POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS INVOLVING THE p-LAPLACIAN OPERATOR

M. CHOUBIN - S. H. RASOULI - M. B. GHAEMI - G. A. AFROUZI

We discuss the existence of a positive solution to the infinite semipositone problem
$-\Delta_{p} u=a u^{p-1}-b u^{\gamma}-f(u)-\frac{c}{u^{\alpha}}, x \in \Omega, \quad u=0, x \in \partial \Omega$,
where Δ_{p} is the p-Laplacian operator, $p>1, \gamma>p-1, \alpha \in(0,1), a, b$ and c are positive constants, Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function such that $f(u) \rightarrow \infty$ as $u \rightarrow \infty$. Also we assume that there exist $A>0$ and $\beta>p-1$ such that $f(s) \leq A s^{\beta}$, for all $s \geq 0$. We obtain our result via the method of sub- and supersolutions.

1. Introduction

We consider the positive solution to the boundary value problem

$$
\begin{cases}-\Delta_{p} u=a u^{p-1}-b u^{\gamma}-f(u)-\frac{c}{u^{\alpha}}, & x \in \Omega \tag{1}\\ u=0, & x \in \partial \Omega\end{cases}
$$

where Δ_{p} denotes the p-Laplacian operator defined by $\Delta_{p} z=\operatorname{div}\left(|\nabla z|^{p-2} \nabla z\right)$, $p>1, \gamma>p-1, \alpha \in(0,1), a, b$ and c are positive constants, Ω is a bounded
domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function. We make the following assumptions:
(H1) $f:[0,+\infty) \rightarrow \mathbb{R}$ is a continuous function such that $\lim _{s \rightarrow+\infty} f(s)=\infty$.
(H2) There exist $A>0$ and $\beta>p-1$ such that $f(s) \leq A s^{\beta}$, for all $s \geq 0$.
In [8], the authors have studied the equation $-\Delta u=g(u)-\left(c / u^{\alpha}\right)$ with Dirichlet boundary conditions, where g is nonnegative and nondecreasing and $\lim _{u \rightarrow \infty} g(u)=\infty$. The case $g(u):=a u-f(u)$ has been study in [7], where $f(u) \geq a u-M$ and $f(u) \leq A u^{\beta}$ on $[0, \infty)$ for some $M, A>0, \beta>1$ and this g may have a falling zero. In this paper, we study the equation $-\Delta_{p} u=a u^{p-1}-$ $b u^{\gamma}-f(u)-\left(c / u^{\alpha}\right)$ with Dirichlet boundary conditions. Our result in this paper include the result of [7] in the case $p=2$ (Laplacian operator), where say in Remark 2.2. Let $F(u):=a u^{p-1}-b u^{\gamma}-f(u)-\left(c / u^{\alpha}\right)$, then $\lim _{u \rightarrow 0^{+}} F(u)=-\infty$ and hence we refer to (1) as an infinite semipositone problem. In fact, our result in this paper is on infinite semipositone problems involving the p-Laplacian operator.

In recent years, there has been considerable progress on the study of semipositione problems $(F(0)<0$ but finite) (see [1],[2],[5]). We refer to [6], [7], [8] and [9] for additional results on infinite semipositone problems. We obtain our result via the method of sub- and supersolutions([3]).

2. The main result

We shall establish the following result.
Theorem 2.1. Let $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$ hold. If $a>\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda_{1}$, then there exists positive constant $c^{*}:=c^{*}(a, A, p, \alpha, \beta, \gamma, \Omega)$ such that for $c \leq c^{*}$, problem (1) has a positive solution, where λ_{1} be the first eigenvalue of the p-Laplacian operator with Dirichlet boundary conditions.

Remark 2.2. Theorem 2.1 was established in [7] for the case $p=2$ (the Laplacian operator), $f(u):=g(u)-b u^{\gamma}$, where the function g satisfy the following assumptions:

- $g(u) \approx b u^{\theta}$ for some $\theta>\gamma$.
- There exist $A>0$ and $\beta>1$ such that $g(u) \leq A u^{\beta}$, for all $u \geq 0$.
- There exist $M>0$ such that $g(u) \geq a u-M$, for all $u \geq 0$.

In fact, the function f satisfy the hypotheses of Theorem 2.1 in this paper (Since $\lim _{u \rightarrow \infty}\left(g(u) / b u^{\theta}\right)=1$, hence $\left.\lim _{u \rightarrow \infty} f(u)=\infty\right)$ and g satisfy the hypotheses of Theorem 2.1 in [7], where (1) changes to equation $-\Delta u=a u-g(u)-\left(c / u^{\alpha}\right)$ with Dirichlet boundary conditions.

Proof of Theorem 2.1. We shall establish Theorem 2.1 by constructing positive sub-supersolutions to equation (1). From an anti-maximum principle (see [4, pages 155-156]), there exists $\sigma(\Omega)>0$ such that the solution z_{λ} of

$$
\begin{cases}-\Delta_{p} z-\lambda z^{p-1}=-1, & x \in \Omega \\ z=0, & x \in \partial \Omega\end{cases}
$$

for $\lambda \in\left(\lambda_{1}, \lambda_{1}+\sigma\right)$ is positive in Ω and is such that $\frac{\partial z}{\partial v}<0$ on $\partial \Omega$, where v is outward normal vector on $\partial \Omega$. Fix $\lambda^{*} \in\left(\lambda_{1}, \min \left\{\lambda_{1}+\sigma,\left(\frac{p-1+\alpha}{p}\right)^{p-1} a\right\}\right)$ and let

$$
\begin{aligned}
& K:=\min \left\{\left(\frac{(p / p-1+\alpha)^{p-1}}{2 b\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{\gamma p-(p-1)(\alpha-1)}{p-1+\alpha}}}\right)^{\frac{1}{\gamma-p+1}},\left(\frac{a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}}{3 b\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{p(\gamma-p+1)}{(-1+\alpha}}}\right)^{\frac{1}{\gamma-p+1}},\right. \\
& \left.\left(\frac{(p / p-1+\alpha)^{p-1}}{2 A\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{\beta p-(p-1)(\alpha-1)}{p-1+\alpha}}}\right)^{\frac{1}{\beta-p+1}},\left(\frac{a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}}{3 A\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{p(\beta-p+1)}{p-1+\alpha}}}\right)^{\frac{1}{\beta-p+1}}\right\}
\end{aligned}
$$

Define $\psi=K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}$. Then

$$
\nabla \psi=K\left(\frac{p}{p-1+\alpha}\right) z_{\lambda^{*}}^{\frac{1-\alpha}{p-\alpha}} \nabla z_{\lambda^{*}}
$$

and

$$
\begin{aligned}
& -\Delta_{p} \psi=-\operatorname{div}\left(|\nabla \psi|^{p-2} \nabla \psi\right) \\
& =-K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left\{\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) z_{\lambda^{*}}^{\frac{-\alpha_{p}}{p-\alpha}}\left|\nabla z_{\lambda^{*}}\right|^{p}+z_{\lambda^{*}}^{\frac{1-\alpha}{p-1+\alpha}} \Delta_{p} z_{\lambda^{*}}\right\} \\
& =-K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left\{\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) z_{\lambda^{*}}^{\frac{-\alpha p}{p-1+\alpha}}\left|\nabla z_{\lambda^{*}}\right|^{p}+z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}\left(1-\lambda^{*} z_{\lambda^{*}}^{p-1}\right)\right\} \\
& =K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left\{\lambda^{*} z_{\lambda^{*}}^{\frac{p(p-1)}{p-1+\alpha}}-z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}-\left(\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right)\right) \frac{\left|\nabla z_{\lambda^{*}}\right|^{p}}{\left.z_{\lambda^{*}}^{\frac{\alpha_{p}}{p-\alpha}}\right\}}\right.
\end{aligned}
$$

Let $\delta>0, \mu>0, m>0$ be such that $\left|\nabla z_{\lambda^{*}}\right|^{p} \geq m$ in $\bar{\Omega}_{\delta}$ and $z_{\lambda^{*}} \geq \mu$ in $\Omega \backslash \bar{\Omega}_{\delta}$, where $\bar{\Omega}_{\delta}:=\{x \in \Omega: d(x, \partial \Omega) \leq \delta\}$. Let

$$
c^{*}:=K^{p-1+\alpha} \min \left\{\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left(\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right)\right) m^{p}, \frac{1}{3} \mu^{p}\left(a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}\right)\right\} .
$$

Let $x \in \bar{\Omega}_{\delta}$ and $c \leq c^{*}$. Since $\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}<a$, we have

$$
\begin{equation*}
K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*} z_{\lambda^{*}}^{\frac{p(p-1)}{p-1+\alpha}}<a\left(K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)^{p-1} \tag{2}
\end{equation*}
$$

From the choice of K, we have

$$
\begin{align*}
& \frac{1}{2}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \geq b K^{\gamma-p+1}\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{\gamma p-(p-1)(\alpha-1)}{p-1+\alpha}} \tag{3}\\
& \frac{1}{2}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \geq A K^{\beta-p+1}\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{\beta p-(p-1)(\alpha-1)}{p-1+\alpha}} \tag{4}
\end{align*}
$$

and by (3),(4),(H2), we know that

$$
\begin{align*}
& -\frac{1}{2} K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}} \leq-b\left(K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)^{\gamma} \tag{5}\\
& -\frac{1}{2} K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}} \leq-A\left(K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)^{\beta} \leq-f\left(K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right) \tag{6}
\end{align*}
$$

Since $\left|\nabla z_{\lambda^{*}}\right|^{p} \geq m$ in $\bar{\Omega}_{\delta}$, from the choice of c^{*} we have

$$
\begin{align*}
& -K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) \frac{\left|\nabla z_{\lambda^{*}}\right|^{p}}{z_{\lambda^{*}}^{\frac{\alpha p}{p-\alpha}}} \\
& \leq-K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) \frac{m^{p}}{z_{\lambda^{*}}^{\frac{\alpha_{p}}{p-1+\alpha}}} \\
& \leq-\frac{c}{\left(K z_{\lambda^{*}}^{\frac{p}{p-\alpha}}\right)^{\alpha}} \tag{7}
\end{align*}
$$

Hence for $c \leq c^{*}$, combining (2), (5), (6) and (7) we have

$$
\begin{aligned}
-\Delta_{p} \psi= & K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \\
\times & \left\{\lambda^{*} z_{\lambda^{*}}^{\frac{p(p-1)}{p-1+\alpha}}-z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}-\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) \frac{\left|\nabla z_{\lambda^{*}}\right|^{p}}{z_{\lambda^{*}}^{\frac{\alpha_{p}}{p-1+\alpha}}}\right\} \\
= & K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*} z_{\lambda^{*}}^{\frac{p(p-1)}{p-1+\alpha}}-\frac{1}{2} K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \frac{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}{z_{\lambda^{*}}} \\
& -\frac{1}{2} K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}} \\
& -K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) \frac{\left|\nabla z_{\lambda^{*}}\right|^{p}}{z_{\lambda^{*}}^{\frac{\alpha_{p}}{p-\alpha}}} \\
\leq & a\left(K_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)^{p-1}-b\left(K z_{\lambda^{*}}^{\frac{p+\alpha}{p-1+\alpha}}\right)^{\gamma}-f\left(K z_{\lambda^{*}}^{\frac{p+\alpha}{p-1+\alpha}}\right)-\frac{c}{\left(K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)^{\alpha}} \\
= & a \psi^{p-1}-b \psi^{\gamma}-f(\psi)-\frac{c}{\psi^{\alpha}}, \quad x \in \bar{\Omega}_{\delta} .
\end{aligned}
$$

Next in $\Omega \backslash \bar{\Omega}_{\delta}$, for $c \leq c^{*}$ from the choice of c^{*} and K, we know that

$$
\begin{equation*}
\frac{c}{K^{\alpha}} \leq \frac{1}{3} K^{p-1} z_{\lambda^{*}}^{p}\left(a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& b K^{\gamma-p+1} z_{\lambda^{*}}^{\frac{p(\gamma-p+1)}{p-1+\alpha}} \leq \frac{1}{3}\left(a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}\right) \tag{9}\\
& A K^{\beta-p+1} z_{\lambda^{*}}^{\frac{p(\beta-p+1)}{p-1+\alpha}} \leq \frac{1}{3}\left(a-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}\right) \tag{10}
\end{align*}
$$

By combining (8), (9) and (10) we have

$$
\left.\begin{array}{rl}
-\Delta_{p} \psi & =K^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \\
& \times\left\{\lambda^{*} z_{\lambda^{*}}^{\frac{p(p-1)}{p-1+\alpha}}-z_{\lambda^{*}}^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}-\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) \frac{\mid \nabla z_{\lambda^{*}}^{p}}{\frac{\alpha p}{p-1+\alpha}}\right\} \\
z_{\lambda^{*}}^{p+\alpha}
\end{array}\right\}
$$

Thus ψ is a positive subsolution of (1). From (H1) and $\gamma>p-1$, it is obvious that $z=M$ where M is sufficiently large constant is a supersolution of (1) with $z \geq \psi$. Thus Theorem 2.1 is proven.

3. An extension to system (11)

In this section, we consider the extension of (1) to the following system:

$$
\begin{cases}-\Delta_{p} u=a_{1} u^{p-1}-b_{1} u^{\gamma}-f_{1}(u)-\frac{c_{1}}{v^{\alpha}}, & x \in \Omega \tag{11}\\ -\Delta_{p} v=a_{2} v^{p-1}-b_{2} v^{\gamma}-f_{2}(v)-\frac{c_{2}}{u^{\alpha}}, & x \in \Omega \\ u=0=v, & x \in \partial \Omega\end{cases}
$$

where Δ_{p} denotes the p-Laplacian operator, $p>1, \gamma>p-1, \alpha \in(0,1), a_{1}, a_{2}$, b_{1}, b_{2}, c_{1} and c_{2} are positive constants, Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and $f_{i}:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function for $i=1,2$. We make the following assumptions:
(H3) $f_{i}:[0,+\infty) \rightarrow \mathbb{R}$ is a continuous functions such that $\lim _{s \rightarrow+\infty} f_{i}(s)=\infty$ for $i=1,2$.
(H4) There exist $A>0$ and $\beta>p-1$ such that $f_{i}(s) \leq A s^{\beta}, i=1,2$, for all $s \geq 0$.

We prove the following result by finding sub-super solutions to infinite semipositone system (11).

Theorem 3.1. Let $(\mathrm{H} 3)$ and $(\mathrm{H} 4)$ hold. If $\min \left\{a_{1}, a_{2}\right\}>\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda_{1}$, then there exists positive constant $c^{*}:=c^{*}\left(a_{1}, a_{2}, b_{1}, b_{2}, A, p, \Omega\right)$ such that for

$$
\max \left\{c_{1}, c_{2}\right\} \leq c^{*}
$$

problem (11) has a positive solution.
Proof. Let σ be as in section 2, $\tilde{a}=\min \left\{a_{1}, a_{2}\right\}$ and $\tilde{b}=\max \left\{b_{1}, b_{2}\right\}$. Choose $\lambda^{*} \in\left(\lambda_{1}, \min \left\{\lambda_{1}+\sigma,\left(\frac{p-1+\alpha}{p}\right)^{p-1} \tilde{a}\right\}\right)$. Define

$$
\begin{array}{r}
K:=\min \left\{\left(\frac{(p / p-1+\alpha)^{p-1}}{2 \tilde{b}\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{\gamma p-(p-1)(\alpha-1)}{p-1+\alpha}}}\right)^{\frac{1}{\gamma-p+1}},\left(\frac{\tilde{a}-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}}{3 \tilde{b}\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{p(\gamma-p+1)}{p-1+\alpha}}}\right)^{\frac{1}{\gamma-p+1}},\right. \\
\left.\left(\frac{(p / p-1+\alpha)^{p-1}}{2 A\left\|z_{\lambda *}\right\|_{\infty}^{\frac{\beta p-(p-1)(\alpha-1)}{p-1+\alpha}}}\right)^{\frac{1}{\beta-p+1}},\left(\frac{\tilde{a}-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}}{3 A\left\|z_{\lambda^{*}}\right\|_{\infty}^{\frac{p(\beta-p+1)}{p-1+\alpha}}}\right)^{\frac{1}{\beta-p+1}}\right\},
\end{array}
$$

and
$c^{*}:=K^{p-1+\alpha} \min \left\{\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left(\frac{(p-1)(1-\alpha)}{p-1+\alpha}\right) m^{p}, \frac{1}{3} \mu^{p}\left(\tilde{a}-\left(\frac{p}{p-1+\alpha}\right)^{p-1} \lambda^{*}\right)\right\}$.
By the same argument as in the proof of theorem 2.1, we can show that $\left(\psi_{1}, \psi_{2}\right)$ $:=\left(K z_{\lambda^{*}}^{\frac{p}{p-\alpha}}, K z_{\lambda^{*}}^{\frac{p}{p-1+\alpha}}\right)$ is a positive subsolution of (11) for $\max \left\{c_{1}, c_{2}\right\} \leq c^{*}$.

Also it is easy to check that constant function $\left(z_{1}, z_{2}\right):=(M, M)$ is a supersolution of (11) for M large. Further M can be chosen large enough so that $\left(z_{1}, z_{2}\right) \geq\left(\psi_{1}, \psi_{2}\right)$ on Ω. Hence for $\max \left\{c_{1}, c_{2}\right\} \leq c^{*},(11)$ has a positive solution the proof is complete.

Acknowledgements

The authors are extremely grateful to the referees for their helpful suggestions for the improvement of the paper.

REFERENCES

[1] V. Anuradha - D. Hai - R. Shivaji, Existence results for superlinear semipositone boundary value problems, Proc. Amer.Math. Soc. 124 (3) (1996), 757-763.
[2] A. Castro - R. Shivaji, Positive solutions for a concave semipositone Dirichlet problem, Nonlinear Anal. 31 (1-2) (1998), 91-98.
[3] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal. 41 (2000), 149-176.
[4] P. Drábek - P. Krejčí. - P. Takáč., Nonlinear Differential Equations, Chapman \& Hall/CRC, 1999.
[5] D.Hai - R. Shivaji, Uniqueness of positive solutions for a class of semipositone elliptic systems, Nonlinear Anal. 66 (2007), 396-402.
[6] E. K. Lee - R. Shivaji - J. Ye, Subsolutions: A journey from positone to infinite semipositone problems, Electron. J. Differ. Equ. Conf. 07 (2009), 123-131.
[7] E. K. Lee - R. Shivaji - J. Ye, Positive solutions for infinite semipositone problems with falling zeros, Nonlinear Anal. 72 (2010), 4475-4479.
[8] M. Ramaswamy - R. Shivaji - J. Ye, Positive solutions for a class of infinite semipositone problems, Differential Integral Equations 20 (12) (2007), 1423-1433.
[9] Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl. 194 (1995), 103-113.
M. CHOUBIN

Department of Mathematics
Faculty of Basic Sciences
Payame Noor University
Tehran, Iran
e-mail: choubin@phd.pnu.ac.ir
SAYYYED H. RASOULI
Department of Mathematics
Faculty of Basic Sciences
Babol University of Technology
Babol, Iran
e-mail: s.h.rasouli@nit.ac.ir
MOHAMMAD B. GHAEMI
Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran, Iran
e-mail: mghaemi@iust.ac.ir
GHASEM A. AFROUZI
Department of Mathematics
Faculty of Basic Sciences
Mazandaran University
Babolsar, Iran
e-mail: afrouzi@umz.ac.ir

