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SOME SIMPSON TYPE INTEGRAL INEQUALITIES FOR
s-GEOMETRICALLY CONVEX FUNCTIONS WITH
APPLICATIONS

HAVVA KAVURMACI-ONALAN - MEVLUT TUNC

In this paper, we establish some new Simpson type integral inequali-
ties by using s-geometrically convex function which is given below as

() < @F o

where f: I CR. — R for some fixed s € (0,1], x,y € I and A € [0, 1].
Also we get some applications for special means for positive numbers.

1. Introduction

The following inequality is well-known in the literature as Simpson’s inequality:
Let f : [a,b] — R be a four times continuously differentiable mapping on
[a,b] and H YA Hw = sup | YA (x)| < eo. Then the following inequality holds:

x€[a,b]

b (22)) 2

< g L -0

For the recent results based on the above definition see the papers [1], [3], [4],
[8], [10] and [11].

Entrato in redazione: 8 novembre 2013

AMS 2010 Subject Classification: Primary 26D10; Secondary 26D15.
Keywords: s-geometrically convex functions, Simpson inequality, integral inequalities.
Corresponding author: Havva Kavurmaci-Onalan.



194 HAVVA KAVURMACI-ONALAN - MEVLUT TUNC

In [2], Hudzik and Maligranda considered among others the class of func-
tions which are s—convex in the second sense. This class is defined in the fol-
lowing way: A function f : Rt — R, where R™ = [0, 0), is said to be s—convex
in the second sense if

flox+By) <o’ fx)+ B f(y)

for all x,y € [0,0), &, > 0 with @+ 8 = 1 and for some fixed s € (0, 1]. The
class of s—convex functions in the second sense is usually denoted by K2. It
can be easily seen that for s = 1, s—convexity reduces to ordinary convexity of
functions defined on [0,0). We refer the papers [2], [4]-[7] and [12]-[15].

Definition 1.1 ([13]). A function f: 1 C R, = (0,00) — R is said to be a
geometrically convex function if

£ () <@t ron't
forx,y e Iand A € [0,1].

In [13], Zhang et al. introduced the s-geometrically convex functions as
following:

Definition 1.2. A function f:/ C R; — R, is said to be s-geometrically convex
function if

K

() < e et
for some s € (0,1], where x,y € [ and A € [0, 1].

If s = 1, the s-geometrically convex function becomes a geometrically con-
vex function on R,

In this paper, we establish some new Simpson type integral inequalities for
s-geometrically convex functions and then obtain some applications to special
means of real numbers.

2. Main Results

We use the following lemma in the literature to obtain our results.

Lemma 2.1 ([9]). Let f:I C R — R be an absolutely continuous mapping on
I° such that f' € L|a,b], where a,b € I with a < b, then the following equality
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holds:
s [r@rar (50)1ro)| - [ e

b—a 1]/t 1 1+1¢ 1—¢
“ 2k [<2‘3>f( )

1 t\ ,[1+¢
+<3—2>f< ) a—+ b):|dl‘

Theorem 2.2. Let f: 1 C Ry — R be a differentiable mapping on I°, such
that f' € L{a,b] where a,b € I with a < b. If |f' (x)| is s-geometrically convex

and monotonically decreasing on [a,b] and s € (0, 1], then

‘é [f( )+4f(“+b> +f(b)] - bia/abf(”dx
(17 (@f ®)F [l (er(5:3)) +ha (2 (5,5))]

ey

I (@) <1
_(b-a) F @I @) [ (@ (5,5)) +ha (@ (3:5))]
-2 I OI<1<[f (@)
@) f )7 [h (e (3:3)) +ha (e (5:3))]
L<|f (b))
5
36 oa=1
where hy (&) = 6a%+(a;12n)2h;a_3a_3v al
5
36 a=1
hh(a) = -2 _1 —1 —1
2( ) 6x 3+(oc 67122):7(? -3 737 OC;E]

and o (u,v) = |f' (@) "' (B)|", u,v > 0.

Proof. From Lemma 2.1 and by using the properties of modulus, we have

lé[f()+4f<a+b>+f ] [ rar

t 1 1+4¢ 1—t¢
(413%)

2 3 2 2

b—a [
<
0
1+t 1—t

-2
n 1 ¢
3 2
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Since |f’ (x)| is monotonically decreasing and s-geometrically convex on [a, b],
we have

‘é [f(a)+4f(a;b) +f(b)} - bia/abf(x)dx

b—a ([t 1], L1
) /0_2_3‘f<b a”)
1 t / 14t 1t
_43_2Lf@2b2>”w @
b—a (|t 1], (5
< /4_2—3vwn f (@]
Lot oy (09)
‘3—2 ‘f (a)‘ ‘f (b)‘ ]d[

(See [14]). f0< u <1<1,0 < a,s < 1, then

‘u'OlJ S ‘uSOC and nOCS S nOCAH»lfS' (3)
) If 0 < |/’ (a)| < 1, by using the inequality in (3), we obtain
e 1 I

53/l @1 17 @ a

and

<[5 @ o a @
= @f B h(a(3.5)):

i) If | /()| <1 <|f"(a)], by using the inequality in (3), we obtain
1 t 1 , |2i s , % s
/O 2—3'|f @) |5 @) ar

1
</
0

=|f ()|

t

% - ;’ | (b)|s(%) f (a)\s(%)H_sdt
rwrin a(33)
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and

L
[
1
i
= ‘f’(a)\l_% \f’(b)}%hz (oc (%,%))

iii) If 1 < |f’ ()], by using the inequality in (3), we obtain

@l 1 )|

(@ ) ar 5)

Ye 1y, % 1t
/02—3‘|f( r (@]

sl @ @
=17 @r o) (a(55)
and

MLt ()
/0§—§|f(\2 o)l
1
< -
AE

—1r @ o) (w(33))

/(a)}s %)Jrl S‘f (b)‘ (%)+1 S dt 6)

If we use the inequalities from (2) to (6) we get the result inequality in (1). So,
the proof is completed. OJ

Theorem 2.3. Let f:1 C Ry — R be a differentiable mapping on I°, such
that f' € L[a,b] where a,b € I with a < b. If |f' (x)|? is s-geometrically convex
and monotonically decreasing on [a,b] and s € (0, 1], then

lé[f(a)+4f<a;b>+f ] o [

(b—a) (2(1+201))7
=7 <6p+1(p+1)> @




198 HAVVA KAVURMACI-ONALAN - MEVLUT TUNC

7@ @)1 [k (e (£ 59))]7 + s (e (.59))]].

1< |f ()|
1, a=1 1, a=
where hs3 (o) = {al 1,h4(05): {a‘l |
Tna ° (X?é Ino—1> (x?é

and o (u,v) is defined as in Theorem 2.2, % —1—5 =1landp>1.

Proof. From Lemma 2.1, by using the properties of modulus and Holder inte-
gral inequality, we have

s (50) o) - [
() (St 5e) )
(=) ([l (far st dty}.

3 2
Since | f’ (x)|? is monotonically decreasing and s-geometrically convex on [a, b],
we have

Slr@rar () rw)| -

(b (2(1+2p+1)>3’

2 6rtl(p+1)
l(/ol 7 (p'a'?) dt) +(/01

_ (- (2(1+2ﬂ+1)>}’

2 6rtl(p+1)

[ ot @ ) ([ o a) |

X

()

q \4
dt) ] ®)
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) If0 < |f'(a)] <1, by using the inequality in (3), we obtain

[ @ | @

qslt qST)
S/O\f1 N7 @] ar

arol [ ()]

and

/ 7@ | [P

=1F@f @) (e (FF)).

i) If |/ (b)] <1< |f (a)], by using the inequality in (3), we obtain

[ | @
< [ F @) @l
g N TAGEAY
— | ®)| | @] ? < qs> dt
7 ®) |7 (@) /0 FI

— 7@ 17 @ s (o (250

and

" IR ATTAE A
o (22

=17 ®)* 1f @ (o ().

199

€))

(10)
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iii) If 1 < |f’(b)], by using the inequality in (3), we obtain

17 o |7 @)
< [ et p ()=l

ot @l [ (Q?EZiD;)ld’

= @r®m(a(3.3))

and

[ 1@t <b>\‘f<%>xdt
< Lo e

ol (4 EZﬂ)?)t‘”

=|f @O h(a(33))-

1D

If we use the inequalities from (8) to (11) we get the result inequality in (7). So,

the proof is completed.

O]

Theorem 2.4. Let f: 1 C Ry — R, be a differentiable mapping on I°, such
that f' € La,b| where a,b € I with a < b. If |f' (x)|? is s-geometrically convex

and monotonically decreasing on [a,b] and s € (0, 1], then

‘é [f(a)+4f (“;b> +f(b)] - bia/abf(x)dx

7@ £ ) [ (o ()] + [ (e (%, 9)))7]
@< | |
@A @) [ (@ ()] + [ (@ (. 9))]
|/ (b)!<1<|f’( )| 1
@ O ([ (e ()] + [ (@ (4. 9))]
L< [/l
where hy (@), hy (&) and a (u,v) are defined as in Theorem 2.2
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Proof. From Lemma 2.1, by using the properties of modulus and Holder inte-
gral inequality, we have

‘Hf()+4f<a+b>+f } [

b—a r 1 141 1—1t
< L 2N (e
=72 0[2 3 (2 T )‘
1 t)|, (14t 1—1t
+‘3_2 f<z“+z”)H‘”
1
b—a e 1| N/ e 1 T4r 1—1 \|* \¢
< L ool (e )| ar
—2{</023\) (sl (55t 25t )

1

3

(L (B s )

Since |f’ (x)|? is monotonically decreasing and s-geometrically convex on [a, b,
we have

¢ |[r@sar(50)esw)] - o [ rwas
0@ (s
o) la)’
<32 (5)
(LY ay]

The proof can be continued as in Theorem 2.2. We omit the details. O

N

IN

53|l e @ )

3. Applications to Special Means

We now consider the means for non-negative real numbers o < 3 as follows:

1. Arithmetic mean :

A((X,B): ) a7ﬁ€R+'

o+ p
2
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2. Geometric mean:
G(a,B)=+aB, aBeR".
3. Generalized log — mean:
Bot! — g5t
(s+D(B-a)

Now using the our results, we give some applications to special means of
real numbers.

Ls(a,B):[ ]S,SGR\{—I,O},(X,BERWitha;«éﬁ.

Proposition 3.1. Leta,b €1°, a < b and 0 < s < 1. Then, we have
1 [ZA (a*,b*) +4A° (a, b)] LS (a,b) '

6 S s
G 1.0°0) [ (& (3.5)) o (5.9)]
asfl < 1;
b—a ) G(a® 0 00 0) [hy (a(3,5)) +ha(e(35.5))],

IN

[\

bs—l < 1 Sas—l.

B

1 < bsfl
where hy (&) ,hy (@) are defined in Theorem 2.2 and
o (u,v) = (a‘“l)iu (bs*l)v, u,v>0.

Proof. The assertion follows from Theorem 2.2 applied to the function which
is defined as f: (0,1] = Ry, 0<s< 1, f(x) =2, O

Proposition 3.2. Leta,b €1°, a < b and 0 < s < 1. Then, we have

’1 [2A (a*, %) +4A° (a,b)}  Li(ab)
6

-0 (20

s s ‘_ 2 6rtl(p+1)

(G (@ 0,00-0) [ (o (4, 9))] 7+ [ha (o (,))] 7]

ad <1

G (a0 ) (s (3.7 + (e (£ )]
bsfl S 1 S asfl;

G (a 1G9, b 029) [y (o (4, ))] 7 + [ha (@ (. 9))]7]
1< b1
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where hz (o) ,ha () are defined as in Theorem 2.3 and & (u,v) is defined as in
Proposition 3.1, %—l—é =landp>1.

Proof. The assertion follows from Theorem 2.3 applied to the function which
isdeﬁnedf:(O,l]%R+,O<s<17f(x):%. 0

Proposition 3.3. Leta,b € 1°, a <band 0 < s < 1. Then, we have
'1 [2A (a’,b°) +4A° (a,b)] LS (a,b) ‘

6

- (b;a) (356>lé

G a0 0) [ (@ (4, 4)]7 + o (o (4,9))]]

a1 <1;

G a0, 00 [ (@ ()] + P ( (5]
bs—l <1< as—l;

G (a0 b0 [y oc (. )] + [ (o (4. 4))]) ]
1<p!

N N

where hy (&), hy () and a (u,v) are defined as in Proposition 3.1.

Proof. The assertion follows from Theorem 2.4 applied to the function which
is defined f: (0,1] 5> R, 0<s< 1, f(x)==%. O
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