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A NEW CLASS OF GENERALIZED POLYNOMIALS
ASSOCIATED WITH HERMITE AND BERNOULLI

POLYNOMIALS

MAHMOOD A. PATHAN - WASEEM A. KHAN

In this paper, we introduce a new class of generalized polynomials as-
sociated with the modified Milne-Thomson’s polynomials Φ

(α)
n (x,ν) of

degree n and order α introduced by Derre and Simsek. The concepts of
Bernoulli numbers Bn, Bernoulli polynomials Bn(x), Bernoulli numbers
Bn(a,b), generalized Bernoulli polynomials Bn(x;a,b,c) of Luo et al.,
Hermite-Bernoulli polynomials HBn(x,y) of Dattoli et al. and HB(α)

n (x,y)
of Pathan are generalized to the one HB(α)

n (x,y,a,b,c) which is called the
generalized polynomials depending on three positive real parameters. Nu-
merous properties of these polynomials and some relationships between
Bn, Bn(x), Bn(a,b), Bn(x;a,b,c) and HB(α)

n (x,y;a,b,c) are established.
Some implicit summation formulae and general symmetry identities are
derived by using different analytical means and applying generating func-
tions. These results extend some known summations and identities of
generalized Bernoulli numbers and polynomials.

1. Introduction

Derre and Simsek [7] modified the Milne-Thomson’s polynomials Φ
(α)
n (x) (see

for detail [12]) as Φ
(α)
n (x,ν) of degree n and order α by the means of the fol-
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lowing generating function:

g1(t,x;α,ν) = f (t,α)ext+h(t,ν) =
∞

∑
n=0

Φ
(α)
n (x,ν)

tn

n!
(1)

where f (t,α) is a function of t and integer α .
Observe that Φ

(α)
n (x,0) = Φ

(α)
n (x) (cf. [12]).

Setting f (t,α) =
( t

et−1

)α in (1), we obtain the following polynomials given
by the generating function

g2(t,x;α,ν) =

(
t

et −1

)α

ext+h(t,ν) =
∞

∑
n=0

B(α)
n (x,ν)tn

n!
. (2)

Observe that the polynomials B(α)
n (x,ν) are related to not only Bernoulli poly-

nomials but also the Hermite polynomials. For example, if h(t,0) = 0 in (2), we
have

B(α)
n (x,0) = B(α)

n (x)

where B(α)
n (x,ν) denotes the Bernoulli polynomials of higher order which is

defined by means of the following generating function

FB(t,x;α) =

(
t

et −1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
. (3)

One can easily see that
B(α)

n (0,0) = B(α)
n

that is

FB(t;α) =

(
t

et −1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
(4)

where B(α)
n are generalized Bernoulli numbers. For more information about

Bernoulli numbers and Bernoulli polynomials, we refer to [6, 14, 16]. If we take
h(t,ν) = h(t,y) = yt2 in (1), we get generalized Hermite-Bernoulli polynomials
of two variables HB(α)

n (x,y) introduced by Pathan [14] in the form(
t

et −1

)α

ext+yt2
=

∞

∑
n=0

HB(α)
n (x,y)

tn

n!
(5)

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomi-
als, Hermite polynomials and Hermite-Bernoulli polynomials HB(α)

n (x,y) intro-
duced by Dattoli et al. ([5], p.386 (1.6)) in the form(

t
et −1

)
ext+yt2

=
∞

∑
n=0

HBn(x,y)
tn

n!
. (6)
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For each integer k ≥ 0, Sk(n) =
n
∑

i=0
ik is called sum of integer powers or simply

power sum. The exponential generating function for Sk(n) is

∞

∑
k=0

Sk(n)
tk

k!
= 1+ et + e2t + · · ·+ ent =

e(n+1)t −1
et −1

.

In [9, 16] Qi and Guo generalized the concept of Bernoulli numbers as follows.
Let a,b and a 6= b. The generalized Bernoulli numbers Bn(a,b) for nonnegative
integer n are defined by

Φ(t;a,b) =
t

at −bt =
∞

∑
n=0

Bn(a,b)
tn

n!
, | t |< 2π. (7)

In [11] Luo et al. gave the following definition of the generalized Bernoulli
polynomials which generalize the concepts stated above. Let a,b > 0 and a 6= b.
The generalized Bernoulli polynomials Bn(x;a,b,c) for nonnegative integer n
are defined by

Φ(x, t;a,b,c) =
tcxt

at −bt =
∞

∑
n=0

Bn(x;a,b,c)
tn

n!
, | t |< 2π.

It is easy to see that the above definition given by Luo et al. [11] is a natural
and essential generalization of the concepts of Bernoulli numbers Bn, Bernoulli
polynomials Bn(x) and the generalized Bernoulli numbers Bn(a,b).

Definition 1.1. Let c > 0. The generalized 2-variable 1-parameter Hermite-
Kampé de Fériet polynomials Hn(x,y,c) polynomials for nonnegative integer n
are defined by

cxt+yt2
=

∞

∑
n=0

Hn(x,y,c)
tn

n!
. (8)

This is an extended 2-variable Hermite-Kampé de Fériet polynomials Hn(x,y)
(see [3]) defined by

ext+yt2
=

∞

∑
n=0

Hn(x,y)
tn

n!
.

Note that
Hn(x,y,e) = Hn(x,y).

In order to collect the powers of t we expand the left hand side of (8) to get(
∞

∑
n=0

xn(lnc)ntn

n!

)(
∞

∑
j=0

y j(lnc) jt2 j

j!

)
=

∞

∑
n=0

Hn(x,y,c)
tn

n!
.
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Thus we led to the representation

Hn(x,y,c) = n!
[ n

2 ]

∑
j=0

(lnc)n− jxn−2 jy j

j!(n−2 j)!
.

In this note we first give definitions of the generalized Bernoulli polynomials
B(α)

n (x,y;a,b.c) which generalize the concepts stated above and then research
their basic properties and relationships with Bernoulli numbers Bn, Bernoulli
polynomials Bn(x) and the generalized Bernoulli numbers Bn(a,b) generalized
Bernoulli polynomials Bn(x;a,b,c) of Luo et al Hermite-Bernoulli polynomi-
als HBn(x,y) of Dattoli et al. and HB(α)

n (x,y) of Pathan. The remainder of this
paper is organized as follows. We modify generating functions for the Milne-
Thomson’s polynomials [12] and derive some identities related to Hermite poly-
nomials, Bernoulli polynomials and power sums. Some implicit summation for-
mulae and general symmetry identities are derived by using different analytical
means and applying generating functions. These results extend some known
summations and identities of generalized Hermite-Bernoulli polynomials stud-
ied by Dattoli et al., Natalini et al., Zhang et al., Yang and Pathan.

2. Definitions and Properties of the Generalized Bernoulli polynomials
B(α)

n (x,y;a,b,c)

In the modified Milne Thomson’s polynomials due to Derre and Simsek [7, 12]
defined by (1) if we set f (t,α) =

( t
at−bt

)α , we obtain the following generalized

polynomials B(α)
n (x,ν ;a,b,c)

Definition 2.1. Let a,b,c> 0 and a 6= b. The generalized Bernoulli polynomials
B(α)

n (x,ν ;a,b,c) for nonnegative integer n are defined by

G1(t,x;α,a,b,ν) =
(

t
at −bt

)α

cxt+h(t,ν) =
∞

∑
n=0

B(α)
n (x,ν ;a,b,c)

tn

n!
(9)

| t |< 2π/(| lna− lnb |), x ∈ R.

Setting h(t,ν) = h(t,y) = yt2 in (9), we get

Definition 2.2. Let a,b,c> 0 and a 6= b. The generalized Bernoulli polynomials
B(α)

n (x,y;a,b,c) for nonnegative integer n are defined by

G2(t,x,y;α,a,b,c) =
(

t
at −bt

)α

cxt+yt2
=

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!
(10)

| t |< 2π/(| lna− lnb |), x ∈ R.
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For α = 1, we obtain from (10) the generating function

G2(t,x,y;1,a,b,c) =
t

at −bt cxt+yt2
=

∞

∑
n=0

Bn(x,y;a,b,c)
tn

n!

whereas for x = 0 gives

B(α)
n (0,y;a,b,c) =

[ n
2 ]

∑
k=0

n!
k!(n−2k)!

(lnc)kB(α)
n−2k(a,b)y

k (11)

Another special case of (10) for x = 0,y = 0 leads to the extension of the gen-
eralized Bernoulli numbers Bn(a,b) for nonnegative integer n defined by (7) in
the form

Definition 2.3. Let a,b,c> 0 and a 6= b. The generalized Bernoulli polynomials
B(α)

n (a,b) for nonnegative integer n are defined by

Φ(t;α,a,b) =
(

t
at −bt

)α

=
∞

∑
n=0

B(α)
n (a,b)

tn

n!
, | t |< 2π/(| lna− lnb |),x∈R.

(12)
It is easy to prove that

Bα+β
n (a,b) =

n

∑
m=0

(
n
m

)
B(α)

m (a,b)B(β )
n−m(a,b)

Further setting c = e in (10), we get

Definition 2.4. Let a,b,c > 0 and a 6= b. The generalized Hermite-Bernoulli
polynomials HB(α)

n (x,y;a,b,e) for nonnegative integer n are defined by

G2(t,x,y;α,a,b,e) =
(

t
at −bt

)α

ext+yt2
=

∞

∑
n=0

HB(α)
n (x,y;a,b,e)

tn

n!
(13)

| t |< 2π/(| lna− lnb |), x ∈ R

The generalized Bernoulli polynomials B(α)
n (x,y;a,b,c) defined by (10) have

the following properties which are stated as theorems below.

Theorem 2.5. Let a,b,c > 0 and a 6= b. For x ∈ R and n≥ 0:

B(α)
n (x,y,e,1,e) = HB(α)

n (x,y),B(α)
n (0,0,a,b,1) = B(α)

n (a,b),

B(α)
n (0,0,a,b,1) = B(α)

n ,B(α)
n (x,y,a,b,1) = B(α)

n (a,b) (14)

B(α+β )
n (x+ y,z+u;a,b,c) =

∞

∑
m=0

(
n
m

)
B(β )

m (z,u;a,b,c)B(α)
n−m(x,y;a,b,c) (15)

B(α)
n (x+ z,y;a,b,c) =

m

∑
n=0

(
m
n

)
B(α)

n−m(x;a,b,c)Hm(z,y;c) (16)
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Proof. The formulas in (14) are obvious. Applying Definition 2.2, we have

∞

∑
n=0

B(α+β )
n (x+ y,z+u;a,b,c)

tn

n!

=
∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

∞

∑
m=0

B(β )
m (z,u;a,b,c)

tm

m!

=
∞

∑
n=0

n

∑
m=0

B(β )
m (z,u;a,b,c)

tm

m!
B(α)

n−m(x,y;a,b,c)
tn−m

(n−m)!

Now equating the coefficients of the like powers of t in the above equation, we
get the result (15). Again by Definition 2.2 of generalized Bernoulli polynomi-
als, we have (

t
at −bt

)α

c(x+z)t+yt2
=

∞

∑
n=0

B(α)
n (x+ z,y;a,b,c)

tn

n!
(17)

which can be written as(
t

at −bt

)α

cxtczt+yt2
=

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

∞

∑
n=0

Hn(z,y,c)
tn

n!
(18)

Replacing n by n−m in (18), comparing with (17) and equating their coef-
ficients of tn leads to formula (16).

3. Implicit Summation formulae involving generalized Bernoulli and gen-
eralized Hermite-Bernoulli polynomials

For the derivation of implicit formulae involving generalized Bernoulli polyno-
mials Bα

n (x,y;a,b,c) and generalized Hermite-Bernoulli polynomials

HB(α)
n (x,y;a,b,e) the same considerations as developed for the ordinary Her-

mite and related polynomials in Khan et al. [10] and Hermite-Bernoulli polyno-
mials in Pathan [14] holds as well. First we prove the following results involving
generalized Bernoulli polynomials Bα

n (x,y;a,b,c).

Theorem 3.1. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0, the follow-
ing implicit summation formulae for generalized Bernoulli polynomials
B(α)

n (x,y;a,b,c) holds true:

B(α)
k+l(z,y;a,b,c) =

k,l

∑
n,m=0

(
l
m

)(
k
n

)
(z− x)n+mH(α)

k+l−n−m(x,y;a,b,c) (19)
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Proof. We replace t by t +u and rewrite the generating function (10) as(
t +u

at+u−bt+u

)α

cy(t+u)2
= c−x(t+u)

∞

∑
k,l=0

B(α)
k+l(x,y;a,b,c)

tk

k!
ul

l!
(20)

Replacing x by z in the above equation and equating the resulting equation to
the above equation, we get

c(z−x)(t+u)
∞

∑
k,l=0

B(α)
k+l(x,y;a,b,c)

tk

k!
ul

l!
=

∞

∑
k,l=0

B(α)
k+l(z,y;a,b,c)

tk

k!
ul

l!
(21)

On expanding exponential function (21) gives

∞

∑
N=0

[(z− x)(t +u)]N

N!

∞

∑
k,l=0

B(α)
k+l(x,y;a,b,c)

tk

k!
ul

l!
=

∞

∑
k,l=0

B(α)
k+l(z,y;a,b,c)

tk

k!
ul

l!

which on using formula [17, p. 52 (2)]

∞

∑
N=0

f (N)
(x+ y)N

N!
=

∞

∑
n,m=0

f (n+m)
xn

n!
ym

m!

in the left hand side becomes
∞

∑
n,p=0

(z− x)n+p

n!p!

∞

∑
k,l=0

B(α)
k+l(x,y;a,b,c)

tk

k!
ul

l!
=

∞

∑
k,l=0

B(α)
k+l(z,y;a,b,c)

tk

k!
ul

l!
(22)

Now replacing k by k−n, l by l− p and using the lemma [17, p. 100 (1)] in the
left hand side of (22), we get

∞

∑
n,p=0

∞

∑
k,l=0

(z− x)n+p

n!p!
B(α)

k+l−n−p(x,y;a,b,c)
tk

(k−n)!
ul

(l− p)!

=
∞

∑
k,l=0

B(α)
k+l(z,y;a,b,c)

tk

k!
ul

l!
(23)

Finally on equating the coefficients of the like powers of t and u in the above
equation, we get the required result.

Remark 3.2. By taking l = 0 in equation (19), we immediately deduce the
following result.

Corollary 3.3. The following implicit summation formula for Bernoulli polyno-
mials B(α)

n (z,y;a,b,c) holds true:

B(α)
k (z,y;a,b,c) =

k

∑
n=0

(
k
n

)
(z− x)nB(α)

k−n(x,y,a,b,c)
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Remark 3.4. On replacing z by z+ x and setting y = 0 in Theorem 3.1, we get
the following result involving generalized Bernoulli polynomials of one variable

B(α)
k+l(z+ x;a,b,c) =

k,l

∑
n,m=0

(
l
m

)(
k
n

)
(z)n+mB(α)

k+l−m−n(x;a,b,c)

whereas by setting z = 0 in Theorem 3.1, we get another result involving gener-
alized Bernoulli polynomials of one and two variables

B(α)
k+l(y) =

k,l

∑
n,m=0

(
l
m

)(
k
n

)
(−x)n+mB(α)

k+l−m−n(x,y;a,b,c)

Remark 3.5. Along with the above results we will exploit extended forms of
generalized Bernoulli polynomials B(α)

k+l(z;a,b,c) by setting y = 0 in the Theo-
rem 3.1 to get

B(α)
k+l(z;a,b,c) =

k,l

∑
n,m=0

(
l
m

)(
k
n

)
(z− x)n+mB(α)

k+l−m−n(x;a,b,c)

Remark 3.6. A straightforward expression of the Bk+l(z,y;a,b,c) is suggested
by a special case of the Theorem 3.1 for α = 1 in the following form

Bk+l(z,y;a,b,c) =
k,l

∑
n,m=0

(
k
n

)(
l
m

)
(z− x)n+mBk+l−m−n(x,y;a,b,c)

where Bk+l(z,y;a,b,c) denotes the generalized Bernoulli polynomials [18] de-
fined by Luo et al. [11].

Theorem 3.7. Let a,b,c > 0 and a 6= b. Then for x ∈ R and n≥ 0 :

B(α)
n (x;a,b,c) =

n

∑
m=0

(
n
m

)
B(α−1)

m (a,b)B(α)
n−m(x;

a
c
,
b
c
,c)

Proof. We start with the definition

∞

∑
n=0

B(α)
n (x+1;a,b,c)

tn

n!

=

(
t

at −bt

)α

c(x+1)t =

(
t

at −bt

)α−1( t
at −bt

)
c(x+1)t (24)

and the result of Luo et al. [11, p. 3771 (2.12)] to get
∞

∑
n=0

B(α)
n (x;a,b,c)

tn

n!
=

∞

∑
m=0

B(α−1)
m (a,b)

tm

m!
=

∞

∑
n=0

B(α)
n (x;

a
c
,
b
c
,c)

tn

n!

Now replacing n by n−m and equating the coefficients of tn leads to formula
(11).
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Theorem 3.8. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0 :

B(α)
n (x+α,y;a,b,c) =

[ n
2 ]

∑
j=0

n!
j!(n−2 j)!

(lnc) jB(α)
n−2 j(x;

a
c
,
b
c
,c) (25)

Proof. Since

B(α)
n (x+α,y;a,b,c)

tn

n!
=

(
t

at −bt

)α

c(x+α)t+yt2
=

(
t

(a
c )

t − (b
c )

t

)α

cxtcyt2

=

(
∞

∑
n=0

B(α)
n (x;

a
c
,
b
c
,c)

tn

n!

)(
∞

∑
j=0

y j(lnc) j t
2 j
j!

)
Now replacing n by n−2 j and comparing the coefficients of tn, we get the

result (25).

Remark 3.9. For α = 1, the above theorem reduces to

Bn(x+1,y;a,b,c) =
[ n

2 ]

∑
j=0

n!
j!(n−2 j)!

y j(lnc) jBn−2 j(x;
a
c
,
b
c
,c)

whereas for y = 0, it reduces to the known result of Luo et al. [11, p. 3771
(2.12)]

Bn(x+1,y;a,b,c) = Bn(x;
a
c
,
b
c
,c)

It is possible to find the explicit form of the generalized Bernoulli polyno-
mials in terms of generalized Hermite polynomials which is a generalization of
the result of Betti and Ricci [4].

Theorem 3.10. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0

B(α)
n (x,y;a,b,c) =

n

∑
m=0

(
n
m

)
B(α)

n−m(a,b)Hm(x,y,c) (26)

Proof. By the definition of generalized Bernoulli polynomials and the definition
(1), we have(

t
at −bt

)α

cxt+yt2

=
∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!
=

(
∞

∑
n=0

B(α)
n (a,b)

tn

n!

)(
∞

∑
m=0

Hm(x,y;c)
tm

m!

)
Now replacing n by n−m and comparing the coefficients of tn, we get the

result (26).
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Remark 3.11. For c = e, (26) yields

HB(α)
n (x,y;a,b,e) =

n

∑
m=0

(
n
m

)
Bα

n−m(a,b)Hm(x,y)

Theorem 3.12. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0 :

B(α)
n (x,y;a,b,c) =

n−2 j

∑
k=0

[ n
2 ]

∑
j=0

(lnc)n−k− jB(α)
k (a,b)

n!
k! j!(n−2 j− k)!

(27)

Proof. Applying the definition 2.2 to the term
( t

at−bt

)α and expanding the ex-
ponential function cxt+yt2

at t = 0 yields(
t

at −bt

)α

cxt+yt2
=

(
∞

∑
k=0

B(α)
k (a,b)

tk

k!

)(
∞

∑
n=0

xn(lnc)n tn

n!

)(
∞

∑
j=0

y j(lnc) j t
2 j

j!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
(lnc)n−kB(α)

k (a,b)xn−k

)
tn

n!

(
∞

∑
j=0

y j(lnc) j t
2 j

j!

)
Replacing n by n−2 j, we have

∞

∑
n=0

B(α)
n (x,y;a,b)

tn

n!

=
∞

∑
n=0

(
n−2 j

∑
k=0

[ n
2 ]

∑
j=0

(
n−2 j

k

)
(lnc)n−k− jB(α)

k (a,b)xn−k−2 jy j

)
tn

(n−2 j)! j!
(28)

Combining (28) and (10) and equating their coefficients of tn produce the
formula (27).

For y = 0, the above theorem reduces to the following result of Luo et al.
[11, p. 3770 (2.3)].

Corollary 3.13. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0 :

B(α)
n (x;a,b,c) =

n

∑
k=0

(lnc)n−kB(α)
k (a,b)xn−k n!

k!(n− k)!

On the other hand if we set x = 0, the above theorem reduces to the result (11).

Theorem 3.14. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0 :

B(α)
n (x+1,y;a,b,c) =

[ n
2 ]

∑
j=0

n−2 j

∑
k=0

(
n−2 j

k

)
(lnc)n−k− jB(α)

k (x;a,b,c) (29)
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Proof. By the definition of generalized Bernoulli polynomials, we have(
t

at −bt

)α

c(x+1)t+yt2
=

∞

∑
n=0

B(α)
n (x+1,y;a,b,c)

tn

n!
(30)

=

(
∞

∑
k=0

B(α)
k (x;a,b,c)

tk

k!

)(
∞

∑
n=0

xn(lnc)n tn

n!

)(
∞

∑
j=0

y j(lnc) j t
2 j

j!

)

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(lnc)n−kB(α)

k (x;a,b,c)
tn

n!

(
∞

∑
j=0

y j(lnc) j t
2 j

j!

)
(31)

=
∞

∑
n=0

∞

∑
j=0

n

∑
k=0

(
n
k

)
(lnc)n−k+ jB(α)

k (x;a,b,c)
tn+2 j

n! j!

Replacing n by n−2 j, we have

∞

∑
n=0

B(α)
n (x+1,y;a,b,c)

tn

n!

=
∞

∑
n=0

[ n
2 ]

∑
j=0

n−2 j

∑
k=0

(
n−2 j

k

)
(lnc)n−k− jB(α)

k (x;a,b,c)
tn

(n−2 j)! j!
(32)

Combining (31) (conjectured reference) and (10) and equating their coeffi-
cients of tn leads to formula (29).

Theorem 3.15. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n≥ 0 :

HB(α)
n (x,y;a,b,e) =

m

∑
n=0

(
m
n

)
B(α−1)

n−m (a,b)HB(α)
m (x,y;a,b,e) (33)

Proof. By the definition of generalized Hermite-Bernoulli polynomials,
we have (sono vere queste uguaglianze?)

t
at −bt

(
t

at −bt

)α

ext+yt2
=

t
at −bt

∞

∑
n=0

HB(α)
n (x,y;a,b,e)

tn

n!(
t

at −bt

)α

ext+yt2
=

t
at −bt

∞

∑
n=0

HB(α)
n (x,y;a,b,e)

tn

n!

=
∞

∑
n=0

Bn(a,b)
tn

n!

∞

∑
m=0

HB(α)
m (x,y;a,b,e)

tm

m!

Now replacing n by n−m and equating the coefficients of tn leads to formula
(33).
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Theorem 3.16. For arbitrary real or complex parameter α , the following im-
plicit summation formula involving generalized Bernoulli polynomials
B(α)

n (x,y;a,b,c) holds true:

B(α)
n (x+1,y;a,b,c)−B(α)

n (x,y;a,b,c) =
n−1

∑
k=0

(
n
k

)
(lnc)n−kB(α)

k (x;a,b,c) (34)

Proof. By the definition of generalized Bernoulli polynomials, we have

∞

∑
n=0

B(α)
n (x+1,y;a,b,c)

tn

n!
−

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

=

(
t

at −bt

)α

ext+yt2
(ct −1)

=

(
∞

∑
k=0

B(α)
k (x,y;a,b,c)

tk

k!

)(
∞

∑
n=0

(lnc)n tn

n!

)
−

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

=
∞

∑
n=0

n

∑
k=0

(lnc)n−ktn−kB(α)
k (x,y;a,b,c)

tk

(k)!
−

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

Finally, equating the coefficients of the like powers of tn, we get (34).

Remark 3.17. The generalization of some of the classical Bernoulli polynomi-
als have ramifications of interest. Perhaps the most important property of the
Bernoulli polynomials is that

Bn(x+1)−Bn(x) = nxn−1, n≥ 1

which happens to be a special case of (34). Some more examples which are
special case of (34) are

n−1

∑
m=0

(
n
m

)
Bn−m(x) = nxn, n≥ 1

Remark 3.18. To obtain the generalization of the result [2, p. 96] involving
Bernoulli numbers Bn

−t =
∞

∑
n=0

[1− (−1)n]Bn
tn

n!

and
Bn(x+1) = (−1)nBn(x)

we obtain the following theorem.
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Theorem 3.19. For arbitrary real or complex parameter α , the following im-
plicit summation formula involving generalized Bernoulli polynomials
B(α)

n (x,y;a,b,c) holds true:
n

∑
m=0

(
n
m

)
(lnab)m(α)mB(α)

n−m(−x,y;a,b,c) = (−1)nB(α)
n (x,y;a,b,c) (35)

B(α)
n (x,y;a,b,c) = (−1)nB(α)

n (α− x,y;a,b,c) (36)

Proof. We replace t by −t in (10) and then subtract the result from (10) itself
finding

cyt2
[(

t
at −bt

)α

(cxt − (ab)αtc−xt)

]
=

∞

∑
n=0

[1−(−1)n]B(α)
n (x,y;a,b,c)

tn

n!
(37)

which is equivalent to
∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

−

(
∞

∑
m=0

(α)m(lnab)m tm

m!

)
∞

∑
n=0

B(α)
n (−x,y;a,b,c)

tn

n!

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!

−

(
∞

∑
n=0

n

∑
m=0

(α)m(lnab)m

)
B(α)

n−m(−x,y;a,b,c)
tn

(n−m)!
tm

m!

=
∞

∑
n=0

[1− (−1)n]B(α)
n (x,y;a,b,c)

tn

n!

and thus by equating coefficients of like powers of tn, we get (35). In order to
get (36), we write (37) in the form

cyt2
[(

t
at −bt

)α

cxt −
(

t
( c

b)
t − ( c

a)
t

)αt

(c(α−x)t)

]
=

∞

∑
n=0

[1− (−1)n]B(α)
n (x,y;a,b,c)

tn

n!

which is equivalent to

∞

∑
n=0

B(α)
n (x,y;a,b,c)

tn

n!
−

∞

∑
n=0

B(α)
n (α− x,y;

c
b
,

c
a
,c)

tn

n!

=
∞

∑
n=0

[1− (−1)n]B(α)
n (x,y;a,b,c)

tn

n!
(38)

Now comparing the coefficients of tn in (38) and (36).
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Remark 3.20. The formula

n

∑
m=0

(
n
m

)
(α)m

HB(α)
n−m(−x,y) = (−1)n

HB(α)
n−m(x,y)

follows if in (35) we set a = c = e and b = 1.

Remark 3.21. For a = c = e and b = 1, (36) reduces to the following result
involving generalized Hermite-Bernoulli polynomials

HB(α)
n (α− x,y) = (−1)n

HB(α)
n−m(x,y)

4. General Symmetry Identities

In this section, we give general symmetry identities for the generalized Bernoulli
polynomials B(α)

n (x,y;a,b,c) and B(α)
n (a,b) by applying the generating function

(6) and (8). The results extend some known identities of Zhang and Yang [20],
Yang [19, Eqs. (9)] and Pathan [14]. Throughout this section α will be taken as
an arbitrary real or complex parameter.

Theorem 4.1. Let a,b,c > 0 and a 6= b. For x,y ∈ R and n ≥ 0. Then the
following identity holds true:

n

∑
k=0

(
n
k

)
akbn−kB(α)

n−k(bx,b2y;a,b,c)B(α)
k (a,b)

=
n

∑
k=0

(
n
k

)
bkan−kB(α)

n−k(ax,a2y;b,a,c)B(α)
k (b,a) (39)

Proof. Start with

g(t) =
(

abt2

(aat −bat)(bbt −bbt)

)α

cabxt+a2b2yt2

Then the expression for g(t) is symmetric in a and b and we can expand g(t)
into series in two ways to obtain

g(t) =
∞

∑
n=0

B(α)
n (bx,b2y;a,b,c)

(at)n

n!

∞

∑
k=0

B(α)
k (a,b)

(bt)k

k!

=
∞

∑
n=0

n

∑
k=0

B(α)
n−k(bx,b2y;a,b,c)

(a)n−k

(n− k)!
B(α)

k (a,b)
(b)k

k!
(t)n

n!
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On the similar lines we can show that

g(t) =
∞

∑
n=0

B(α)
n (ax,b2x;b,a,c)

(bt)n

n!

∞

∑
k=0

B(α)
k (b,a)

(at)k

k!

=
∞

∑
n=0

n

∑
k=0

B(α)
n−k(ax,b2y;b,a,c)

(b)n−k

(n− k)!
B(α)

k (b,a)
(b)k

k!
(t)n

n!
.

By comparing the coefficients of tn on the right hand sides of the last two equa-
tions we arrive the desired result.

Remark 4.2. For α = 1, the above result reduces to a known result of Pathan
[14].

n

∑
k=0

Bn−k(bx,b2y;a,b,c)Bk(a,b)
akbn−k

(n− k)!k!

=
n

∑
k=0

Bn−k(ax,a2y;b,a,c)Bk(b,a)
bkan−k

(n− k)!k!

Further by taking c = e in Theorem 4.1, we immediately deduce the follow-
ing result involving generalized Hermite-Bernoulli polynomials

HB(α)
n (x,y;a,b,e) for nonnegative integer n

n

∑
k=0

HB(α)
n−k(bx,b2y;a,b,e)B(α)

k (a,b)
akbn−k

(n− k)!k!

=
n

∑
k=0

HB(α)
n−k(ax,a2y;b,a,e)B(α)

k (b,a)
bkan−k

(n− k)!k!

Remark 4.3. By setting b = 1 in Theorem 4.1, we immediately get the follow-
ing result

n

∑
k=0

B(α)
n−k(x,y;a,1,c)B(α)

k (a,1)
ak

(n− k)!k!

=
n

∑
k=0

B(α)
n−k(ax,a2y;1,a,c)B(α)

k (1,a)
an−k

(n− k)!k!

Theorem 4.4. Let a,b,c > 0 and a 6= b. For x,y ∈ R and n ≥ 0. Then the
following identity holds true:

n

∑
k=0

(
n
k

)
an−kbk

a−1

∑
i=0

b−1

∑
j=0

B(α)
n−k

(
bx+

b
a

i+ j,b2z;A,B,e
)

Bα
k (ay;A,B,e)

=
n

∑
k=0

(
n
k

)
bn−kak

b−1

∑
i=0

a−1

∑
j=0

B(α)
n−k

(
ax+

a
b

i+ j,a2z;A,B,e
)

Bα
k (by;A,B,e) (40)
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Proof. Let

g(t) =
(

abt2

(Aat −Bat)(Abt −Bbt)

)α
(eabt −1)2eab(x+y)t+a2b2zt2

(eat −1)(ebt −1)

g(t) =
(

at
(Aat −Bat

)α

eabxt+a2b2zt2
(

eabt −1
ebt −1

)(
bt

Abt −Bbt

)α

eabyt
(

eabt −1
eat −1

)
=

(
at

(Aat −Bat

)α

eabxt+a2b2zt2
a−1

∑
i=0

ebti
(

bt
Abt −Bbt

)α

eabyt
b−1

∑
j=0

eat j (41)

=

(
at

Aat −Bat

)α

eabxt+a2b2zt2
a−1

∑
i=0

ebti
(

bt
Abt −Bbt

)α

eabyt
b−1

∑
j=0

eat j

=

(
at

Aat −Bat

)α

ea2b2zt2
a−1

∑
i=0

b−1

∑
j=0

e(bx+ b
a i+ j)at

∞

∑
k=0

Bα
k (ay;A,B,e)

(bt)k

k!

=
∞

∑
n=0

a−1

∑
i=0

b−1

∑
j=0

B(α)
n

(
bx+

b
a

i+ j,b2z;A,B,e
)
(at)n

n!

∞

∑
k=0

Bα
k (ay;A,B,e)

(bt)k

(k)!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
an−kbk

a−1

∑
i=0

b−1

∑
j=0

B(α)
n−k

(
bx+

b
a

i+ j,b2z;A,B,e
)

Bα
k (ay;A,B,e)tn

(42)

On the other hand

g(t)

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
bn−kak

b−1

∑
i=0

a−1

∑
j=0

B(α)
n−k

(
ax+

a
b

i+ j,a2z;A,B,e
)

Bα
k (by;A,B,e)tn

(43)

By comparing the coefficients of tn on the right hand sides of the last two
equations,we arrive at the desired result.

Remark 4.5. For α = 1, A = e and B = 1 the above result reduces to a known
result of Pathan [14, Eqs. (43)].
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