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SIMPLE GRAPHS WHOSE 2-DISTANCE GRAPHS
ARE PATHS OR CYCLES

ALI AZIMI - MOHAMMAD FARROKHI D. G.

We study all finite simple graphs whose 2-distance graphs have max-
imum degree 2.

1. Introduction

Let (X,d) be a metric space with distance function d : X x X — [0,). For
each set D of distances, the distance graph G(X,D) is defined as a graph whose
vertex set is X and two vertices x,y € X are adjacent if d(x,y) € D. Even though
distance graphs are extensively studied when X is a set of integers (see [1] for
instance), but up to our knowledge there is no result when X is the set of vertices
of a graph and d is the ordinary distance function between two vertices. Let I'
be a simple graph and n be a natural number. Clearly, G(V(I'),{1,...,n}) is the
natural nth power of T".

Definition 1.1. Let I" be a graph. The n-distance graph I',, of I is a graph with
vertex set V(I') in which two vertices x and y are adjacent in I, if and only if
dr(x,y) = n. In other words, I, := G(V ('), {n}).

Concerning n-distance graphs the natural question is
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Question 1.2. Which graphs are the n-distance graph of some other graphs? In
other words, when the equation X, = I" has a solution X for a given graph I'. If
yes, find all the possible solutions of the equation.

Example 1.3. Let I be a graph with diameter 2. Then I', =TI, the complement
of I'. Therefore, (I'“), =I', whenever diam(I'"*) = 2. In particular, if T is a tree
that is neither a star nor a double star, then (7€), =T. As well (C5, ;)2 = Cauy1,
where C,,11 is an odd cycle of length 2n+1 > 7. However, C3, , ; is not the only
solution to the equation X, == Cpy,41 since (Copy1)2 = Copt1-

The aim of this paper is to study the structure of those graphs I" whose
2-distance graphs have special properties. Indeed, we shall classify all finite
simple graphs whose 2-distance graphs are either paths or cycles. In what fol-
lows, all graphs will be finite undirected simple graphs without loops (for some
notions on graph theory which does not appear in the paper the reader is referred
to [2]).

2. Main results

Let us start by recalling the following definitions for graphs. If I"is a graph, A(T")
denotes the maximum degree of its vertices, for every vertex x in I', Np(x) is the
set of all the neighbors of x and for any subset X of V(I'), Np(X) denotes the
set of all vertices of V(I") \ X adjacent to some vertex of X. Clearly, Nr({x}) =
Nr(x) for all x in V(T'). Finally, Er(X,Y) denotes the set of all the edges {x,y}
of 'suchthatxe X andy €Y.

We are interested in graphs I' such that I'; is connected. So, either V(T')
consists of a single vertex or |V (I')| > 4.

For such graphs there is the following upper bound for the maximum vertex-
degree of I';.

Theorem 2.1. Let I" be a graph such that I, is connected. If T is not a single
vertex, then A(I,) < |V(I')| — 3.

Proof. 1f A(I;) = [V(I')| — 1, then degr., (x) = [V(I')| — 1 for some vertex x in I".
Thus degp-(x) = 0 and this is not possible since in I'; there is at least one vertex
y adjacent with x and so in I" a path of length 2 from x to y. Now, suppose that
degr, (x) = |[V(I')| =2 for some x € V(I'). Then V(T') \ ({x} UNF, (x)) = {y} for
some y, which implies that Nr(y) = V(') \ {y}. Thus degr, (y) = 0, which is a
contradiction since I'; is connected. ]

Although there is no graph with n vertices whose 2-distance graph has max-
imum degree > n — 2, there are infinitely many graphs whose 2-distance graphs
are connected and have maximum degree 2.
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Theorem 2.2. Let I be a graph such that I'; is a path. Then either T" is the
complement of a path of length > 4 or it is isomorphic to one of the following
graphs:

/A AN

Figure 1 Figure 2
Figure 3 Figure 4
Figure 5 Figure 6
Figure 7

Proof. Let x € V(I') and degr,(x) = 1. Then there exists a unique vertex y €
V(T") such that dr(x,y) = 2. Hence Nr(x) N"Nr(y) # 0. We proceed in some
steps.

Case 1. Nr(x) € Nr(y). If Nr(x) = Nr(y), then degr, (v) = 1 and the edge
{x,y} is a connected component of I, and hence I'; is not connected, a contra-
diction. Since A(I;) = 2, we should have |Np(y) \ Nr(x)| < 2. If |[Np(x)| > 2
and |Nr(y) \ Nr(x)| = 2, then I'; contains a 4-cycle, which is a contradiction.
Thus ([Ne-(o), N () \ M (o)) = (21, (1,1), or (1,2). IF (INF(o)l, [N () \
Nr(x)|) = (2,1), then x and its neighbors a and b have degree 1 in I', when a,b
are adjacent and Nr(y) is the set of vertices of a triangle in I';, when a,b are
not adjacent, which are both impossible. Now, suppose that (|Nr(x)|, |[Nr(y) \
Nr(x)|) = (1,1). Let vo = x, v; be the vertex adjacent to x, v, =y and v3 be the
single vertex of Nr(y) \ Nr(x). Since I'; is connected, deg, (v2) = 2 and hence
Nr(v3) \ Nr(v2) = {va} for some v4 € V(I'). Continuing this way, we obtain
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an infinite sequence of vertices v, v1,... which determines an infinite path. But
then I'; is the union of two disjoint infinite paths, which is a contradiction. Thus
(INr(x)], |INr(y) \ Nr(x)|) = (1,2). Then a simple verification shows that I" is
isomorphic to one of the graphs in Figures 1 or 4 and I, = Py or Py, respec-
tively.

Case 2. Nr(x) g Nr(y). Let A = Nr(x) \Nr(y), B = Nr(x) ﬂNr(y) and
C = Nr(y) \ B. First assume that C # 0. Since C C Nr,(b) and B C Nr,(c)
for all b € B and ¢ € C, it follows that |B|,|C| < 2. Hence, 2 < |B|+|C| <3
for otherwise |B| = |C| = 2 and BUC contains a 4-cycle in I';. Let b € B. If
A ¢ Nr(b), then (A\ Nr(b))UC C Nr,(b) and so |A\ Nr(b)| = |C| = 1. Thus,
|C| = 2 implies |B| = 1 and A C Nr(b), from which it follows that AU {x} C
Nr,(y). Thus A = {a} is a singleton and {a,x,y} is a connected component of
I',, which is a contradiction. Therefore C = {c} is a singleton.

If B={by,b,}, then by, b, are adjacent and

(ANNr(B))U{x} S Nr, (),

which implies that |[A N Nr(B)| < 1. In particular, if |A] > 1 then there exists
a € A such that a ¢ Nr(B), hence BU{a,c} induces a 4-cycle in I';, which is a
contradiction. Thus A = {a} is a singleton. If a ¢ Nr(B), then again BU{a,c}
is a 4-cycle in I',, a contradiction. Thus a € Np(B). If a € Nr(by) N Nr(b2),
then I'; is the union of two disjoint paths of length 2, which is impossible. Thus
a € Nr(B) \ Nr(b1) NNr(by) and I is isomorphic to Figure 5 and I, = Fs.

If B= {b} is a singleton, then since A C Nr,(b) UNT,(y), it follows that
|A| <2. If A ={a1,a2}, then JANNL,(b)| = |[ANNL,(y)| = 1, and ay,a; are
non-adjacent. Hence I' is isomorphic to Figure 1 and I, = Fs.

If A = {a} is a singleton, then we have two possibilities. If a and b are
adjacent, then {a,x,y} induces a connected component of I",, which is a contra-
diction. Thus a and b are not adjacent. Since I'; is connected, by putting vy = a,
vi =x, vp = b, v3 =y and v4 = ¢, and applying the same argument as in Case 1,
one can easily see that I" is an infinite path, which is again a contradiction.

Now suppose that C = (. First suppose that |B| < 2. If |B| =1 then |A| <3
and if |B] = 2 then |A| <2 for I'; is acyclic of the maximum degree two. If
|A| = |B| = 1, then I'; is disconnected, which is a contradiction. Hence either
|A| > 1 or [B| > 1. Sicne degr, (v) = 2 we observe that Er(A,B) C {{a,b}:b €
B} for some a € A. But then |Er-(A, B)| = 1 for otherwise B = {by,b,} and a is
adjacent to b and b;, form which it follows that I, is disconnected. Therefore,
Er(A,B) = {{a,b}} for some b € B, which implies that Er,(A,B) = {{x,y}:
xeA,yeY}\{{a,b}}. Now, itis easy to see that I" is isomorphic to the graphs
drawn in Figures 2, 3, 6 and 7 whenever (|A|,|B|) = (2,1), (3,1), (1,2) or (2,2),
respectively. As a result, I'; = Ps or F.
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If |B| > 3, then by the same argument as before |A| = 1. Let B={by,..., by}
and assume that A = {bo}. Then by a relabeling of the b; if necessary, b; is
adjacent to bjyy,...,b,. Therefore, I' is the complement of a path of length
m—+ 2. The complement of I" is drawn in Figure 8. O

Theorem 2.3. Let I" be a graph such that I’y is a cycle. Then T is an odd cycle
of length > 5, the complement of a cycle of length > 6 or it is isomorphic to one
of the following graphs:

s |

Figure 8 Figure 9

Figure 10 Figure 11
Figure 12 Figure 13
Figure 14

Proof. Let x € V(I'). Since degr, (x) = 2, there exist exactly two distinct ver-
tices y and z in V(I") such that dr(x,y) = dr(x,z) = 2. Let

A = (Nr(x) N Nr(y)) \ C,
B—

T
(Nr(x)NNr(z))\ C,
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C = Nr(x) NNr(y) NN (2),
D =Ne(x)\ (AUBUC),
E=Nr(y)\(AUBUG),
F =Nr(z)\ (AUBUG),
G = (Nr(y) N Nr(2)) \ Nr(x)

We consider two cases:

Case 1. y and z are not adjacent in I

If C# 0 or G # 0, then {x,y,z} induces a cycle in I, which is a con-
tradiction. Therefore C = G = 0. First suppose that Er(A,B) # 0. Let {a,b} €
Er(A,B), where a € Aand b € B. If D # 0, then clearly Er(A,D) = Er(B,D) =0
for otherwise either dr,(y) > 3 or dr,(z) > 3, which is a contradiction. Let
d € D. Then {x,y,b,d,a,z,x} is a cycle in I';, which implies that A = {a},
B={b},D={d} and E = F = 0. Hence I is isomorphic to the graph in Figure
8 and I, = Cs. Now suppose that D = 0. If E = F = 0, then (JA|, |B]) = (1,2),
(2,1) or (2,2). If (|A[,|B|) = (1,2) or (2,1), then A, B are independent sets and
I" should be isomorphic to the graph in Figure 9 and I' = Cg. If (|A|,|B|) = (2,2),
then clearly Er(A,B) = {{a,b}} and A = B = K,, which implies that I is iso-
morphic to the graph in Figure 14 and I, = C7. If E # 0 and F = 0, then a is
adjacent to some vertex e € E, from which it follows that Er-(A,B) = {{a,b}},
A=K, B={b} and E = {e}. Hence I' is isomorphic to the graph in Figure
10and I', 2 C;. If E =0 and F # 0, then similarly " is isomorphic to the
graph in Figure 10. If E,F # 0, then |A| = |B| = |E| = |F| = 1, which leads to
a contradiction.

Second assume that Er(A,B) = 0. If D # 0, then we may assume that
Er(B,D) # 0 for otherwise, by symmetry, Er(A,D) = Er(B,D) = 0 whereas
{a,b,d} induces acyclicinI'; foralla € A, b € Band d € D, a contradiction. Let
{b,d} € Er(B,D). If d is adjacent to some vertex a of A, then {x,y,d,z} induces
a cyclic in I';, which is a contradiction. Thus Er(A,{d}) = 0, which implies
that AU {z} C Nr,(d), hence A = {a} is a singleton. Then BU{d} C Nr,(a),
from which it follows that B = {b} and E = 0. Hence there exists a vertex
d’ € D adjacent to a. If d” € D\ {d,d'}, then either {x,d’,d"} C Nr,(y) or
{b,d,d"} C Nr,(a), which is impossible. Thus D = {d,d’}. A simple verifica-
tion shows that d’ is adjacent to d but not to b and consequently F = 0. So I is
isomorphic to the graph in Figure 13 and I'; = (5.

Now suppose that D = 0. Since Er,(A,B) = {{a,b} : a € A,b € B}, it fol-
lows that |A|,|B| < 2. If |A| = 2, then since AUF C Nr,(B), it follows that
F = 0 and consequently Nr,(z) = {x}, which is a contradiction. Thus A = {a}
and similarly B = {b} are singletons. Hence E = {e} and F = {f} are sin-
gleton too. If e and f are adjacent, then I, = C;. Otherwise, it is easy to see
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that Nr(e) = {y,e'} and Np(f) = {z, f'}. Again, if ¢’ and f’ are adjacent, then
I'; = Cy. Otherwise, we may continue the process in the same way and reach to
any odd cyclic of length > 7. Therefore, I' = I', = Cy,,4 for some n > 3.

Case 2. y and z are adjacentin I.

First suppose that C = 0. Then A,B # 0. Since AUE U {x} C Nr,(z) and
BUF U{x} CNr,(y), it follows that A = {a} and B= {b} are singletons and E =
F =0.1f D #0, then Er(A,D) = Er(B, D) = 0 for otherwise either degr, (y) > 2
or degr, (z) > 2, which is impossible. Hence D = {d} is a singleton and G = 0.
Thus a and b are adjacent and I' is isomorphic to the graph in Figure 9 and
I'; 2 Ce. If D =0, then we have two cases. If Er(A,B) =0, then G = 0 and
I'=T,=Cs. If E(A,B) # 0, then G = {g} is a singleton. Thus I is isomorphic
to the graph in Figure 11 and I'; = Cg.

Now, assume that C # 0 and ¢ € C. If E # 0 then since E U {x} C Nr,(z2), it
follows that E = {e} is a singleton and A = 0. Similarly, if F # @ then F = {f}
is a singleton and B = . We have three cases:

If E,F # 0 then since {e, f} C Nr,(c), it follows that G = @ and conse-
quently D = 0. Hence I is isomorphic to the graphs in Figures 8 and 9 according
to e and f are adjacent or not, respectively. In both cases I'; = Cg.

If E # 0 and F = 0, then since CU {z} C Nr,(e), it follows that C = {c}
is a singleton. If G # 0 then since GU {e} C Nr,(c) we should have G = {g}
is a singleton and consequently D = @, and e, g are adjacent. If B # 0, then
B C Nr,(y) N Nr, (g), which implies that B = {b} is a singleton. Clearly b,c
are adjacent. Hence, I' is isomorphic to the graph in Figure 12 and I, = ;. If
B = 0 then e is adjacent to a vertex & different from g, which implies that I" is
isomorphic to the graph in Figure 10 and I" = C;. Now, assume that G = 0. If
B # 0 then since BU {x} C Nr,(y), we should have B = {b} is a singleton. If
b and c are not adjacent, then D = 0, which implies that I" is isomorphic to the
graph in Figure 9 and I'; = Cg. If b and ¢ are adjacent, then since D C Nr, (b) N
Nr,(c), it follows that D = {d} is a singleton and Er(B,D) = Er(C,D) = 0.
Hence I is isomorphic to the graph in Figure 10 and [, =2 C;. If B = 0 then
D # 0 and there exists d € D, which is not adjacent to ¢. If D # {d} then there
exists d’ € D\ {d}, which implies thatd’ € Nr, (¢) UNr,(z), which is impossible.
Thus D = {d} is a singleton. But then Nr,(d) = {c}, which is a contradiction.
Similarly, if E = @ and F # 0, then the result follows.

Finally, assume that E, F = 0. If G # 0 then since G C Nr, (C), it follows that
|G| <2and |C|+]|G| < 3. If |G| =2 then C = {c} is a singleton and AUBUD C
Nr(c). Since G C Nr,(A) N Nr, (B), we should have A = B = 0. If D # 0 then
{x,y,d,z} induces a cycle in I'; for all d € D, which is a contradiction. Thus D =
0. Clearly, the vertices of G are adjacent and E(G,V (') \ ({x,y,z,c} UG)) # 0.
Let {g,h} be an edge, where g € Gand h € V(') \ ({x,y,z,c} UG). But then
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{x,y,h,z} induces a cycle in I';, which is a contradiction. Thus G = {g} is
a singleton. As AUBUC C Nr,(g), either A =0 or B = 0. Without loss of
generality, assume that B=0. If A # 0, then A = {a} and C = {c} are singletons,
and a, c are adjacent. Since Nr, (c) C {g}UD, it follows that D # 0. Letd € D,
which is not adjacent to c. Then a and d are adjacent, from which it follows
that D = {d} is a singleton. Thus I" is isomorphic to the graph in Figure 12 and
I =Cy. If A=0then |C| <2. If C = {c1,c2} then D # 0 for C C Nr,(g).
Hence there exists d € D, which is not adjacent to ¢y, say, but it is adjacent to
¢2, which implies that {c;,y,z} C Nr,(d), a contradiction. Thus |C| = 1, which
implies that Nr, (g) = C, again a contradiction.

Now, suppose that G = 0. Since AU {x} C Nr,(z) and BU {x} C Nr,(y),
we have |A|,|B| < 1. If A = {a} and B = {b} are not empty sets, then a and
b are adjacent. If D # 0 and d € D, then d is not adjacent to a and b, which
implies that {x,z,a,d,b,y} form a cycle in I';, a contradiction. Thus D = 0.
A simple verification shows that Nr(x) is a complement of a path starting and
ending at a and b, respectively. Hence, I" is isomorphic to the complement of
a cycle of length n+ 6 for some n > 0. If A = {a} is a singleton and B = 0,
then Er(A,D) # 0. Let d € D be a vertex adjacent to a. Clearly, Er(A,D\
{d}) = 0 for otherwise there exists d’ € D adjacent to a, and hence {x,d,d’'} C
Nr, (y), which is a contradiction. Thus (D\ {d})U{z} C Nr,(a), which implies
that |D| < 2. If |D| = 2, then D = {d,d’} for some d’ and this implies that
Er(C,D) = 0. Thus CU{y} C Nr,(d), from which it follows that C = {c} is
a singleton. Clearly, a,c and d,d’ are adjacent, respectively, and consequently
I" is isomorphic to the graph in Figure 12 and I'; = C;. If D = {d} then again
Er(C,D) = 0, which implies that C = {c} is a singleton. Clearly, a and ¢ are
not adjacent. Hence, I" is isomorphic to the graph in Figure 11 and I'; = Cg. If
A =B =0, then Er(C,D) # 0. Without loss of generality, we may assume that
{c,d} € Er(C,D) for some d € D. But then {x,y,d,z} induces a cycle in I'y,
which is a contradiction. Thus, the assertion is completely proved. O
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