau z \left(\mathcal{J}_{p}^{m} (\lambda, \ell) f(z) \right)'}{\rho \mathcal{J}_{p}^{m+1} (\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m} (\lambda, \ell) f(z)} \right) \right] + \varkappa \quad (32)$$

and

$$\mathcal{F}(z) \prec \sigma q(z) + \eta z q'(z) + \varkappa,$$
 (33)

then

$$\left(\frac{(\rho+\tau)z^p}{\rho\mathcal{J}_p^{m+1}(\lambda,\ell)f(z)+\tau\mathcal{J}_p^m(\lambda,\ell)f(z)}\right)^{\zeta} \prec q(z) \tag{34}$$

and q is the best dominant of (34).

Proof. Let g(z) defined by (23), we see that (24) holds and

$$zg'(z) = \zeta g(z) \left\{ p - \frac{\rho z \left(\mathcal{J}_p^{m+1}(\lambda, \ell) f(z) \right)' + \tau z \left(\mathcal{J}_p^m(\lambda, \ell) f(z) \right)'}{\rho \mathcal{J}_p^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_p^m(\lambda, \ell) f(z)} \right\}.$$
(35)

Now, Let us consider $\theta(w) = \sigma w + \varkappa$ and $\phi(w) = \eta$, then θ and $\phi(w) \neq 0$ are analytic in \mathbb{C} . Also if we let

$$Q(z) = zq'(z)\phi(q(z)) = \eta zq'(z),$$

and

$$h(z) = \theta(q(z)) + Q(z) = \sigma q(z) + \eta z q'(z) + \varkappa$$

then the assumption (31) yields that Q is a starlike function in U and that

$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} = \Re\left\{\frac{\sigma}{\eta} + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0 \ (z \in U).$$

The proof follows by applying Lemma 2.2.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ and using (16), the condition (31) reduces to

$$\max\left\{0; -\Re\frac{\sigma}{\eta}\right\} \le \frac{1 - |B|}{1 + |B|},\tag{36}$$

hence, putting $\eta = \rho = 1$ and $\tau = 0$ in Theorem 3.8, we obtain the following corollary.

Corollary 3.9. Let $f(z) \in \mathcal{A}(p)$, $-1 \le B < A \le 1$ and $\sigma \in \mathbb{C}$ with

$$\max\left\{0; -\Re\left(\sigma\right)\right\} \le \frac{1 - |B|}{1 + |B|},$$

suppose that $\frac{z^p}{\int_p^{m+1}(\lambda,\ell)f(z)} \neq 0 \ \ (z \in U)$ and let $\zeta \in \mathbb{C}^*$. If

$$\left(\frac{z^{p}}{\mathcal{J}_{p}^{m+1}(\lambda,\ell)f(z)}\right)^{\zeta} \cdot \left[\sigma + \zeta \left(p - \frac{z\left(\mathcal{J}_{p}^{m+1}(\lambda,\ell)f(z)\right)'}{\mathcal{J}_{p}^{m+1}(\lambda,\ell)f(z)}\right)\right] + \varkappa$$

$$\prec \sigma \frac{1 + Az}{1 + Bz} + \frac{(A - B)z}{(1 + Bz)^{2}} + \varkappa, \quad (37)$$

then

$$\left(\frac{z^p}{\mathcal{J}_p^{m+1}(\lambda,\ell)f(z)}\right)^{\zeta} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (37).

Putting $m = \rho = 0, \eta = \tau = 1, \ p \in \mathbb{N}$ and $q(z) = \frac{1+z}{1-z}$ in Theorem 3.8, we obtain the following corollary.

Corollary 3.10. Let $f(z) \in \mathcal{A}(p)$ such that $\frac{z^p}{f(z)} \neq 0$ for all $z \in U$ and let $\zeta \in \mathbb{C}^*$. If

$$\left(\frac{z^p}{f(z)}\right)^{\zeta} \cdot \left[\sigma + \zeta \left(p - \frac{zf'(z)}{f(z)}\right)\right] + \varkappa \prec \sigma \frac{1+z}{1-z} + \frac{2z}{(1-z)^2} + \chi, \quad (38)$$

then

$$\left(\frac{z^p}{f(z)}\right)^{\zeta} \prec \frac{1+z}{1-z}$$

and $\frac{1+z}{1-z}$ is the best dominant of (38).

4. Superordination and sandwich results

Theorem 4.1. Let q(z) be convex in U, with q(0) = 1 and

$$\frac{\lambda}{p(p+\ell)}\Re\left(\alpha\right) > 0. \tag{39}$$

Let $f(z) \in \mathcal{A}(p)$ and suppose that $\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)} \in H[q(0),1] \cap \mathcal{Q}$. If the function

$$\frac{(p+\alpha)}{p}\left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)}\right) - \frac{\alpha}{p}\left(\frac{z^p\mathcal{J}_p^{m+1}(\lambda,\ell)f(z)}{\left(\mathcal{J}_p^m(\lambda,\ell)f(z)\right)^2}\right),$$

is univalent in U and

$$q(z) + \frac{\lambda \alpha z q'(z)}{p(p+\ell)} \prec \frac{(p+\alpha)}{p} \left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell) f(z)} \right) - \frac{\alpha}{p} \left(\frac{z^p \mathcal{J}_p^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_p^m(\lambda,\ell) f(z) \right)^2} \right), \tag{40}$$

then

$$q(z) \prec \frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)}$$

and q is the best subordinant of (40).

Proof. Let k(z) defined by (13), we see that (14) holds. After some computations, we obtain

$$\frac{(p+\alpha)}{p} \left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell) f(z)} \right) - \frac{\alpha}{p} \left(\frac{z^p \mathcal{J}_p^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_p^m(\lambda,\ell) f(z) \right)^2} \right) = k(z) + \frac{\lambda \alpha z k'(z)}{p (p+\ell)}$$
(41)

and now, by using Lemma 2.5 we obtain the desired result.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Theorem 4.1, we obtain the following corollary.

Corollary 4.2. Let q(z) be convex in U, with q(0) = 1 and $\left[\frac{\lambda}{p(p+\ell)}\Re\left(\alpha\right)\right] > 0$. Let $f(z) \in \mathcal{A}(p)$ and suppose that $\frac{\mathcal{I}_p^m(\lambda,\ell)f(z)}{z^p} \in H[q(0),1] \cap \mathcal{Q}$. If the function

$$\frac{(p+\alpha)}{p}\left(\frac{z^p}{\mathcal{J}_p^m\left(\lambda,\ell\right)f(z)}\right) - \frac{\alpha}{p}\left(\frac{z^p\mathcal{J}_p^{m+1}\left(\lambda,\ell\right)f(z)}{\left(\mathcal{J}_p^m\left(\lambda,\ell\right)f(z)\right)^2}\right),$$

is univalent in U and

$$\frac{1+Az}{1+Bz} + \frac{\lambda \alpha}{p(p+\ell)} \frac{(A-B)z}{(1+Bz)^{2}}$$

$$\prec \frac{(p+\alpha)}{p} \left(\frac{z^{p}}{\mathcal{J}_{p}^{m}(\lambda,\ell) f(z)}\right) - \frac{\alpha}{p} \left(\frac{z^{p} \mathcal{J}_{p}^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_{p}^{m}(\lambda,\ell) f(z)\right)^{2}}\right), \quad (42)$$

then

$$\frac{1+Az}{1+Bz} \prec \frac{z^p}{\mathcal{J}_p^m(\lambda,\ell) f(z)}$$

and $\frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ is the best subordinant of (42).

The proof of the following theorem is similar to the proof of Theorem 4.1, so we state the theorem without proof.

Theorem 4.3. Let q(z) be convex in U, with q(0) = 1, $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau \in \mathbb{C}$, with $\rho + \tau \neq 0$. Let $f(z) \in \mathcal{A}(p)$ and satisfy the next conditions:

$$\frac{(\rho+\tau)z^p}{\rho\,\mathcal{J}_p^{m+1}\,(\lambda,\ell)\,f(z)+\tau\mathcal{J}_p^{m}\,(\lambda,\ell)\,f(z)}\neq 0\ (z\in U)$$

and

$$\left(\frac{(\rho+\tau)z^p}{\rho\mathcal{J}_p^{m+1}\left(\lambda,\ell\right)f(z)+\tau\mathcal{J}_p^{m}\left(\lambda,\ell\right)f(z)}\right)^{\zeta}\in H[q(0),1]\cap\mathcal{Q}.$$

If the function $1 + \zeta \eta \left\{ p - \frac{\rho z \left(\mathcal{J}_p^{m+1}(\lambda,\ell) f(z) \right)' + \tau z \left(\mathcal{J}_p^m(\lambda,\ell) f(z) \right)'}{\rho \mathcal{J}_p^{m+1}(\lambda,\ell) f(z) + \tau \mathcal{J}_p^m(\lambda,\ell) f(z)} \right\}$ is univalent in U and

$$1 + \eta \frac{zq^{'}(z)}{q(z)} \prec 1 + \zeta \eta \left\{ p - \frac{\rho z \left(\mathcal{J}_{p}^{m+1}\left(\boldsymbol{\lambda},\ell\right) f(z) \right)^{'} + \tau z \left(\mathcal{J}_{p}^{m}\left(\boldsymbol{\lambda},\ell\right) f(z) \right)^{'}}{\rho \mathcal{J}_{p}^{m+1}\left(\boldsymbol{\lambda},\ell\right) f(z) + \tau \mathcal{J}_{p}^{m}\left(\boldsymbol{\lambda},\ell\right) f(z)} \right\},$$

then

$$q(z) \prec \left(\frac{(\rho + \tau)z^{p}}{\rho \mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m}(\lambda, \ell) f(z)}\right)^{\zeta}$$
(43)

and q is the best subordinant of (43).

By applying Lemma 2.4, we obtain the following theorem.

Theorem 4.4. Let q(z) be convex in U, with q(0) = 1, $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau, \sigma, \varkappa \in \mathbb{C}$, with $\rho + \tau \neq 0$ and $\Re\left(\frac{\sigma}{\eta}q'(z)\right) > 0$. Let $f(z) \in \mathcal{A}(p)$ and satisfy the next conditions:

$$\frac{(\rho+\tau)z^p}{\rho \mathcal{J}_p^{m+1}(\lambda,\ell)f(z) + \tau \mathcal{J}_p^m(\lambda,\ell)f(z)} \neq 0 \ (z \in U)$$

and

$$\left(\frac{(\rho+\tau)z^p}{\rho\,\mathcal{J}_p^{m+1}\,(\lambda,\ell)\,f(z)+\tau\,\mathcal{J}_p^{m}\,(\lambda,\ell)\,f(z)}\right)^{\zeta}\in H[q(0),1]\cap\mathcal{Q}.$$

If the function \mathcal{F} given by (32) is univalent in U and

$$\sigma q(z) + \eta z q'(z) + \varkappa \prec \mathcal{F}(z), \tag{44}$$

then

$$q(z) \prec \left(\frac{(\rho + \tau)z^{p}}{\rho \mathcal{J}_{p}^{m+1}\left(\lambda,\ell\right)f(z) + \tau \mathcal{J}_{p}^{m}\left(\lambda,\ell\right)f(z)}\right)^{\zeta}$$

and q is the best subordinant of (44).

Combining Theorem 3.1 and Theorem 4.1, we obtain the following sandwich theorem.

Theorem 4.5. Let q_1 and q_2 be two convex functions in U, such that $q_1(0) = q_2(0) = 1$ and $\left[\frac{\lambda}{p(p+\ell)}\Re(\alpha)\right] > 0$. Let $f(z) \in \mathcal{A}(p)$ and suppose that $\frac{\mathcal{J}_p^m(\lambda,\ell)f(z)}{z^p} \in H[q(0),1] \cap \mathcal{Q}$. If the function

$$\frac{(p+\alpha)}{p} \left(\frac{z^p}{\mathcal{J}_p^m(\lambda,\ell) f(z)} \right) - \frac{\alpha}{p} \left(\frac{z^p \mathcal{J}_p^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_p^m(\lambda,\ell) f(z) \right)^2} \right)$$

is univalent in U and

$$q_{1}(z) + \frac{\lambda \alpha z q_{1}'(z)}{p(p+\ell)} \prec \frac{(p+\alpha)}{p} \left(\frac{z^{p}}{\mathcal{J}_{p}^{m}(\lambda,\ell) f(z)} \right) - \frac{\alpha}{p} \left(\frac{z^{p} \mathcal{J}_{p}^{m+1}(\lambda,\ell) f(z)}{\left(\mathcal{J}_{p}^{m}(\lambda,\ell) f(z) \right)^{2}} \right) \prec q_{2}(z) + \frac{\lambda \alpha z q_{2}'(z)}{p(p+\ell)}, \quad (45)$$

then

$$q_1(z) \prec \frac{z^p}{\mathcal{J}_p^m(\lambda,\ell)f(z)} \prec q_2(z)$$

and q_1 and q_2 are, respectively, the best subordinant and dominant of (45).

Combining Theorem 3.4 and Theorem 4.3, we obtain the following sandwich theorem.

Theorem 4.6. Let q(z) be convex in U, with q(0) = 1, $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau \in \mathbb{C}$, with $\rho + \tau \neq 0$. Let $f(z) \in \mathcal{A}(p)$ and satisfy $\frac{(\rho + \tau)z^p}{\rho \mathcal{J}_p^{m+1}(\lambda,\ell)f(z) + \tau \mathcal{J}_p^m(\lambda,\ell)f(z)} \neq 0$

$$0 \ \ (z \in U) \ and \left(\frac{(\rho + \tau)z^p}{\rho \mathcal{J}_p^{m+1}(\lambda,\ell)f(z) + \tau \mathcal{J}_p^m(\lambda,\ell)f(z)}\right)^{\zeta} \in H[q(0),1] \cap \mathcal{Q}. \ \textit{If the function}$$

$$1 + \zeta \eta \left\{ p - \frac{\rho z \left(\mathcal{J}_p^{m+1} \left(\lambda, \ell \right) f(z) \right)' + \tau z \left(\mathcal{J}_p^{m} \left(\lambda, \ell \right) f(z) \right)'}{\rho \mathcal{J}_p^{m+1} \left(\lambda, \ell \right) f(z) + \tau \mathcal{J}_p^{m} \left(\lambda, \ell \right) f(z)} \right\}$$

is univalent in U and

$$1 + \eta \frac{zq_{1}'(z)}{q_{1}(z)}$$

$$\prec 1 + \zeta \eta \left\{ p - \frac{\rho z \left(\mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) \right)' + \tau z \left(\mathcal{J}_{p}^{m}(\lambda, \ell) f(z) \right)'}{\rho \mathcal{J}_{p}^{m+1}(\lambda, \ell) f(z) + \tau \mathcal{J}_{p}^{m}(\lambda, \ell) f(z)} \right\}$$

$$\prec 1 + \eta \frac{zq_{2}'(z)}{q_{2}(z)}, \quad (46)$$

then

$$q_1(z) \prec \left(\frac{(\rho + \tau)z^p}{\rho \mathcal{J}_p^{m+1}\left(\lambda,\ell\right)f(z) + \tau \mathcal{J}_p^{m}\left(\lambda,\ell\right)f(z)}\right)^{\zeta} \prec q_2(z)$$

and q_1 and q_2 are, respectively, the best subordinant and dominant of (46).

Combining Theorem 3.8 and Theorem 4.4, we obtain the following sandwich theorem.

Theorem 4.7. Let q_1 and q_2 be two convex functions in U, with $q_1(0) = q_2(0) = 1$, let $\eta, \zeta \in \mathbb{C}^*$, $\rho, \tau, \sigma, \varkappa \in \mathbb{C}$, with $\rho + \tau \neq 0$ and $\Re\left(\frac{\sigma}{\eta}q'(z)\right) > 0$. Let $f(z) \in \mathcal{A}(p)$ satisfies

$$\frac{(\rho+\tau)z^p}{\rho\mathcal{J}_p^{m+1}(\lambda,\ell)f(z)+\tau\mathcal{J}_p^m(\lambda,\ell)f(z)}\neq 0 \quad (z\in U) \ \ and \ \left(\frac{(\rho+\tau)z^p}{\rho\mathcal{J}_p^{m+1}(\lambda,\ell)f(z)+\tau\mathcal{J}_p^m(\lambda,\ell)f(z)}\right)^{\zeta}\in H[q(0),1]\cap \mathcal{Q}. \ \ \ If \ the \ function \ \mathcal{F} \ \ given \ \ by \ (32) \ \ is \ \ univalent \ in \ U \ \ and$$

$$\sigma q_1(z) + \eta z q_1'(z) + \chi \prec \mathcal{F}(z) \prec \sigma q_2(z) + \eta z q_2'(z) + \varkappa, \tag{47}$$

then

$$q_1(z) \prec \left(rac{(
ho + au)z^p}{
ho \, \mathcal{J}_p^{m+1} \, (\lambda,\ell) \, f(z) + au \, \mathcal{J}_p^m \, (\lambda,\ell) \, f(z)}
ight)^{\zeta} \prec q_2(z)$$

and q_1 and q_2 are, respectively, the best subordinant and dominant of (47).

Remark 4.8. By Specializing λ, ℓ and m in the above results, we obtain the corresponding results for the operators $I_p^m(\lambda, \ell), J_p^m(\lambda, \ell), D_{\lambda,p}^m$ and $D_{\lambda,p}^m$, which are defined in introduction.

Acknowledgments

The authors would like to record their sincere thanks to the referee(s) for their valuable comments and insightful suggestions.

REFERENCES

- [1] R. M. Ali V. Ravichandran K. G. Subramanian, *Differential sandwich theorems for certain analytic functions*, Far East J. Math. Sci. 15 (1) (2004), 87–94.
- [2] F. M. Al-Oboudi, *On univalent functions defined by a generalized Salagean operator*, Internat. J. Math. Math. Sci. 27 (2004), 1429–1436.

- [3] M. K. Aouf F. M. Al-Oboudi M. M. Haidan, *On some results for* λ -spirallike and λ -Robertson functions of complex order, Publ. Inst. Math. Belgrade 77 (91) (2005), 93–98.
- [4] M. K. Aouf T. Bulboacă, Subordination and superordination properties of multivalent functions defined by certain integral operator, J. Franklin Instit. 347 (2010), 641–653.
- [5] M. K. Aouf R. M. El-Ashwah S. M. El-Deeb, *Some inequalities for certain p-valent functions involving an extended multiplier transformations*, Proc. Pakistan Acad. Sci. 46 (4) (2009), 217–221.
- [6] M. K. Aouf A. O. Mostafa, *On a subclass of n p-valent prestarlike functions*, Comput. Math. Appl. 55 (2008), 851–861.
- [7] M. K. Aouf A. O. Mostafa R. M. El-Ashwah, *Sandwich theorems for p-valent functions defined by a certain integral operator*, Math. Comput. Modelling 53 (2011), 1647–1653.
- [8] M. K. Aouf T. M. Seoudy, On differential sandwich theorems of analytic functions defined by generalized Salagean integral operator, Appl. Math. Letters 24 (2011), 1364–1368.
- [9] T. Bulboacă, *A class of superordination-preserving integral operators*, Indag. Math. (N. S.) 13 (3) (2002), 301–311.
- [10] T. Bulboacă, *Classes of first order differential superordinations*, Demonstratio Math. 35 (2) (2002), 287–292.
- [11] T. Bulboacă, *Differential Subordinations and Superordinations, Recent Results*, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [12] A. Catas, On certain classes of p-valent functions defined by multiplier tranformations, in Proc. Book of the International Symposium on Geometric Functions Theory and Applications, Istanbul, Turkey, (August 2007), 241–250.
- [13] N. E. Cho T. H. Kim, *Multiplier transformations and strongly close-to-convex functions*, Bull. Korean Math. Soc. 40 (3) (2003), 399–410.
- [14] N.E. Cho H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (1-2) (2003), 39–49.
- [15] R. M. El-Ashwah M. K. Aouf, *Some properties of new integral operator*, Acta Univ. Apulensis 24 (2010), 51–61.
- [16] T. M. Flett, *The dual of an identity of Hardy and Littlewood and some related inequalities*, J. Math. Anal. Appl. 38 (1972), 746–765.
- [17] M. Kamali H. Orhan, *On a subclass of certian starlike functions with negative coefficients*, Bull. Korean Math. Soc. 41 (1) (2004), 53–71.
- [18] S. S. Kumar H. C. Taneja V. Ravichandran, *Classes multivalent functions defined by Dziok-Srivastava linear operaor and multiplier transformations*, Kyungpook Math. J. 46 (2006), 97–109.

- [19] S. S. Miller P. T. Mocanu, *Differential Subordination: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York and Basel, 2000.
- [20] S. S. Miller P. T. Mocanu, *Subordinates of differential superordinations*, Complex Variables 48 (10) (2003), 815–826.
- [21] H. Orhan H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput. 155 (2004), 521–530.
- [22] J. Patel, *Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Salagean operator*, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 33–47.
- [23] J. Patel P. Sahoo, *Certain subclasses of multivalent analytic functions*, Indian J. Pure Appl. Math. 34 (2003), 487–500.
- [24] J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling 55 (2012), 1456–1465.
- [25] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
- [26] G. S. Salagean, *Subclasses of univalent functions*, Lecture Notes in Math. 1013, Springer-Verlag (1983), 362–372.
- [27] T. N. Shanmugam V. Ravichandran S. Sivasubramanian, *Differential sandwich theorems for some subclasses of analytic functions*, J. Austr. Math. Anal. Appl. 3 (1) (2006), Art. 8, 1–11.
- [28] H. M. Srivastava M. K. Aouf R. M. El-Ashwah, *Some inclusion relationships associated with a certain class of integral operators*, Asian European J. Math. 3 (4) (2010), 667–684.
- [29] H. M. Srivastava K. Suchithra B. Adolf Stephen S. Sivasubramanian, *Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order*, J. Ineq. Pure Appl. Math. 7 (5) (2006), Art. 191, 1–8.

RABHA M. EL-ASHWAH
Department of Mathematics, Faculty of Science
Damietta University
New Damietta 34517, Egypt
e-mail: r_elashwah@yahoo.com

MOHAMED K. AOUF

Department of Mathematics, Faculty of Science
Mansoura University
Mansoura 35516, Egypt
e-mail: mkaouf 127@yahoo.com

ALI SHAMANDY

Department of Mathematics, Faculty of Science
Mansoura University
Mansoura 35516, Egypt
e-mail: shamandy16@hotmail.com

SHEZA M. EL-DEEB

Department of Mathematics, Faculty of Science
Damietta University
New Damietta 34517, Egypt
e-mail: shezaeldeeb@yahoo.com