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ON THE INTERMEDIATE VALUE THEOREM OVER
A NON-ARCHIMEDEAN FIELD

LUIGI CORGNIER - CARLA MASSAZA - PAOLO VALABREGA

The paper investigates general properties of the power series over a
non-Archimedean ordered field, extending to the set of algebraic power
series the intermediate value theorem and Rolle’s theorem and proving
that an algebraic series attains its maximum and its minimum in every
closed interval.

The paper also investigates a few properties concerning the conver-
gence of power series, Taylor’s expansion around a point and the order of
a zero.

1. Introduction

It is well-known that over R, which is a complete Archimedean ordered field,
the least upper bound property implies that the following basic results of Math-
ematical Analysis hold for every continuous function on a closed interval:

1. the intermediate value theorem

2. the boundedness theorem
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3. the Weierstrass theorem (on the attainment of the absolute maximum and
minimum)

4. the mean value theorem

5. Rolle’s theorem.

There are many different proofs of the above results. We want to point
out that the dichotomic procedure, based on the nested cells property, which is
equivalent to the existence of the least upper bound, can be used to prove 1 and
2, obtaining then 3 as a consequence of 2, and 4 and 5 as consequences of 3.

If K is a non-Archimedean complete ordered field, it lacks the least upper
bound property (and so the dichotomic procedure). In this event not only the
Archimedean proofs of the above properties do not work, but the properties fail
to be true in general. It is nevertheless true that they hold for polynomial and
rational functions (see [1]), but completeness is neither necessary nor sufficient,
a different property is required (over R it is implied by completeness): the field
must be maximal ordered (or real closed in Artin’s terminology, see [1], §2, 5,
[5], chap. XI, [13], chap. IX). Moreover proofs of the above results over a
non-Archimedean maximal ordered field can be obtained with a quite different
logical order. In fact the intermediate value theorem, whose proof is algebraic,
can be used to obtain Rolle’s and the mean value theorems and so to prove the
attainment of the absolute maximum and minimum. It is worth observing that
this approach, when polynomials and rational functions are considered, works
both in the Archimedean and in the non-Archimedean case.

In this paper we want to investigate the intermediate value theorem and its
consequences over a non-Archimedean field K, so in lack of the dichotomic
procedure. We are able to show that such properties, false in general for a con-
tinuous function, can be extended to any power series y(X) which is algebraic
over the field K(X) of rational functions, provided that K is maximal ordered
(but not necessarily complete). The logical structure of our construction fol-
lows more or less what can be done for polynomials, i.e. the key tool is the
intermediate value theorem, whose proof requires most of our efforts.

To the purpose of achieving such a result, we need some properties of power
series over a maximal ordered or a Cauchy complete field K, concerning the
convergence domain, Taylor’s expansion around a point and the order of a zero.
A few among them come out to be unexpectedly quite different from what is
true on the field of real numbers. It is for instance the case of a translation
property, which is false over R and also over C. To our knowledge some of
these properties are new, while others are partially proved in [9].

We think that it is worth observing that the intermediate value theorem has
also been investigated in other non-Archimedean cases, for instance in [7] and
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in [10]. Over a Levi-Civita field it has been investigated and proved (for a
larger class of power series) in [11], while the mean value and the extreme value
theorems are proved in [12].

2. General facts

Let N= {0,1, · · ·} be the set of natural numbers. The Archimedean property for
N ((AP) from now on) states what follows:

(AP) Given two natural numbers r,s, where r 6= 0, there is a natural number
n such that nr > s.

(AP) can easily be extended to the set Q of rational numbers: given r,s ∈
Q+,r 6= 0, there is n ∈ N such that nr > s.

(AP) for Q can be equivalently stated as follows: the set N is not bounded
above in Q, i.e., for every rational number q, there is n ∈ N such that n > q.

(AP) is well-defined for every ordered field K (see [1], [4], [13] for general
properties of ordered fields). In fact every ordered field K contains automati-
cally Q (see [1], §2, 3, Example 1) and so also N. K is called non-Archimedean
if N is bounded above.

Notation.
K is a non-Archimedean ordered field, K̄ the ordered closure, i.e the largest

algebraic extension that can be ordered (see [1], §2, 5, Theorem 2, and [13],
chap. IX, 71, Theorem 8), K̂ the Cauchy completion (see [13], chap. IX, 67 and
[4], §3) and Kc the algebraic closure.

An element ε ∈ K,ε 6= 0 is infinitesimal with respect to Q if |ε| < 1
n ,∀n

positive whole number, and an element ω ∈K is unlimited with respect to Q if
|ω|> n,∀n positive whole number (see [4], §3).

Over an ordered field K the notion of convergence of a sequence (an) and
of a series ∑un can be given as usual. For instance limn→∞ an = l means that,
given any positive ε ∈K, there is n such that, ∀m > n, |am− l|< ε .

We recall the following property (proved in [8]) which holds only in the
non-Archimedean case:

Proposition 2.1. Let S = ∑
∞
n=0 bn be any series over a non-Archimedean field

K; then S is convergent in K̂ if and only if limn→∞ bn = 0. As a consequence a
series is convergent in K̂ if and only if it is absolutely convergent.

The following example will be useful to produce counterexamples to the
statements that depend on (AP).

Example 2.2. Let K=Q(t) be the field of rational functions over Q. We define
a total order in K by setting, for every quotient of polynomials: f (t)

g(t) > 0 if the

function of t defined by f (t)
g(t) is positive for t large enough.
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It is easy to show that we obtain an ordered field and that, given t ∈K, there
is no n ∈ N such that n > t, because n− t will be negative for t large enough,
notwithstanding which n we choose. Therefore K is a non-Archimedean ordered
field. The following sets: Un = {x∈K : |x|< t−n,n∈N} form a countable basis
for the neighbourhoods of 0 (see [6], chap. I, p. 50).

Of course we obtain a similar example if we consider the field L= R(t).
We want to show that Q(t) is not complete.
Let us consider the following power series ∑

∞
n=0
( 1

2
n

)
t−n and put: sn = sum

of the first n+ 1 terms (from 0 to n). Such a series converges to some element
a ∈ Q̂(t) (see the above Proposition 2.1). It can be shown that s2

n converges to

1+ 1
t and so that sn converges to

√
1+ 1

t , which is easily seen to be outside of
Q(t).

Also the series ∑
∞
n=0(n!tn)−1 = e

1
t is not algebraic over Q(t) or even over

R(t) (see [8], p. 340).

We now shortly recall a few theorems concerning polynomials and rational
functions over a maximal ordered field K= K̄.

In what follows P(X) = a0+ · · ·+amXm is a polynomial and a,b,a < b, two
elements of K. The derivative of a polynomial is defined as usual and the rules
of differentiation for the sum, the product and the quotient of polynomials can
be easily seen to hold true.

The following results are contained (more or less explicitly) in [1] as ex-
ercises without proofs, with the exception of the intermediate value theorem,
whose proof is given in §2, 5, Proposition 5. Actually the arguments of our
proofs for algebraic series contained in section 4 (see Theorems 4.10, 4.11,
4.14) work for the properties below (from 2 to 4).

1. (The intermediate value theorem - [1], §2, Prop. 5). Let P(X) be a poly-
nomial over K. If P(a)P(b)< 0, then there is x ∈K,a < x < b such that
P(x) = 0.

2. (Rolle’s theorem - [1], ex. 12, p. 57) Assume that the polynomial P(X)
vanishes both at a and at b and nowhere else between a and b. Let
h(X
k(X) be a rational function such that k(x) 6= 0,∀x ∈ [a,b]. Then F(X) =

P(X)h(X)+k(X)P′(X) vanishes at least at one point x ∈]a,b[. In particu-
lar, if h(X) = h1(X)

h2(X) is a rational function such that h2(x) 6= 0,∀x,a < x < b
and h(a) = h(b) = 0, then the equation h′(X) = 0 has at least one root
x ∈K,a < x < b.

3. (The mean value theorem, [1], Exercise 13, p. 57). If h(X) = h1(X)
h2(X) is a

rational function such that h2(x) 6= 0,∀x,a≤ x≤ b, then there is c ∈]a,b[
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such that h(b)−h(a) = (b−a)h′(c).

4. (Monotonic functions, [1], Exercise 13, p. 57)

(i) The rational function h(X) is strictly increasing (decreasing) at x ∈
[a,b] if h′(x) > 0 (h′(x) < 0), where the derivative at a (b) is the right-
hand (left-hand) derivative.

(ii) If the rational function h(X) is increasing (decreasing) at x ∈ [a,b],
then h′(x)≥ 0 (h′(x)≤ 0).

(iii) The rational function h(X) is increasing (decreasing) in [a,b] if and
only if h′(x)≥ 0 (h′(x)≤ 0),∀x,a≤ x≤ b.

(iv) At a point x ∈]a,b[ where h(X) attains a local maximum or a local
minimum the derivative h′(x) vanishes.

(The arguments to prove (i), (ii), (iv) do not depend upon the interme-
diate value theorem, they depend on the definition of the derivative as a
limit, while (iii) requires the mean value theorem which follows from the
intermediate value theorem).

5. Let h(X) be a rational function defined on the closed interval [a,b]. Then

(i) h(X) is bounded above and below,

(ii) h(X) attains both its absolute maximum and its absolute minimum.

This result is not stated explicitly in [1], but it can be easily obtained by
using 4. We give here a proof since we use it in section 4 of the present
paper.

Proof of 5.

Let A = {x ∈]a,b[ : h′(x) = 0}= {x1, · · ·,xr} and put B = A∪{a,b}. We
consider the following cases.

1. A = /0. In this event y′(X) is everywhere strictly positive or negative,
so the absolute maximum and the absolute minimum are attained at the
endpoints.

2. A 6= /0. Then the absolute maximum and the absolute minimum have
to be looked for among the values at the endpoints and the local maxima
and minima.

Let in fact z /∈ B. Then z lies between two elements of B, say for instance
xi,xi+1. Since h′(X) > 0 or < 0 in such interval, the maximum and the
minimum in it are the endpoints, so not z. Therefore the absolute maxi-
mum and the absolute minimum are attained at points belonging to B.
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Remark 2.3. On a complete Archimedean field (in fact R), property 5 above,
for every continuous function f (X), can be proved in two steps:

step 1: f (X) is bounded above and below and so it has the least upper bound
M and the greatest lower bound m,

step 2: if there is no absolute maximum (or minimum), also 1
M− f (X)(

1
f (X)−m)

is continuous and so bounded, which leads to a contradiction.
When we deal with a non-Archimedean field, where a bounded set can lack

the least upper bound and the greatest lower bound, the absolute maximum and
the absolute minimum (for a polynomial) are proved directly to be taken on,
obtaining as a consequence the boundedness result.

Remark 2.4. If h(X) is a rational function, then |h(X)| attains the absolute max-
imum and the absolute minimum in any closed interval [a,b]. If either h(X)≤ 0
or h(X)≥ 0 anywhere it is obvious. Otherwise, let M = h(c)≥ 0 be the absolute
maximum and m = h(d) ≤ 0 be the absolute minimum. Then max(M,−m) is
the absolute maximum of |h(X)|, while 0 is the absolute minimum (thanks to
the intermediate value theorem applied to h(X)).

The same property holds for every function f (X) attaining its maximum and
minimum and satisfying the intermediate value theorem.

Remark 2.5. When K is not maximal ordered, the intermediate value theorem
holds true in K̄ but not necessarily in K̂, which might not contain K̄. This is a
key difference between the Archimedean and the non-Archimedean case since,
if K is Archimedean, K̄⊂ K̂= R.

For instance, on K = R(t), the polynomial P(X) = X2 − t is positive at
t and negative at 1, so K̄ contains a square root of t. However it is easy to
see that

√
t is isolated in K̄, so that it does not belong to the completion K̂.

In fact, assume that
√

t = limn→∞
Pn(t)
Qn(t)

, where deg(Pn) = pn, deg(Qn) = qn.

Then, given any r ∈ N, there is N ∈ N such that, ∀n > N, | P
2
n (t)

Q2
n(t)
− t| < t−r, i.e.

|P2
n (t)t

r− tr+1Q2
n(t)| < Q2

n(t). We point out that the degree on the right side is
2qn and the degree on the left side is higher, unless 2pn + r = r+ 1+ 2qn, and
this is impossible.

When K is a non-Archimedean field, it is easy to produce a continuous
function (with respect to the topology of the order) that takes on positive and
negative values but vanishes nowhere.

Example 2.6. Let K be R(t) as introduced in Example 2.2. Let f (x) be defined
as follows:

f (x) =−1 if there is a ∈ R,x≤ a, f (x) = 1 otherwise.
Then f is a continuous function on K taking on positive and negative values,

but vanishing nowhere.
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If K is not maximal ordered, a rational function, and even a polynomial, can
lack both the absolute maximum and the absolute minimum and also the greatest
lower bound and the least upper bound on a closed interval (this is well-known
over Q).

The following is a non-Archimedean example.

Example 2.7. Over K = R(t) let us consider P(X) = X3 − 3tX + 1, whose
derivative vanishes both at x =

√
t and at y = −x. In K̄ consider for instance

the closed interval [0, t]. The polynomial attains its minimum value at x. But
x /∈ R(t) and therefore the polynomial has no minimum on R(t) and lacks also
the greatest lower bound. Similarly we can find an interval where there is no
least upper bound.

3. Power series over a non-Archimedean field

Notation.
In what follows K[[X ]] denotes the ring of formal power series in one vari-

able X over K. The domain of convergence of the formal power series S(X) =

∑anXn is the set DS of those x ∈ K such that ∑
n
i=0 aixi is a Cauchy (or funda-

mental) sequence of elements of K (see [13], chap. IX, 67 and [4], §3); the value
S(x) at x ∈ DS belongs to K̂ and not necessarily to K.

Hence a power series S(X) can be considered a function DS→ K̂.
We point out that, for many properties of power series (see [8]), a countable

basis (see [6], chap. 1, p. 50) is necessary. This means that there is a sequence
of positive numbers (εn) converging to 0, so that Un = {x : |x| < εn} is a basis
of the neighbourhoods of 0. In this event two cases can occur (see also [9] for a
slightly different approach):

1. there is an infinitesimal positive element ε ∈K such that limn→∞ εn = 0;
in this case one can choose εn = εn;

2. if the preceding property does not hold, a subsequence (ε̄n) can be ex-
tracted, such that ε̄n+1 < ε̄r

n,∀r. In fact we can replace the original sequence
by a decreasing sequence starting with an element less than 1; then we choose
ε̄0 = ε0, ε̄1 = ε j, where ε j is the first element of the sequence less than every
power ε i

0, i ∈N, and, by recursion, ε̄n+1 = εh, where εh is the first element of the
sequence less than ε̄ i

n, i ∈ N.
It is worth observing that the second case (which we do not exclude), gives

rise to odd properties for the power series over K , i.e. all power series converge
either everywhere or only at 0.

In fact, let us assume that the power series S(X) = ∑
∞
0 anXn is conver-

gent at some x 6= 0. Then limn→∞ |anxn| = 0. As by hypothesis it is not true
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that limn→∞ |xn| = 0, and the sequence (|xn|) is monotonic, we conclude that
limn→∞ an = 0.

If y 6= 0 is another element, it is not true that limn→∞ |yn| = ∞, because this
would imply limn→∞ |(y)−n| = 0. Due to the fact that the sequence (|yn|) is
monotonic, the conclusion is that it is bounded above. Then limn→∞ |anyn|= 0,
and S(X) is convergent at y.

We must observe that, if there is no countable basis (for instance when hy-
perreals are considered, see [2]), a power series different from a polynomial
converges only at 0.

Remark 3.1. Let A(X) and B(X) be two formal power series, with convergence
domains DA and DB. The series C(X) = A(X)+B(X) and D(X) = A(X)B(X)
are defined by the usual operations on the coefficients. If a value d belongs
both to DA and to DB, the equalities C(d) = A(d)+B(d) and D(d) = A(d)B(d)
hold true, the former being obvious and the latter depending upon the follow-
ing proposition, whose proof is given in [3], §168 and does not depend on the
Archimedean property.

Proposition 3.2. Let ∑
∞
k=0 ak =A,∑∞

k=0 bk =B two absolutely convergent series.
Then

∞

∑
k=0

(
k

∑
h=0

ahbk−h)

is convergent and its value is AB.

We recall a few results concerning power series over a non-Archimedean
field K that also appear in [9]. We think that it is useful to the reader to find here
short proofs of the statements contained in Propositions 3.3 and 3.4 below.

Proposition 3.3. Let S(X) = ∑
∞
n=0 anXn be any power series with coefficients in

K.
1. If S(X) is convergent at x, then it is so also at −x and at any x′ between x

and −x; moreover S(X) is uniformly convergent in [−|x|, |x|].
2. If S(X) is convergent both at x and at y, then it is convergent also at x+y.
3. If S(X) is convergent at x 6= 0, then there is δ > 0 such that S(X) is

convergent in the open interval ]x−δ ,x+δ [.
4. From 1. and 2. it follows that DS is a subgroup of K.

Proof. 1. It is enough to observe that ∀z ∈ [−|x|, |x|],S(z) is bounded above by
∑

∞
n=0 |anxn|.

2. Assume for the sake of simplicity that 0 < x ≤ y, the other cases being
very similar. It is enough to observe that S(X) is convergent at 2y ≥ x + y,
because limanyn = 0 implies liman(2y)n = 0.
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3. We can choose δ = |y|, for any y ∈ DS.
4. Obvious (since 0 ∈ DS).

The derivative of a power series at a point x ∈ DS is defined as

lim
h→0

S(x+h)−S(x)
h

(provided that such limit exists) and fulfils all the usual rules for the sum, the
product and the quotient of series, as it can easily be seen.

Proposition 3.4. Let S(X) = ∑
∞
n=0 anXn be a power series converging at every

point of the closed interval [a,b]. Then the following hold true:
1. S(X) is a continuous function at every x ∈ [a,b],
2. the series S̄(X) = ∑

∞
n=1 nanXn−1 converges in [a,b].

3. ∀x ∈ [a,b], S̄(x) = S′(x),

Proof. 1. Put: Sn(X) = ∑
n
i=0 biX i and observe that Sn(X) is a polynomial, hence

a continuous function; then it is enough to notice that, if h ∈ K is such that
S(x+h) is defined, then we have:

|S(x+h)−S(x)| ≤ |S(x+h)−Sn(x+h)|+ |Sn(x+h)−Sn(x)|+ |Sn(x)−S(x)|

and that Sn(X) converges uniformly to S(X) and is everywhere continuous.
2. If S(X) converges at some x, then limn→∞ anxn = 0. In this event we

also have: limn→∞ nanxn−1 = 0, because |nan|< ω|an|, where ω is any positive
unlimited element, so the latter series converges at x, possibly to a sum S̄(x)∈ K̂.

3. We have:

R(h) =
S(x+h)−S(x)

h
−

∞

∑
1

nanxn−1 =
∞

∑
1

an(
(x+h)n− xn

h
−nxn−1) =

h
∞

∑
2

an(

(
n
2

)
xn−2 +

(
n
3

)
xn−3h+ · · ·+hn−2)

(converging series can be added and subtracted).
There is no loss of generality in assuming |h|< |x|, since we are considering

limh→0 R(h). The case x = 0 is excluded but trivial.
We have

|Rh| ≤ |h|ω ∑ |an||xn−2|= |h|ω T (x)
|x|2

,

where ω is any positive unlimited element and T (x) = ∑ |anxn|.
Therefore we have: limh→0 Rh = 0.
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The following two lemmas hold both in the Archimedean and in the non-
Archimedean case. The former case is covered by [3], §169. We give here
direct proofs which work in all cases.

Lemma 3.5. Let {λi j≥ 0, i= 0→∞, j∈N} be any set of elements in K. Assume
that the following limits exist:

lim
n→∞

n

∑
i=0

(
i

∑
j=0

λi j) = A =
∞

∑
i=0

(
i

∑
j=0

λi j) (1)

and

B j = lim
k→∞

k

∑
i= j

λi j =
∞

∑
i= j

λi j (∀ j ≥ 0). (2)

Then B = limn→∞ ∑
n
j=0 B j = limn→∞ ∑

n
j=0(∑

∞
i= j λi j) = ∑

∞
j=0(∑

∞
i= j λi j) exists

and moreover A = B.

Proof. If k > n, then

n

∑
j=0

(
k

∑
i= j

λi j)≤
k

∑
j=0

(
k

∑
i= j

λi j) =
k

∑
i=0

(
i

∑
j=0

λi j)≤ A.

Thanks to (2) we can take the limit when k tends to ∞:

n

∑
j=0

(
∞

∑
i= j

λi j)≤ A. (3)

Moreover we have:

n

∑
j=0

(
∞

∑
i= j

λi j)≥
n

∑
j=0

(
n

∑
i= j

λi j) =
n

∑
i=0

(
i

∑
j=0

λi j).

Now, thanks to (1), given ε > 0, we have that, for n large enough,

n

∑
j=0

(
∞

∑
i= j

λi j)≥ A− ε.

Now we use (3) and see that limn→∞ ∑
n
j=0(∑

∞
i= j λi j) = A.

Lemma 3.6. Let {λi j, i, j ∈ N} be any set of elements in K and assume that the
following limits exist:

Ā = lim
n→∞

n

∑
i=0

(
i

∑
j=0
|λi j|)



ON THE INTERMEDIATE VALUE THEOREM OVER A NON-ARCHIMEDEAN FIELD 237

and

B̄ j = lim
k→∞

k

∑
i= j
|λi j| (∀ j ≥ 0).

Then B j = ∑
∞
i= j λi j,B = ∑

∞
j=0 B j = ∑

∞
j=0 ∑

∞
i= j λi j and A = ∑

∞
i=0(∑

i
j=0 λi j) also

exist and moreover B = A.

Proof. It is enough to apply the previous lemma to the non-negative numbers
λ
(+)
i j =

|λi j|+λi j
2 and λ

(−)
i j =

|λi j|−λi j
2 (the corresponding series converge thanks to

2.1).

The following theorem, which states that a translation of the origin is al-
lowed for a power series, improves a similar statement of [9] (2, property VI),
giving the explicit computation of the coefficients of the translated series (thanks
to the above lemmas).

Theorem 3.7. Let S(X) = ∑
∞
0 aiX i be a formal power series converging in a

domain DS and let d ∈ DS and y ∈ DS. Then ∑
∞
0 ai(y+ d)i = ∑

∞
0 b jy j where

b j = ∑
∞
i= j
( i

j

)
aidi− j = 1

j! S
( j)(d), the latter being a converging series for every j.

Proof. By Propositions 2.1, 3.3, 3.4, S(X) = ∑
∞
0 aiX i is absolutely convergent

in DS, along with all its derivatives, which can be computed by a term by term
differentiation, just as in the Archimedean case. We obtain

S( j)(X) =
∞

∑
i= j

(
i
j

)
j!aiX i− j

Therefore the series

S( j)(d) =
∞

∑
i= j

(
i
j

)
j!aidi− j

is absolutely convergent for each j, and so is also the following one

S( j)(d)y j

j!
=

∞

∑
i= j

(
i
j

)
aidi− jy j.

Moreover we have
∞

∑
i=0

ai(y+d)i =
∞

∑
i=0

ai

i

∑
j=0

(
i
j

)
di− jy j

with absolute convergence.
Therefore Lemma 3.6 can be applied with

λi j = ai

(
i
j

)
di− jy j,A =

∞

∑
i=o

i

∑
j=0

ai

(
i
j

)
di− jy j,B j =

∞

∑
i= j

ai

(
i
j

)
di− jy j =

S( j)(d)
j!

y j,
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so that the claim follows.

By using the above theorem we can prove the following

Proposition 3.8. Let S(X) = ∑
∞
n=0 anXn be a formal power series converging in

[−x+d,x+d], for some x,d ∈ K,x > 0. If S(y) = 0,∀y ∈ [−x+d,x+d], then
an = 0,∀n.

Proof. Step 1.Let us first assume that d = 0; then S(0) = 0 implies a0 = 0, hence
S(X) = X ∑

∞
n=1 anXn−1. Now consider the formal derivative

S′(X) =
∞

∑
n=1

nanXn−1

and observe that, since S(X) is the zero function in [−x,x], also its derivative is
the zero function. Then we have: S′(0) = 0, which implies a1 = 0. Continuing
in this way, we prove the claim in the case d = 0.

Step 2. As to the general case, we apply Theorem 3.7 and obtain:

0 = S(d + y) =
∞

∑
n=0

bnyn

which holds for all y ∈ [−x,x]. Now step 1 can be applied, obtaining bn = 0.
Using the formulas given in Theorem 3.7 the claim is proved.

Corollary 3.9. If two series take on the same values on an interval, then they
coincide as formal power series.

Remark 3.10. Theorem 3.7 above states that, if a series S has a convergence
domain DS, and d ∈ DS, then the function given by the series has a Taylor ex-
pansion around d (a series of powers of y = x− d). The main difference from
the Archimedean case is that the domain of convergence in the new variable y
coincides with DS. Therefore in the non-Archimedean case we cannot have a
theory of the analytic continuation of a function outside of its domain.

Corollary 3.9 states that the well-known principle of identity for analytic
functions holds also in our case.

Theorem 3.11. Let S(X) = ∑
∞
0 anXn be a non-zero power series, DS 6= {0} its

domain of convergence, and d ∈ DS, such that S(d) = 0. Then there is a unique
integer s 6= 0 such that

S(X) = (X−d)sq(X), (4)

where q(X) satisfies the following conditions:
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(i) q(X) is convergent in DS,
(ii) q(d) 6= 0.
Moreover S(x) = (x−d)sq(x),∀x ∈ DS.
(The number s is called multiplicity of d as a root of S(X)).

Proof. As S(X) is convergent at d, Taylor’s formula (Theorem 3.7) can be ap-
plied, so obtaining:

S(x) =
∞

∑
0

1
n!

S(n)(d)(x−d)n,∀x ∈ DS. (5)

If S(s)(d) is the first derivative not vanishing at d, then (5) can be written in the
following form:

S(x) = (x−d)s
∞

∑
s

1
n!

S(n)(d)(x−d)n−s,∀x ∈ DS.

Thanks to Theorem 3.7 , this is equivalent to

S(x) = (x−d)s
∞

∑
n=0

qnxn,∀x ∈ DS, (6)

for suitable coefficients qn,n = 0, · · ·. Corollary 3.9 states that (6) is equivalent
to

S(X) = (X−d)s
∞

∑
n=0

qnXn.

So (4) and (i) are satisfied with q(X) = ∑
∞
n=0 qnXn. As to (ii), if q(d) = 0,

we can replace S(X) by q(X) and repeat our argument, so obtaining q(X) =
(X−d)hq1(X),h≥ 1 and, as a consequence,

S(X) = (X−d)s+hq1(X). (7)

But (7) implies S(s+h)(d) = 0,h≥ 1, in contradiction with our choice of s.
Clearly the number s appearing in (4) is the order of the first derivative of

S(X) which does not vanish at d.

Remark 3.12. If d 6= 0, there is a unique power series q(X) = ∑qnXn satisfying
the following equality between formal power series: S(X) = (X − d)sq(X). In
fact, if s = 1, there are recursive relations that define qn,∀n, and we can proceed
by induction on s. However, if S(d) 6= 0, the equality of formal power series
does not imply the equality of functions, because q(X) does not converge at d
(but it might converge in a subset of DS not containing d). The above theorem
states that the necessary condition S(d) = 0 is also sufficient for such equality.
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4. The intermediate value theorem and the absolute maximum and mini-
mum of algebraic series

In what follows K= K̄ is a non-Archimedean maximal ordered field, y= y(X)=

∑
∞
0 bnXn ∈K[[X ]] is a power series, algebraic over K(X), i.e. there is an identi-

cal relation
a0(X)+a1(X)y+ · · ·+am(X)ym = 0, (8)

where the a′is are polynomials and the degree m is chosen as small as possi-
ble. We can assume that a0(X) is monic and that there is no common factor to
a0(X), · · ·,am(X) (divide if necessary by the common factors and by the lead-
ing coefficient of a0(X)). In particular a0(X), · · ·,am(X) have no common root.
Moreover we put: yn(X) = ∑

n
0 brX r.

First of all we show that the intermediate value theorem is false for an alge-
braic continuous function (not a series) over a non-Archimedean field even if it
is maximal ordered.

Example 4.1. Let L be any non-Archimedean field and consider the following
algebraic function:

y(X) = 1,∀X positive unlimited (X larger than any integer)
y(X) =−1, elsewhere.
Then y2(X) = 1, i.e. y(X) is algebraic. If we choose any positive unlimited

element t ∈ L, then y(0) =−1 < 0,y(t) = 1 > 0, but y(X) vanishes nowhere in
]0, t[.

This example works over any non-Archimedean field, maximal ordered or
not. We’ll see that the intermediate value theorem holds for every algebraic
series over a maximal ordered field, hence there is no series S(X) = ∑

∞
0 bnXn ∈

L̄[[X ]] such that y(X) = S(X), at least on [0, t] (but, as it is obvious, also on any
closed interval [a,b],a limited, b positive unlimited).

Now we give a few useful lemmas.

Lemma 4.2. Let x be an element belonging to K̂ and algebraic over K = K̄.
Then x ∈ K̄.

Proof. Observe that, since K[x] ⊂ K̂, K[x] is an ordered algebraic extension of
K.

Lemma 4.3. Let y(X) = ∑
∞
n=0 bnXn be an algebraic power series converging in

[a,b]. Then y(x) ∈K,∀x ∈ [a,b]

Proof. If y(X) is any series, it may happen that y(x) exists, for some x ∈K, but
belongs to K̂. Assume now that y(X) is an algebraic series and let us plug any x
(see 3.1) into the algebraic equation satisfied by y(X):

a0(x)+a1(x)y(x)+ · · ·+am(x)y(x)m = 0.
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This is an algebraic equation for y(x) over K, provided that the algebraic relation
is not the identity 0 = 0. But the coefficients a′is have no common root, so
there is at least one i such that ai(x) 6= 0. We conclude that x ∈ K̂∩Kc, hence
x ∈ K̄=K by Lemma 4.2.

The following lemma improves Theorem 3.11 in the case of an algebraic
series.

Lemma 4.4. If y(d) = 0, then there is a largest integer r ≥ 1 such that y(X) =
(X −d)rq(X), where q(X) is a power series converging to a sum q(d) ∈ K. In
this event q(d) 6= 0 and q(X) is algebraic over K(X). Moreover r ≤ s, where
s = multiplicity of d as a root of a0(X).

Proof. Thanks to Theorem 3.11, it is enough to prove that q(X) is algebraic
with q(d) ∈K and that r ≤ s.

Let us now see that, whether q(d) = 0 or not, actually q(d) ∈ K. To this
purpose we observe that q(X) satisfies the following algebraic equation:

a0(X)+a1(X)(X−d)rq(X)+ · · ·+am(X)(X−d)rmq(X)m = 0.

Now we divide the equation by the largest power of (X − d) common to all
coefficients, obtaining: f0(X)+ f1(X)q(X)+ · · ·+ fm(X)q(X)m = 0, where at
least one coefficient does not vanish at d. Thanks to Lemma 4.3, q(d) ∈K.

Let us now see the inequality r ≤ s.
In fact, let s be the largest integer such that
a0(X) = (X−d)sā0(X), with ā0(X) ∈K[X ].
If y(X) = (X−d)s+1qs+1(X),
with qs+1(X) converging at d to a sum qs+1(d) ∈K, we have

ā0(X)(X−d)s + · · ·+am(X)(X−d)m(s+1)qs+1(X)m = 0,

which implies the following equality:

ā0(X) =−(X−d)(a1(X)qs+1(X)+ · · ·+am(X)(X−d)(m−1(s+1)qs+1(X)m,

where qs+1(X) is a power series converging at d. Now we replace X by d in the
equation, and obtain ā0(d) = 0, which is absurd.

In order to see that q(X) is algebraic, we observe that q(X) = y(X)
(X−d)r belongs

to K(X ,y(X)), which is an algebraic extension of K(X).

Example 4.5. The algebraic equation X3 +(X2−X)y(X)− y2(X) = 0 is satis-
fied by y(X) = X2 and we have: a0(X) = X3,r = 2 < s = 3.
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Corollary 4.6. Given any algebraic power series y(X), then the set S = {x ∈
K,y(x) = 0} is finite.

Proof. If c is a zero of y(X), then a0(c) = 0. Therefore y(X) has at most
deg(a0(X)) zeros.

Lemma 4.7. Let y(X) = ∑
∞
n=0 bnXn be an algebraic power series converging in

the closed interval [a,b], then also y′(X) is algebraic and, in this event, y′(x) ∈
K,∀x ∈ [a,b].

Proof. By hypothesis y = y(X) satisfies equation (8). By differentiating we
obtain:

a′0(X)+a′1(X)y(X)+ · · ·+a′m(X)ym+

+y′(a1(X)+2a2(X)y+ · · ·+mam(X)ym−1) = 0,

which is an algebraic equation for y′(X) over K(X ,y). This equation can-
not be an identity because there is no algebraic equation for y(X) of degree
less than m. Moreover K(X ,y(X)) is an algebraic extension of K(X) and so
K(X ,y(X),y′(X)) is also an algebraic extension of K(X).

Now we apply Lemma 4.3.

Theorem 4.8. (The intermediate value theorem for algebraic series)
Let y(X) ∈K[[X ]] be an algebraic power series defined over [a,b] and such

that y(a)y(b)< 0. Then y(c) = 0 for some c ∈]a,b[.

Proof. If c∈K is such that y(c)= 0 and y(X) satisfies equation (8), then a0(c)=
0. We want to look for a root c ∈]a,b[ of a0(X) such that the converse is also
true, i.e. y(c) = 0.

First of all let us prove that there is a root c of a0(X) satisfying the relation
a≤ c≤ b.

Let us set: yr(X) = a0 + a1X + ...+ arX r. Since the convergence of y(X)
is uniform on [a,b],∀ε > 0 there is r0 such that, if r ≥ r0, then |y(x)− yr(x)|<
ε,∀x ∈ [a,b]. This means in particular (choose ε ≤ inf (| y(a)2 |, |

y(b)
2 |)), that there

is a suitable r̄ such that, ∀r≥ r̄,yr(a)yr(b)< 0. Since yr(X) is a polynomial, the
intermediate value theorem holds true, i.e. there is cr ∈]a,b[ such that yr(cr)= 0.

So, with the choice above, ∀r ≥ r̄, the following are simultaneously true:
A. yr(a)yr(b)< 0
B. there is cr ∈ [a,b] such that yr(cr) = 0
C. |y(cr)− yr(cr)|= |y(cr)|< ε .
Observe that B.,C. above hold for every root cr ∈ [a,b].
Moreover, we have (see Remark 3.1):

a0(cr)+a1(cr)y(cr)+ · · ·+am(cr)y(cr)
m = 0,
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and this equation is not an identity because ai(cr) 6= 0, for some i (the a′is, i =
0, · · ·,m, are supposed to have no common root). Set: M = max(|(a1(x)|, · ·
·, |am(x)|),x ∈ [a,b]⊂ K̄ (see Remark 2.4). Hence, if, moreover, ε < 1, we have

|a0(cr)|< Mmε,∀r ≥ r̄. (9)

If in particular a0(cr) = 0, for some r, we have the required root of a0(X) lying
between a and b. Otherwise, we proceed as follows.

Set: a0(X) = (X −α1) · · · (X −αh)(((X −b1)
2 +d2

1) · · · ((X −bv)
2 +d2

v ))),
where the αi’s are the roots in K (and possibly αi = α j for some indices). ex-
clude that a0(X) has no root at all. Assume now that αi /∈ [a,b],∀i (either
because the roots are outside or because no root belongs to K). This means
that |cr−αi|> mi =min {|αi−a|, |b−αi|},∀i, hence ,∀i, |cr−αi|> m0 = min
{m1, · · ·,mh}> 0. In this event we have: |a0(cr)|>mh

0d2
1 · · ·d2

v (where we choose
m0 = 1 if there is no root in K, and d1 = · · · = dv = 1 if all the roots belong to
K). We find a contradiction if we choose ε <

mh
0d2

1 ···d2
v

mM .
Therefore there is at least one root of a0(X) which belongs to [a,b]; our aim

is to show that at least one of them is the limit of a sequence {crn} of zeros
of {yrn}. Assume that α1, · · ·,αu are the roots in [a,b], while αu+1, · · ·,αh lie
outside.

Let us now use any existing decreasing sequence of infinitesimal elements
(εn,n = 1,2, · · ·), such that limn→∞ εn = 0. We rewrite (9) explicitly, with ε

replaced by εn and r̄ by rn, in the special case r = rn, so obtaining that ∀n, there
is r(εn) = rn such that ∀r ≥ rn (in particular when r = rn),

|a0(crn)|=

= |(crn−α1) · · · (crn−αh)(((crn−b1)
2 +d2

1) · · · ((crn−bv)
2 +d2

v )))|< Mmεn,

the inequality holding for any crn in the finite set of the roots of yrn(X) lying
between a and b.

Put: D = |d2
1 · · · d2

v mu+1 · · ·mh|. Then |crn − α1| · · · |crn − αu| < Mmεn
D ,

which implies that, for each rn there is at least one αi such that |crn −αi| <
ε̄n = (Mmεn

D )
1
u . However it may happen that the root αi of a0(X) varies with the

choice of the root crn of yrn , i.e. that |crn −αi| < ε̄n, for a choice of the root crn

and |crn−α j|< ε̄n, j 6= i, for another choice.

Therefore, for each n, the finite set Crn = {c
(1)
rn , · · ·,c(hn)

rn } contains at least
one element close to some αi and possibly other elements close to another a j.

Now observe that the set A = {α1, · · ·,αu} is finite. This implies that there
are infinitely many sets Crn containing at least one root close to the same fixed
αi.
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Set: c = αi = fixed root of a0(X) and choose, in those Crn containing an
element close to c, the closest one (if there are two such elements, choose any
of them).

So we obtain a subsequence C = (crns
= ds) with the following properties:

1. yrns
(ds) = 0,∀s,

2. |ds− c|< ε̄ns ,∀s.
Since the sequence (ε̄n) approaches 0 as n tends to ∞ (and so also (ε̄ns) as s

tends to ∞), we can conclude that lims→∞ ds = c.
Since y(X) is a continuous function, we have: lims→∞ y(ds) = y(c). Now

observe that y(X) is uniformly convergent in [a,b], so that, given ε > 0, there
is N such that, for all n > N, |y(x)− yn(x)|< ε , independently on x. In particu-
lar we can choose x = ds and, ∀s large enough, obtain that |y(ds)− yrns

(ds)| =
|y(ds)− 0| = |y(ds)| < ε . Therefore lims→∞ y(ds) = y(c) = 0 and c is a root of
y(X) lying in [a,b]. But c 6= a,c 6= b because of our hypothesis, and so a< c< b.

The following theorem and its corollary are consequences of 4.8, 3.11, 4.4.

Theorem 4.9. Assume that the algebraic series y(X) vanishes both at a and at
b and nowhere else between a and b. Let h(X)

k(X) be a quotient of power series
converging in [a,b] such that k(x) 6= 0,∀x ∈ [a,b]. Then F(X) = y(X)h(X)+
k(X)y′(X) vanishes at least at one point x ∈]a,b[.

Proof. According to Lemma 4.4 let us choose the largest r and the largest s
for which we can set: y(X) = q(X)(X − a)r(X − b)s,q(X) being an algebraic
power series that is convergent and does not vanish at every x ∈ [a,b] (observe
that, ∀x ∈]a,b[,q(x) = y(x)

(x−a)r(x−b)s , so that q(X) does not vanish on ]a,b[). By
the intermediate value theorem above, applied to both q(X) and k(X), it follows
that: q(a)q(b)> 0,k(a)k(b)> 0. We have:

F(X) = (X −a)r−1(X −b)s−1(q(X)[(X −a)(X −b)h(X)+ rk(X)(X −b)+
sk(X)(X−a)]+ k(X)q′(X)(X−a)(X−b))) = (X−a)r−1(X−b)s−1G(X).

Since G(a)G(b) = rsq(a)q(b)k(a)k(b)(a−b)(b−a)< 0, we have: G(x) =
0 for some x ∈K,a < x < b and, as a consequence, also F(x) = 0.

Corollary 4.10. If y(X) is an algebraic series such that y(a) = y(b) = 0, then
the equation y′(X) = 0 has at least one root x,a < x < b (Rolle’s theorem for
algebraic series).

Proof. Assume that y(x) 6= 0,∀x,a < x < b. Then our claim follows from the
above theorem, where we choose h(X) = 0. If there is c,a < x < c, such that
h(c) = 0, choose c as close as possible to a (remember that y has finitely many
zeros). Then we use the same argument, but in [a,c].
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The following property has nothing to do with (AP), it is a formal conse-
quence of Rolle’s theorem, whatever argument is used to prove it (see [3], §7
and §8).

Theorem 4.11. (The mean value theorem). If y(X) is an algebraic series defined
over [a,b], then there is c ∈]a,b[ such that y(b)− y(a) = (b−a)y′(c).

Proof. Consider the following function:

F(X) = det

y(X) X 1
y(a) a 1
y(b) b 1

 .

It is an algebraic power series such that F(a) = F(b) = 0. By Rolle’s theorem,
there is c ∈]a,b[ such that F ′(c) = 0. But we have:

F ′(c) = det

y′(c) 1 0
y(a) a 1
y(b) b 1

= (a−b)y′(c)+ y(b)− y(a),

so F ′(c) = 0 is exactly our claim.

The following proposition depends only on the properties of the derivative
f ′(X), not on (AP). As for the endpoints, monotonicity can also be proved,
while the vanishing at a local maximum or minimum is false.

Proposition 4.12. Let f (X) be a differentiable function defined over ]a,b[. Then
f ′(X)> 0 (< 0),∀x∈]a,b[ implies that f (X) is increasing (decreasing) at every
point of ]a,b[. If f (X) has a local maximum or a local minimum at x ∈]a,b[,
then f ′(x) = 0.

In particulare the statement holds true when f (X) is a power series con-
verging in ]a,b[.

Proof. Assume that f ′(x) 6= 0, for instance f ′(x)> 0. This means:

lim
h→0

f (x+h)− f (x)
h

> 0.

Therefore, if h is small enough, f (x+h)− f (x)
h > f ′(x)

2 > 0. Hence f (X) is an in-
creasing function at x, and can have neither a maximum nor a minimum.

The following property is a consequence of the mean value theorem, and so
of the intermediate value and Rolle’s theorems.
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Theorem 4.13. Let y(X) be an algebraic power series such that y′(x) ≥ 0 (≤
0),∀x∈ [a,b] and y′(X) is not identically zero. Then y(X) is (strictly) increasing
(decreasing) in [a,b].

Proof. Let us assume that x1 < x2 < · · ·< xr are the (possibly multiple) finitely
many roots of y′(X) belonging to the open interval ]a,b[. We split [a,b] into the
sub-intervals [a,x1], [x1,x2], · · ·, [xr,b]. Consider for instance the case y′(x) >
0,∀x 6= a,b,xi, i = 1, · · ·,r and choose x, x̄ ∈ [xi,xi+1],x < x̄. Then we have, by
the mean value theorem, y(x̄)−y(x) = (x̄−x)y′(u)> 0,u being a suitable point
such that x < u < x̄, where y′(u) > 0. If on the contrary x, x̄ belong to different
sub-intervals, for instance xi−1 < x < xi < x̄ < xi+1, it is enough to observe that
y(x)< y(xi)< y(x̄).

If x, x̄ lie between a and x1 or on the two sides of x1, the above proof works,
as it works around b.

The case y′(x)< 0 is similar.

Theorem 4.14. Let y(X) be an algebraic power series converging in [a,b]. Then
it attains both the absolute maximum and the absolute minimum. In particular
y(X) is bounded above and below.

Proof. It is exactly the proof given in section 2 (proof of 5) for rational func-
tions.

Remark 4.15. Let f (X ,Y ) = a0(X)+a1(X)Y + · · ·+am(X)Y m = 0 be a poly-
nomial equation over K = K̄. It is well-known that all solutions (defined over
the algebraic closure Kc of K) are elements of a field K((X

1
n )), for some n ∈ N

(see [14], Theorem 3.1), i.e. every solution has the form:

y(X) =
a0 +a1X

1
n + · · ·+akX

k
n + · · ·

X
r
n

Then y(X)X
r
n = u(Z) ∈ K[[Z]] is algebraic over K(Z), where Z = X

1
n . If all

coefficients of y(X) belong to K, then the intermediate value and the mean value
theorems hold, as well as the extreme value theorem.

Remark 4.16. A classical proof of the intermediate value theorem for a contin-
uous function f : R→ R is based on the principle of the nested cells, which is
equivalent to the claim that every set bounded above has the least upper bound.
Our approach for an algebraic power series over a non-Archimedean field K
cannot be based on the property of the nested cells, true for R but false for K.

We meet the same obstacle when we want to prove that every algebraic
power series y(X) attains, in a closed interval [a,b], its maximum and its mini-
mum. We cannot use, as it is done in R, the least upper bound of a set bounded
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above, to prove first that y(X) is bounded above and to obtain, as a consequence,
that it takes on its maximum (or minimum). Our approach requires a direct
proof of the existence of the maximum (or minimum), and such a result yields
the boundedness result as a consequence.

Example 4.17. Let K= R(t), t being unlimited as usual. Then

y(X) =
∞

∑
0

(
−1

2
n

)
(
X
t
)n

is an algebraic series. In fact y(X)2 = 1
1− X

t
. The series has a sum when X = x ∈

K iff x
t is infinitesimal. Within the closed interval [0, 1

t ], we have: y′(X)= 1
2t (1−

X
t )
− 3

2 > 0 everywhere. Therefore y(X) takes on its maximum value t(t2−1)−
1
2

at 1
t and its minimum value 1 at 0.

Example 4.18. (With K=Q, L is the field that Hilbert used in his Grundlagen
to introduce a non-Archimedean geometry). Let L be the overfield of K(X)
obtained as follows: we start with the set of rational functions and then apply
any finite sequence of the following operations on rational functions: addition,
subtraction, product, quotient, (1+ f (X)2)

1
2 , where f (X) is previously defined.

Then L⊂K(X)c is an algebraic extension of K(X) and is contained as a subfield
in K(X). It is clear that if f (X)∈L, then f (X) is a quotient of an algebraic series
and a power of X . Therefore the intermediate value theorem holds in L.

Consider for instance K = R(t) and choose f (X) =
√

1+X2 +
√

2+X2−√
1+
√

tX . Then we have: f (n)< 0,∀n ∈ N, f (
√

t)> 0. Therefore, by the in-
termediate value theorem, there is at least an element x ∈K,x <

√
t,x > n,∀n ∈

N such that f (x) = 0.
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