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SALAGEAN-TYPE HARMONIC UNIVALENT FUNCTIONS
WITH FIXED FINITELY MANY COEFFICIENTS

SAURABH PORWAL - BASEM A. FRASIN - REKHA KUREEL

In the present paper, authors introduced and study a new class of
Salagean-type harmonic univalent functions that have fixed finitely many
coefficients. We obtain coefficient conditions, extreme points, convolu-
tion condition, convex combinations for the above class of harmonic uni-
valent functions.

1. Introduction

A continuous complex-valued function f = u+ iv defined in a simply connected
complex domain D is said to be harmonic in D if both u and v are real harmonic
in D. In any simply connected domain we can write f = h+ g, where h and
g are analytic in D. We call h the analytic part and g the co-analytic part of
f . A necessary and sufficient condition for f to be locally univalent and sense-
preserving in D is that |h′(z)|> |g′(z)|, z ∈D, (see Clunie and Sheil-Small [4]).
For more basic results on harmonic functions one may refer following standard
introductory text book by Duren [8], (see also Ahuja [1] and Ponnusamy and
Rasila [13, 14]).

Denote by SH the class of functions f = h+ g that are harmonic univalent
and sense-preserving in the open unit disc U = {z : |z| < 1} for which f (0) =
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fz(0)−1 = 0. Then for f = h+g ∈ SH , we may express the analytic functions
h and g as

h(z) = z+
∞

∑
k=2

akzk, g(z) =
∞

∑
k=1

bkzk, |b1|< 1. (1)

Note that the family SH reduces to the class S of normalized analytic univalent
functions whenever the co-analytic part of f = h+g is zero; i.e. g≡ 0.

For f = h + g given by (1), Jahangiri et al. [10] defined the modified
Salagean operator of f as

Dm f (z) = Dmh(z)+(−1)mDmg(z), (2)

where Dmh(z) = z+
∞

∑
k=2

kmakzk,

Dmg(z) =
∞

∑
k=1

kmbkzk

and Dm stands for the differential operator introduced by Salagean [15].
For 0≤ α < 1, m ∈ N, n ∈ N0, m > n and z ∈U , let SH(m,n,α,λ ) denote

the family of harmonic functions f of the form (1) satisfying the condition

Re
{

Dm f (z)
λDm f (z)+(1−λ )Dn f (z)

}
> α, (3)

where Dm f is defined by (2).
Further, let the subclass SH(m,n,α,λ ) of SH(m,n,α,λ ) consisting of har-

monic functions fm = h+gm in SH(m,n,α,λ ) so that h and gm are of the form

h(z) = z−
∞

∑
k=2
|ak|zk, gm(z) = (−1)m−1

∞

∑
k=1
|bk|zk. (4)

These classes SH(m,n,α,λ ) and SH(m,n,α,λ ) were extensively studied by
Dixit and Porwal [6].

Now, we introduce a new subclass SH(m,n,α,λ ,ci) of SH(m,n,α,λ ) con-
sisting of functions of the form

fm(z) = h(z)+gm(z) (5)

where

h(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi−

∞

∑
k=l+1

|ak|zk,

gm(z) = (−1)m−1
∞

∑
k=1
|bk|zk
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where 0≤ ci ≤ 1 and 0≤ ∑
l
i=2 ci ≤ 1.

Several authors such as ([2], [5], [7], [9], [11], [12] and [16]) studied the
analytic functions with fixed finitely many coefficients. Recently Ahuja and
Jahangiri [3] studied the analogues results on harmonic univalent functions with
fixed second coefficients. Motivated with these works, we have study the above
mentioned new class of harmonic univalent functions with fixed finitely many
coefficients.

In this paper, we prove several interesting and useful results for functions
belonging to the class SH(m,n,α, ,λ ,ci).

To prove our main results we shall require the following lemma due to Dixit
and Porwal [6].

Lemma 1.1. A function fm(z) of the form (4) is in SH(m,n,α,λ ), if and only if

∞

∑
k=2

km(1−αλ )−α(1−λ )kn

1−α
|ak|

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α
|bk| ≤ 1, (6)

where m ∈ N, n ∈ N0, m > n, 0≤ α < 1 and 0≤ λ < 1.

2. Main Results

In our first theorem, we introduce a necessary and sufficient coefficient bound
for harmonic functions in SH(m,n,α,λ ,ci).

Theorem 2.1. Let the function fm(z) be defined by (5) belonging to the class
SH(m,n,α,λ ,ci), if and only if

∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α
|ak|

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α
|bk| ≤ 1−

l

∑
i=2

ci, (7)

where 0≤α < 1, 0≤ λ < 1, m∈N,n∈N0, m> n, 0≤ ci≤ 1 and 0≤
l

∑
i=2

ci≤ 1.

The result is sharp.

Proof. Putting

|ai|=
ci(1−α)

im(1−αλ )−α(1−λ )in
, (i = 2,3, . . . l), (8)
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in Lemma 1.1, we have

l

∑
i=2

ci +
∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α
|ak|

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α
|bk| ≤ 1, (9)

which clearly implies (7).
Further by taking the function f (z) of the form

f (z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi

−
∞

∑
k=l+1

1−α

km(1−αλ )−α(1−λ )kn |xk|zk (10)

+(−1)m−1
∞

∑
k=1

1−α

km(1−αλ )− (−1)m−nα(1−λ )kn |yk|zk,

where
∞

∑
k=l+1

|xk|+
∞

∑
k=1
|yk|= 1−

l

∑
i=2

ci,

we can easily verify that the result (7) is sharp.

In the following theorem, we examine the extreme points of the closed con-
vex hull of SH(m,n,α,λ ,ci) which is denoted by clco SH(m,n,α,λ ,ci).

Theorem 2.2. fm ∈ clco SH(m,n,α,λ ,ci), if and only if

fm(z) =
∞

∑
k=l

xkhk(z)+
∞

∑
k=1

ykgmk(z) (11)

where

hl(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi,

hk(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi

−
(1−∑

l
i=2 ci)(1−α)zk

km(1−αλ )−α(1−λ )kn, (k = l +1, l +2, . . .),

gmk(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi

+
(−1)m−1(1−∑

l
i=2 ci)(1−α)

km(1−αλ )− (−1)m−nα(1−λ )kn zk, (k = 1,2,3, . . .),
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xk ≥ 0, yk ≥ 0 and
∞

∑
k=l

xk +
∞

∑
k=1

yk = 1.

In particular, the extreme points of SH(m,n,α,λ ,ci) are {hk} and {gmk}.

Proof. Suppose fm(z) is expressed by (11). Then

fm(z) =
∞

∑
k=l

xkhk(z)+
∞

∑
k=1

ykgmk(z)

= z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi−

∞

∑
k=l+1

(1−∑
l
i=2 ci)(1−α)

km(1−αλ )−α(1−λ )knxkzk

+(−1)m−1
∞

∑
k=1

(1−α)
(1−∑

l
i=2 ci)

km(1−αλ )− (−1)m−nα(1−λ )knykzk.

Therefore, fm ∈ clco SH(m,n,α,λ ,ci), since

l

∑
i=2

ci +
∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α

[
(1−∑

l
i=2 ci)(1−α)

km(1−αλ )−α(1−λ )kn

]
xk

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α

[
(1−α)(1−∑

l
i=2 ci)

km(1−αλ )− (−1)m−nα(1−λ )kn

]
yk

=
l

∑
i=2

ci +
∞

∑
k=l+1

(1−
l

∑
i=2

ci)xk +
∞

∑
k=1

(1−
l

∑
i=2

ci)yk

=
l

∑
i=2

ci +(1−
l

∑
i=2

ci)(1− xl)

= 1− xl(1−
l

∑
i=2

ci)≤ 1.

Conversely, assume that fm(z) = h(z)+ gm(z) ∈ clco SH(m,n,α,λ ,ci), where
h(z) and gm(z) are given by

h(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi−

∞

∑
k=l+1

|ak|zk

and

gm(z) = (−1)m−1
∞

∑
k=1
|bk|zk.

Since

|ak| ≤
(1−

l

∑
i=2

ci)(1−α)

km(1−αλ )−α(1−λ )kn (k = l +1, . . .),
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|bk| ≤
(1−

l

∑
i=2

ci)(1−α)

km(1−αλ )− (−1)m−nα(1−λ )kn (k = 1,2, . . .),

we may set

xk =
|ak|{km(1−αλ )−α(1−λ )kn}

(1−
l

∑
i=2

ci)(1−α)

, (k = l +1, . . .),

yk =
|bk|{km(1−αλ )− (−1)m−nα(1−λ )kn}

(1−
l

∑
i=2

ci)(1−α)

, (k = 1,2, . . .)

and define xl = 1−
∞

∑
k=l+1

xk−
∞

∑
k=1

yk.

Then the proof is complete by noting that

f (z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi−

∞

∑
k=l+1

|ak|zk +
∞

∑
k=1
|bk|zk

= hl(z)+
∞

∑
k=l+1

(hk(z)−hl(z))xk +
∞

∑
k=1

(gk(z)−hl(z))yk

= xlhl(z)+
∞

∑
k=l+1

xkhk(z)+
∞

∑
k=1

ykgk(z)

=
∞

∑
k=l

xkhk(z)+
∞

∑
k=1

ykgk(z).

For our next theorem, we need to define the convolution of two harmonic
functions. For the harmonic functions of the form

fm(z) = z−
∞

∑
k=2
|ak|zk +(−1)m−1

∞

∑
k=1
|bk|zk

and

Fm(z) = z−
∞

∑
k=2
|Ak|zk +(−1)m−1

∞

∑
k=1
|Bk|zk

we define their convolution

( fm ∗Fm)(z) = fm(z)∗Fm(z) = z−
∞

∑
k=2
|akAk|zk +(−1)m−1

∞

∑
k=1
|bkBk|zk. (12)
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Theorem 2.3. The family SH(m,n,α,λ ,ci) is closed under convolution.

Proof. For fm,Fm ∈ SH(m,n,α,λ ,ci)), we may write

( fm ∗Fm)(z) = z−
l

∑
i=2

c2
i (1−α)2

{im(1−αλ )−α(1−λ )in}2 zi

−
∞

∑
k=l+1

|akAk|zk +(−1)m−1
∞

∑
k=1
|bkBk|zk

where

fm(z) = z−
l

∑
i=2

ci(1−α)

{im(1−αλ )−α(1−λ )in}
zi−

∞

∑
k=l+1

|ak|zk +(−1)m−1
∞

∑
k=1
|bk|zk

and

Fm(z)= z−
l

∑
i=2

ci(1−α)

{im(1−αλ )−α(1−λ )in}
zi−

∞

∑
k=l+1

|Ak|zk+(−1)m−1
∞

∑
k=1
|Bk|zk.

Since Fm(z)∈ SH(m,n,α,λ ,ci), we note that |Ak| ≤ 1, (k = l+1, l+2, . . .)
and |Bk| ≤ 1,(k = 1,2, . . .).

Now

l

∑
i=2

(
im(1−αλ )−α(1−λ )in

1−α

)(
c2

i (1−α)2

{im(1−αλ )−α(1−λ )in}2

)
+

∞

∑
k=l+1

{km(1−αλ )−α(1−λ )kn}
1−α

|akAk|

+
∞

∑
k=1

{km(1−αλ )− (−1)m−nα(1−λ )kn}
1−α

|bkBk|

≤
l

∑
i=2

(1−α)c2
i

{im(1−αλ )−α(1−λ )in}
+

∞

∑
k=l+1

{km(1−αλ )−α(1−λ )kn}
1−α

|ak|

+
∞

∑
k=1

{km(1−αλ )− (−1)m−nα(1−λ )}
1−α

|bk|

≤
l

∑
i=2

ci +
∞

∑
k=l+1

{km(1−αλ )−α(1−λ )kn}
1−α

|ak|

+
∞

∑
k=1

{km(1−αλ )− (−1)m−nα(1−λ )}
1−α

|bk| ≤ 1,

since fm ∈ SH(m,n,α,λ ,ci). Thus fm ∗Fm ∈ SH(m,n,α,λ ,ci).
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Next, we discuss the convex combination of the class SH(m,n,α,λ ,ci).

Theorem 2.4. The family SH(m,n,α,λ ,ci) is closed under convex combination.

Proof. For j = 1,2,3, . . . , let f jm(z) ∈ SH(m,n,α,λ ;ci), where f jm is given by

f jm(z) = z−
l

∑
i=2

ci(1−α)

im(1−αλ )−α(1−λ )in
zi−

∞

∑
k=l+1

|a jk|zk+(−1)m−1
∞

∑
k=1
|b jk|zk.

Then by Theorem 2.1, we have

∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α
|ak j |

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α
|bk j | ≤ 1−

l

∑
i=2

ci. (13)

For
∞

∑
j=1

t j = 1, 0≤ t j ≤ 1, the convex combination of f jm may be written as

∞

∑
j=1

t j f jm(z) = z−
l

∑
i=2

ci(1−α)zi

im(1−αλ )−α(1−λ )in
−

∞

∑
k=l+1

(
∞

∑
j=1

t j|a jk|zk

)

+(−1)m−1
∞

∑
k=1

(
∞

∑
j=1

t j|b jk|zk

)
.

Using the condition (7), we obtain
l

∑
i=2

ci +
∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α

∞

∑
j=1

t j(|a jk|)

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α

∞

∑
j=1

t j(|b jk|)

=
l

∑
i=2

ci +
∞

∑
j=1

t j

(
∞

∑
k=l+1

km(1−αλ )−α(1−λ )kn

1−α
|a jk|

+
∞

∑
k=1

km(1−αλ )− (−1)m−nα(1−λ )kn

1−α
|b jk|

)

≤
l

∑
i=2

ci +
∞

∑
j=1

t j

(
1−

l

∑
i=2

ci

)
=

l

∑
i=2

ci +

(
1−

l

∑
i=2

ci

)
∞

∑
j=1

t j = 1.

This is the condition required by Theorem 2.1 and so
∞

∑
j=1

t j f jm(z) ∈ SH(m,n,α,λ ,ci).
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