
ON CHERN RATIOS FOR SURFACES WITH AMPLE COTANGENT... 143

LE MATEMATICHE
Vol. LXI (2006) - Fasc. I, pp. 143-156

ON CHERN RATIOS FOR SURFACES

WITH AMPLE COTANGENT BUNDLE

DENIS CONDUCHÉ – ELEONORA PALMIERI

In this paper we study the problem of density in (1, 3] for the Chern ratio of
surfaces with ample cotangent bundle. In particular we prove density in (1, 2) by
constructing a family of complete intersection surfaces in a product of varieties
with big cotangent bundle. We also analyse the case of complete intersections in
a product of curves of genus at least 2.

1. Introduction.

We work over an algebraically closed field.

The Chern numbers of a surface of general type satisfy the well-known
inequality c21 ≤ 3c2 due to Miyaoka (see [6]). Mathematicians tried to
understand what values the ratio c21/c2 can assume. Sommese in [8] found
an answer for this problem by showing that the set of these ratios for
minimal surfaces of general type is dense in the interval [1/5, 3]. For his
proof, he uses covers of a family of surfaces constructed by Hirzebruch
in [4].

In this paper we are interested in the analogous question for surfaces
with ample cotangent bundle. We need to recall some definitions. Given
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a vector bundle E on a variety X , we define, following Grothendieck,
P(E) → X to be the projective bundle of hyperplanes in the fibers of E . It
is equipped with a line bundle OP(E)(1).

Definition 1.1. A vector bundle E on a variety X is

• ample if the line bundle OP(E)(1) is ample;

• big if the line bundle OP(E)(1) is big.

Varieties with ample cotangent bundle are of general type, but they have
much stronger properties: all their subvarieties are of general type and, over
the complex numbers, they are analytically hyperbolic (any holomorphic
map from C to such a variety is constant). They are related to the following
well-known conjecture.

Conjecture 1.2. (Lang). A smooth complex projective variety is analyti-
cally hyperbolic if and only if all its subvarieties are of general type.

Surfaces with ample cotangent bundle are minimal surfaces of general
type, and they satisfy (see [3]) the supplementary inequality c21 > c2. So
the set of possible Chern ratios is now restricted to (1, 3].

As noted by Spurr in [9], the surfaces constructed by Sommese do not
have, in general, this property of ampleness which is usually quite difficult
to check. In section 4 we prove the following result.

Theorem 1.3. The set of ratios c21/c2 for surfaces with ample cotangent
bundle is dense in the interval (1, 2). In other words, any number in (1, 2)
is a limit of Chern ratios of surfaces with ample cotangent bundle.

The proof is based on the following theorem, to be proved in section 3,
that generalizes a result of Bogomolov.

Theorem 1.4. Let X1, . . . , Xm be smooth projective varieties with big
cotangent bundle, all of dimension at least d > 0. Let Y be a general

complete intersection in X1 × · · · × Xm. If dim Y ≤
d(m + 1) + 1

2(d + 1)
, the

cotangent bundle of Y is ample.

In section 5 we explicitly compute the Chern ratio in the special case
of complete intersections in a product of curves.
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2. Notation and conventions.

For all finite sequences of integers d = (d1, . . . , dc), we set

|d| =

c�

i=1

di . If Vd1, . . . , Vdc are varieties, we denote by Vd the product

Vd1 × . . . × Vdc .

We use ∼ for numerical equivalence of divisors, and · for the intersec-
tion product of cycles on a variety.

We denote by cj(F ) the j -th Chern class of a vector bundle F . For
any smooth variety V , the class cj(V ) is the j -th Chern class of the tangent
bundle TV of V .

3. A generalization of Bogomolov’s theorem.

We first prove a generalization of the following theorem of Bogomolov
([2], Proposition 23).

Theorem 3.1 (Bogomolov). Let X 1, . . . , Xm be smooth projective varieties
with big cotangent bundle, all of dimension at least d > 0. Let V be a

general linear section of X 1 × · · · × Xm. If dim V ≤
d(m + 1) + 1

2(d + 1)
, the

cotangent bundle of V is ample.

In order to generalize this result from general linear section to general
complete intersections we need the following.

Lemma 3.2. Let X be a smooth subvariety of a projective space and let
B be a subvariety of P(�X). A general complete intersection Y in X of
dimension at most 1

2
codimB satisfies

P(�Y ) ∩ B = ∅.

Proof. Let Pn be the ambient projective space and let Vr = P(n+rr ) be the
Veronese variety that parametrizes hypersurfaces of degree r in Pn . Let
d = (d1, . . . , dc) be a sequence of positive integers. Now consider the
variety

W := {((t, x),Y1, . . . ,Yc) ∈ B × Vd | x ∈ Y, t ∈ TX,x ∩ TY1,x ∩ . . .∩ TYc,x}

where Y = X ∩ Y1 ∩ . . . ∩ Yc . We have two projections W → B and
W → Vd . The fibers of the first projection have codimension 2c, so the
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second projection is not dominant when 2c > dim B . But c = codimXY =

dim X − dim Y , so the last condition is equivalent to

2(dim X − dimY ) − 1 ≥ dim B = dimP(�X ) − codimB

= 2 dim X − 1 − codimB

which proves the lemma. �

Analogously we can prove the following.

Lemma 3.3. Let Y be a general complete intersection in a product X 1×X2

in a projective space. If 2 dimY ≤ dim X 1 + 1, the projection Y → X1 is
finite.

Proof. We consider in the ambient space Pn the closure of the locus

{(x1, x2, x
�
2,Y1, . . . ,Yc) ∈ X1 × X2 × X2 × Vd | x2 �=

�= x �
2, (x1, x2), (x1, x

�
2) ∈ Y1 ∩ . . . ∩ Yc}

This variety has a natural projection to X 1 × X2 × X2 whose fibers have
codimension 2c. As in the previous lemma the projection to Vd has fibers
of dimension at most 1 if the condition 2c ≥ dim(X 1 × X2 × X2) − 1 is
satisfied. When c = codimY , this amounts to saying that the projection
Y → X1 is finite and that

2 dim(X1 × X2) − 2 dimY ≥ dim(X1 × X2 × X2) − 1

which is equivalent to

dimY ≤ dim X1 + 1

as wanted. �

We now obtain the desired statement.

Theorem 3.4. Let X1, . . . , Xm be smooth projective varieties with big
cotangent bundle, all of dimension at least d > 0. Let Y be a general

complete intersection in X1 × · · · × Xm. If dim Y ≤
d(m + 1) + 1

2(d + 1)
, the

cotangent bundle of Y is ample.

Proof. The proof goes as in Bogomolov’s theorem (see [2]). �

Remark. Of course, in case the embedding of X1 × · · · × Xm in a
projective space comes from embeddings of each Xi in a projective space
followed by a Segre embedding, this theorem is just a consequence of
Bogomolov’s theorem 3.1. �
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4. Computation of Chern numbers.

We compute the Chern numbers of a complete intersection surface in a
product.

Proposition 4.1. Let X1, . . . , Xm be smooth projective varieties with
big cotangent bundle, all of dimension at least d > 0, such that 2 ≤
d(m + 1) + 1

2(d + 1)
. Let N be the dimension of X = X 1 × · · · × Xm. Embed X

in a projective space Pn . Let S be a surface, general complete intersection
of degree d = (d1, . . . , dN−2) in X . We have

c21(S) = c21(X )|S − 2|d|c1(X )|S · H |S + |d|2H 2|S

c2(S) = c2(X )|S − |d|c1(X )|S · H |S +




�

i≤ j

didj



 H 2|S

where H is a hyperplane in Pn .

Proof. According to Theorem 3.4, the cotangent bundle of S is ample.
The surface S is the intersection of X with hypersurfaces L 1, . . . , LN−2 of
degrees d1, . . . , dN−2 in Pn . We want to compute the ratio c21/c2 for S. Since
S is smooth, we have a short exact sequence of sheaves (see for example
[5, p.182])

0−→TS−→(TX )|S−→NS/X−→0

and we also know that, for a complete intersection,

NS/X �
�
IS/I

2
S

�∗
�

N−2�

i=1

OS(Li)

where IS is the ideal sheaf of S in X . So, for the Chern classes,

c(TX )|S = c(TS) · c
�
NS/X

�

c
�
NS/X

�
= c

�N−2�

i=1

OS(Li)

�

=

N−2�

i=1

(1 + c1(OS(Li)))

Let us compute c21(S):

c1(TX )|S = c1(TS) +

N−2�

i=1

c1(OS(Li))
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which implies, with c1(S) = c1(TS) and c1(X ) = c1(TX ),

c1(S) = c1(X )|S −

N−2�

i=1

c1(OS(Li))

Now we remember that, if H is a hyperplane in Pn , we have for all
i ∈ {1, . . . , N − 2}, Li ∼ di H , so that

c1(S) = c1(X )|S − |d|H |S

and

c21(S) = (c1(X ) − |d|H |X )|2S

= c21(X )|S − 2|d|c1(X )|S · H |S + |d|2H 2|S

Let us compute c2(S):

c2(TX )|S = c2(TS)+c1(TS) ·

N−2�

i=1

c1(OS(Li))+
�

i< j

c1(OS(Li)) ·c1(OS(L j))

so that

c2(S) = c2(TX )|S − c1(TS) ·

N−2�

i=1

c1(OS(Li)) −
�

i< j

c1(OS(Li)) · c1(OS(L j))

= c2(X )|S − c1(S) ·

N−2�

i=1

Li |S −
�

i< j

(Li · L j)|S

=
�
c2(X ) − (c1(X ) − |d|H |X ) ·

N−2�

i=1

Li |X −
�

i< j

(Li · L j)|X

�
|S

=
�
c2(X ) − |d|(c1(X ) − |d|H |X ) · H |X −

�

i< j

didj H
2|X

�
|S

So, if we put

(1) a := c1(X ) · HN−1|X and b := HN |X

we can write

c21(S) =

�
N−2�

i=1

di

�
�
c21(X ) · HN−2|X − 2a|d| + b|d|2

�
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and

c2(S) =

�
N−2�

i=1

di

�

c2(X ) · HN−2|X − a|d| + b
�
|d|2 −

�

i< j

didj
�




=

�
N−2�

i=1

di

�

c2(X ) · HN−2|X − a|d| + b
�

i≤ j

didj



 . �

Assume moreover that the di are multiple of the same integer d . So
di = eid for all i ∈ {1, . . . , N − 2}. The ratio is

(2)

c21(S)

c2(S)
=

c21(X ) · HN−2|X − 2a|d| + b|d|2

c2(X ) · HN−2|X − a|d| + b
�

i≤ j didj

=
c21(X ) · HN−2|X − 2ad|e| + bd2|e|2

c2(X ) · HN−2|X − ad|e| + bd2
�

i≤ j ei ej

Letting d go to infinity, we obtain

lim
d→+∞

c21(S)

c2(S)
=

|e|2
�

1≤i≤ j≤N−2

eiej

which is a rational number between 1 and 2.

Theorem 4.2. The set of values of the fraction above is dense in the interval
(1, 2).

We want to rephrase Theorem 4.2 as follows. Set T := |e| and
U := e21 + . . . + e2N−2. Then

|e|2
�

1≤i≤ j≤N−2 eiej
=

T 2

(T 2 +U )/2
=

2T 2

T 2 +U

The statement of the theorem is equivalent to ask for the values of

T 2 +U

2T 2
=

1

2

�
1 +

U

T 2

�

to be dense in (1/2, 1) or for the values of

T 2

U

to be dense in (1,+∞). The new formulation is the following.
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Theorem 4.3. The set of rational numbers





��M
i=1 ei

�2

�M
i=1 e

2
i

�
�
�
� M ≥ 4, e1, . . . , eM ∈ N

∗






is dense in the interval (1,+∞).

Proof. Fix M ≥ 4 and define a function

fM : (R+∗)M −→ R+

(e1, . . . , eM) �−→

� M�

i=1

ei

�2

M�

i=1

e2i

Observe that for all real numbers λ > 0,

fM(λei , . . . , λeM) = fM(e1, . . . , eM)

This implies fM((N∗)M) = fM((Q+∗)M). Since Q+ is dense in R+ ,
fM((Q+∗)M) is dense in fM((R+∗)M). To prove the theorem, we have only
to show that �

M≥4

Im ( fM) = (1,+∞)

It is easy to see that Im ( fM) ⊆ (1,+∞). On the other hand, since we have

fM(1, . . . , 1) =
M2

M
= M

and

fM(1, . . . , 1, M2) =
(M − 1 + M2)2

M − 1 + M4

=
M4 + M2 + 1 − 2M + 2M3 − 2M2

M4 + M − 1

= 1 +
2M3 − M2 − 3M + 2

M4 + M − 1
=: 1 + ε(M)

the whole interval [1 + ε(M), M] is contained in the image of f M . So
�

M≥4

Im ( fM) ⊇
�

M≥4

[1 + ε(M), M] = (1,∞)
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and the theorem is proved. �

Note that the hypothesis 2 ≤
d(m + 1) + 1

2(d + 1)
in Proposition 4.1 is

equivalent to

m ≥ 3 +
3

d
Taking for the Xi curves of genus at least 2 and m = N ≥ 6, we see that
Theorem 1.3 is proved.

We also have, as a corollary, the following result.

Proposition 4.4. For any fixed product of projective varieties
X = X1 × . . . × Xm as above, there are only a finite number of ratios
c21(S)

c2(S)
greater than or equal to 2 for a general complete intersection sur-

face S in X .

We recall the following general fact (see, for example, [1]):

Proposition 4.5. If F is any surface of general type, c2(F) > 0.

Proof of Proposition 4.4. With the notation of proposition 4.1, we have

c21(S)

c2(S)
=

c21(X ) · HN−2|X − 2a|d| + b|d|2

c2(X ) · HN−2|X − a|d| + b
�

i≤ j didj

so c21(S) ≥ 2c2(S) if and only if

c21(X ) · HN−2|X − 2a|d| + b|d|2 ≥ 2
�
c2(X ) · HN−2|X − a|d| + b

�

i≤ j

didj
�

or, equivalently, if and only if

�
c21(X )−2c2(X )

�
·HN−2|X ≥ b

�
2
�

i≤ j

didj−|d|2
�

= b

N−2�

i=1

d2
i =

�N−2�

i=1

d2
i

�
HN |X

Since HN |X > 0, we have

N−2�

i=1

d2
i ≤

�
c21(X ) − 2c2(X )

�
· HN−2|X

H N |X

We have now to consider two cases:

• if (c21(X ) − 2c2(X )) · HN−2|X ≤ 0, the set of possible vectors d is
empty;
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• if (c21(X ) − 2c2(X )) · HN−2|X = α > 0, every di is bounded by
�

α

HN |X

so the number of vectors d is finite. �

5. Explicit computations for linear sections of a product of curves.

Let us fix curves X1, . . . , XN of respective genera gi ≥ 2 and embed
each Xi in a projective space via a multiple li KXi of the canonical bundle,
with li ≥ 1 (≥ 2 if Xi is hyperelliptic) as a curve of degree αi = li(2gi−2).

Set X = X1 × . . . × XN and embed X in a projective space Pn via a
Segre embedding. If πi : X → Xi is the projection on the i -th factor and
K�i = π∗

i KXi , and if H is a hyperplane in Pn , we have

H |X =

N�

i=1

li K�i

For each i ∈ {1, . . . , N }, let pi be a point in Xi . For all j ∈ {1, . . . , N } and
for all multi-indices

Ij = (i1, . . . , i j )

with 1 ≤ i1 < . . . < i j ≤ N , set

X Ij := Xi1 × · · · × Xij

with this notation, we have for each I j a projection

πIj : X−→X Ij

Let X�Ij be the fibre of πIj over the point (pi1, . . . , pij ). We have

H |X =

N�

i=1

αi X�(i)

We need to compute H j |X :

H j |X = j!
�

Ij

� �

k∈Ij

αk

�
X�Ij
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Writing Xi × X j instead of X �{1,...,N}\{i, j}, we obtain

HN |X = N !
�

i

αi

H N−1|X = (N − 1)!
�

i

��

k �=i

αk

�
Xi

H N−2|X = (N − 2)!
�

i< j

� �

k �=i, j

αk

�
(Xi × X j)

Moreover,

c1(X ) =
�

i

π∗
i c1(Xi) = −

�

i

K�i ∼ −
�

i

(2gi − 2)X�(i)

and

c2(X ) =
�

i< j

π∗
i c1(Xi) ·π

∗
j c1(X j) =

�

i< j

K�i ·K�j ∼
�

i< j

(2gi −2)(2gj −2)X�(i, j)

Since c21(Xi) = 0 for all i ∈ {1, . . . , N }, we always have c21(X ) = 2c2(X )

in H 4(X, Z).

Proposition 5.1. A general complete intersection surface S in a product of
curves satisfies the inequality

c21(S) < 2c2(S)

Proof. It is just a consequence of Proposition 4.4 and of c21(X ) = 2c2(X )

for X a product of curves. �

In this case we can compute Chern classes more explicitly and obtain
a precise numerical result.

Proposition 5.2. Let S be a complete intersection surface of degree
d = (d1, . . . , dN−2) in a product of curves X = X1 × . . . × XN such
that Xi is embedded in the projective space via the li -canonical bundle.
Then

c21(S)

c2(S)
= 2 −

N (N − 1)
�N−2�

i=1

d2
i

�

�

1≤i< j≤N

1

li l j
+ (N − 1)

�
|d|

N�

i=1

1

li
+ N

�

1≤i≤ j≤N−2

didj

�
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In particular, when S is a linear section, we have

c21(S)

c2(S)
= 2 −

N (N − 1)(N − 2)

�

1≤i< j≤N

1

li l j
+ (N − 1)(N − 2)

� N (N − 1)

2
+

N�

i=1

1

li

�

Recall that we need to take N ≥ 6 in order to be able to apply
Bogomolov’s theorem to get a surface S with ample cotangent bundle.

Proof. We prove the first assertion. The second one follows when we
set d = (1, . . . , 1). Assume S is a complete intersection in X , so that

S ∼
��N−2

i=1 di
�
HN−2|X . We have, using notation (1),

a = c1(X ) · HN−1|X

= −(N − 1)!
� N�

i=1

(2gi − 2)X�(i)

�
·
��

j

��

k �= j

αk

�
X j

�

= −(N − 1)!
�

j

�
(2gj − 2)

�

k �= j

αk

�

= −(N − 1)!
��

i

(2gi − 2)
� �

j

�

k �= j

lk

and

b = HN |X = N !
�

i

αi = N !
� N�

i=1

(2gi − 2)
�� N�

i=1

li
�

Moreover,

c2(X ) · HN−2|X = (
�

i< j

(2gi − 2)(2gj − 2)X�(i, j)) · HN−2|X

= (N − 2)!
�

i< j

(2gi − 2)(2gj − 2)
� �

k �=i, j

αk

�

= (N − 2)!
� N�

i=1

(2gi − 2)
��

i< j

� �

k �=i, j

lk
�

Now it follows from Proposition 4.1 and the fact that c2
1(X ) = 2c2(X )
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that we have

c21(S)

c2(S)
= 2 +

b(|d|2 − 2
�

i≤ j

didj)

c2(X ) · HN−2|X − a|d| + b
�

i≤ j didj

= 2 +
−N (N − 1)

��
i d

2
i

��
i li

�

i< j

�

k �=i, j

lk + (N − 1)
�
|d|

�

i

�

j �=i

l j + N




�

i≤ j

didj




�

i

li

�

= 2 −
N (N − 1)(

�
i d

2
i )

�

i< j

1

li l j
+ (N − 1)

�
|d|

�

i

1

li
+ N

�

i≤ j

didj
�

where in the second equality we simply observe that all terms are multiples
of

(N − 2)!
� N�

i=1

(2gi − 2)
�

and in the third equality we divide both the numerator and the denominator

by
�N−2�

i=1

li
�
. �

Remarks and open problems.

It is interesting to note that, to the best of our knowledge, not many
examples of surfaces with ample cotangent bundle are known. Some of
them come from Hirzebruch’s construction, which uses arrangements of
lines in P2, and satisfy a criterion for ampleness which can be found in [8].
Another such criterion is proved by Spurr in [9] to construct double covers
of some special Hirzebruch surfaces. For most of the above examples the
Chern ratio is not greater than 2, and we know only a few sporadic examples
with c21 ≥ 2c2, while a result of Miyaoka (see [7]) shows the ampleness of
the cotangent bundle for surfaces with c21 = 3c2, i.e., quotients of the unit
ball.

So the question about density in [2, 3] is still open.
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