NEW GENERALIZATIONS OF SOME INEQUALITIES FOR k-SPECIAL AND q, k-SPECIAL FUNCTIONS

SABRINA TAF - BOCHRA NEFZI - LATIFA RIAHI

In this work, we establish some new inequalities involving some k special and q, k-special functions, by using the technique of $\mathrm{A} . \mathrm{McD}$. Mercer [11].

1. Introduction

Let L be a positive linear functional defined on a subspace $C^{*}(I) \subset C(I)$, where I is the interval $(0, a)$ with $a>0$ or $(0,+\infty)$.
Let f and g be two functions continuous on I which are strictly increasing and strictly positive on I.
In [11], A. Mcd. Mercer, posed the following result:
Supposing that $f, g \in C^{*}(I)$ such that $f(x) \rightarrow 0, g(x) \rightarrow 0$ as $x \rightarrow 0^{+}$and $\frac{f}{g}$ is strictly increasing, we define the function ϕ by

$$
\phi=g \frac{L(f)}{L(g)}
$$

and let F be a function defined on the ranges of f and g such that the compositions $F(f)$ and $F(g)$ each belong to $C^{*}(I)$.
a) If F is convex then

$$
\begin{equation*}
L[F(f)] \geq L[F(\phi)] \tag{1}
\end{equation*}
$$

Entrato in redazione: 25 marzo 2014

AMS 2010 Subject Classification: 33B15, 33D05.
Keywords: k-Gamma function, q, k-Gamma function, k-Beta function, q, k-Beta function, k-Zeta function.
b) If F is concave then

$$
\begin{equation*}
L[F(f)] \leq L[F(\phi)] \tag{2}
\end{equation*}
$$

The objective of this paper is to use the technique of A. McD. Mercer [11] to develop some new inequalities for k-Gamma, k-Beta and k-Zeta functions then q, k-Gamma and q, k-Beta functions which are a generalization of some inequalities studied in [11, 13].
Note that for $\alpha \in \mathbb{R}$, the function

$$
F(t)=t^{\alpha}
$$

is convex if $\alpha<0$ or $\alpha>1$ and concave if $0<\alpha<1$.
Then, for f and g satisfying the conditions (1) and (2), we have:
$L\left(f^{\alpha}\right)>L\left(\phi^{\alpha}\right)$ if $\alpha<0$ or $\alpha>1$ and $L\left(f^{\alpha}\right)<L\left(\phi^{\alpha}\right)$ if $0<\alpha<1$.
Substituting for ϕ this reads:

$$
\frac{[L(g)]^{\alpha}}{L\left(g^{\alpha}\right)}>(\text { resp } .<) \frac{[L(f)]^{\alpha}}{L\left(f^{\alpha}\right)}
$$

if $\alpha<0$ or $\alpha>1$ (resp. $0<\alpha<1$). In particular, if we take $f(x)=x^{\beta}$ and $g(x)=x^{\delta}$ with $\beta>\delta>0$, we obtain the following useful inequality:

$$
\begin{equation*}
\frac{\left[L\left(x^{\delta}\right)\right]^{\alpha}}{L\left(x^{\alpha \delta}\right)} \gtrless \frac{\left[L\left(x^{\beta}\right)\right]^{\alpha}}{L\left(x^{\alpha \beta}\right)} \tag{3}
\end{equation*}
$$

where \gtrless correspond to the case $(\alpha<0$ or $\alpha>1)$ and $(0<\alpha<1)$ respectively.
In recent years, many authors have studied Gamma and Beta functions. For more information see [1], [2], [3], [5], [6], [10], [13].

2. Basic Results

Throughout this paper, we will fix $q \in(0,1)$. For the convenience of the reader, we provide in this section a summary of the mathematical notions and definitions used in this paper (see [7], [9], [12]). We write for $a \in \mathbb{C}$,

$$
[a]_{q}=\frac{1-q^{a}}{1-q}
$$

The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by (see[8])

$$
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}
$$

$$
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n}
$$

provided the sums converge absolutely.
For $k>0$, the Γ_{k} function is defined by (see[4], [10])

$$
\Gamma_{k}(x)=\lim _{n \rightarrow \infty} \frac{n!k^{n}(n k)^{\frac{x}{k}-1}}{(x)_{n, k}}, x \in \mathbb{C} \backslash k \mathbb{Z}^{-}
$$

where $(x)_{n, k}=x(x+k)(x+2 k) \ldots(x+(n-1) k)$.
The above definition is a generalization of the definition of $\Gamma(x)$ function.
For $x \in \mathbb{C}$ with $\Re(x)>0$, the function $\Gamma_{k}(x)$ is given by the integral (see [4])

$$
\Gamma_{k}(x)=\int_{0}^{\infty} t^{x-1} e^{-\frac{t^{k}}{k}} d t
$$

and satisfies the following properties: (see [5], [10])

1. $\Gamma_{k}(x+k)=x \Gamma_{k}(x)$
2. $(x)_{n, k}=\frac{\Gamma_{k}(x+n k)}{\Gamma_{k}(x)}$
3. $\Gamma_{k}(k)=1$

Definition 2.1. Let $x, y, s, t \in \mathbb{R}$ and $n \in \mathbb{N}$, we note by

1. $(x+y)_{q, k}^{n}:=\prod_{j=0}^{n-1}\left(x+q^{j k} y\right)$
2. $(1+x)_{q, k}^{\infty}:=\prod_{j=0}^{\infty}\left(1+q^{j k} x\right)$
3. $(1+x)_{q, k}^{t}:=\frac{(1+x)_{q, k}^{\infty}}{\left(1+q^{t} x\right)_{q, k}^{\infty}}$.

We have $(1+x)_{q, k}^{s+t}=(1+x)_{q, k}^{s}\left(1+q^{k s} x\right)_{q, k}^{t}$.
We recall the two q, k-analogues of the exponential functions (see [5])

$$
E_{q, k}^{x}=\sum_{n=0}^{\infty} q^{\frac{k n(n-1)}{2}} \frac{x^{n}}{[n]_{q^{k}}!}=\left(1+\left(1-q^{k}\right) x\right)_{q, k}^{\infty}
$$

and

$$
e_{q, k}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q^{k}}!}=\frac{1}{\left(1-\left(1-q^{k}\right) x\right)_{q, k}^{\infty}}
$$

These q, k-exponential functions satisfy the following relations:

$$
D_{q^{k}} e_{q, k}^{x}=e_{q, k}^{x}, \quad D_{q^{k}} E_{q, k}^{x}=E_{q, k}^{q^{k} x} \quad \text { and } \quad E_{q, k}^{-x} e_{q, k}^{x}=e_{q, k}^{x} E_{q, k}^{-x}=1 .
$$

The q, k-Gamma function is defined by [5]

$$
\Gamma_{q, k}(x)=\frac{\left(1-q^{k}\right)_{q, k}^{\infty}}{\left(1-q^{x}\right)_{q, k}^{\infty}(1-q)^{\frac{x}{k}-1}}, x>0 .
$$

When $k=1$ it reduces to the known q-Gamma function Γ_{q}. It satisfies the following functional equation:

$$
\Gamma_{q, k}(x+k)=[x]_{q} \Gamma_{q, k}(x), \quad \Gamma_{q, k}(k)=1
$$

and it has the following integral representation (see[5])

$$
\Gamma_{q, k}(x)=\int_{0}^{\left.\frac{\left(k l_{q}\right.}{\left(1-q^{k}\right)^{1}}\right)^{\frac{1}{k}}} t^{x-1} E_{q, k}^{-\frac{k^{k}, k}{k \mid k q}} d_{q} t, \quad x>0 .
$$

The k-Beta function is defined by (see [4])

$$
B_{k}(t, s)=\int_{0}^{\infty} x^{t-1}\left(1+x^{k}\right)^{-\frac{t+s}{k}} d x, \quad t, s>0 .
$$

By using the following change of variable $x^{k}=u$ and $u=\frac{y}{1-y}$, we obtain

$$
B_{k}(t, s)=\frac{1}{k} \int_{0}^{1} u^{\frac{t}{k}-1}(1-u)^{\frac{s}{k}-1} d u, \quad s, t, k>0 .
$$

It is well-known that

$$
B_{k}(s, t)=\frac{\Gamma_{k}(s) \Gamma_{k}(t)}{\Gamma_{k}(s+t)} .
$$

The q, k-Beta function is defined by (see [5])

$$
B_{q, k}(t, s)=[k]_{q}^{-\frac{t}{k}} \int_{0}^{[k]_{q}^{\frac{1}{k}}} x^{t-1}\left(1-q^{k} \frac{x^{k}}{[k]_{q}}\right]_{q, k}^{\frac{s}{k}-1} d_{q} x, \quad s>0, t>0 .
$$

By using the following change of variable $u=\frac{x}{[k]_{q}^{\frac{1}{k}}}$, the last equation becomes

$$
B_{q, k}(t, s)=\int_{0}^{1} u^{t-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{s}{k}-1} d_{q} u, \quad s>0, t>0 .
$$

It verifies the relation

$$
B_{q, k}(t, s)=\frac{\Gamma_{q, k}(t) \Gamma_{q, k}(s)}{\Gamma_{q, k(t+s)}}, \quad s, t>0 .
$$

The function $B_{q, k}$ satisfies the following formulas for $s, t>0$

1. $B_{q, k}(t, \infty)=(1-q)^{\frac{t}{k}} \Gamma_{q, k}(t)$
2. $\quad B_{q, k}(t+k, s)=\frac{[t]_{q}}{[s]_{q}} B_{q, k}(t, s+k)$
3. $B_{q, k}(t, s+k)=B_{q, k}(t, s)-q^{s} B_{q, k}(t+k, s)$
4. $\quad B_{q, k}(t, s+k)=\frac{[s]_{q}}{[s+t]_{q}} B_{q, k}(t, s)$
5. $\quad B_{q, k}(t, k)=\frac{1}{[t]_{q}}$.

Definition 2.2. We define the function ζ_{k} as (see [10])

$$
\zeta_{k}(s)=\frac{1}{\Gamma_{k}(s)} \int_{0}^{\infty} \frac{t^{s-k}}{e^{t}-1} d t, s>k
$$

Note that when $k=1$ we obtain the known Riemann Zeta function $\zeta(s)$.

3. Main results

We start with the following theorem:
Theorem 3.1. Let f be the function defined by

$$
f(x)=\frac{\left[\Gamma_{k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha x)}
$$

then for all $\alpha>1$ (resp. $0<\alpha<1$) fis decreasing (resp. increasing) on $(0, \infty)$.
Proof. The k-Gamma function is infinitely differentiable on $(0, \infty)$ and we have

$$
\Gamma_{k}^{(n)}(x)=\int_{0}^{\infty} t^{x-1}[\log (t)]^{n} e^{-\frac{t^{k}}{k}} d t, \quad n \in \mathbb{N}
$$

We consider the subspace $C^{*}(I)$ obtained from $C(I)$ by requiring its members to satisfy:
(i) $\omega(x)=O\left(x^{\theta}\right)$ (for any $\theta>-k$) as $x \rightarrow 0$,
(ii) $\omega(x)=O\left(x^{\varphi}\right)$ (for any finite φ) as $x \rightarrow+\infty$.

Then, for $\omega \in C^{*}(I)$ we define

$$
L(\omega)=\int_{0}^{\infty} \omega(t) t^{k-1}(\log (t))^{2 n} e^{-\frac{t^{k}}{k}} d t
$$

The operator L is well-defined on $C^{*}(I)$ and it is a positive linear functional on $C^{*}(I)$.
Using the inequality (3), we obtain for $\beta>\delta>0$

$$
\frac{\left[\Gamma_{k}^{(2 n)}(k+\delta)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha \delta)} \gtrless \frac{\left[\Gamma_{k}^{(2 n)}(k+\beta)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha \beta)} .
$$

Theorem 3.1 is thus proved.
Corollary 3.2. For all $x \in[0, k]$, we have:

$$
\frac{\left[\Gamma_{k}^{(2 n)}(2 k)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha k)} \leq \frac{\left[\Gamma_{k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha x)} \leq\left[\Gamma_{k}^{(2 n)}(k)\right]^{\alpha-1}, \quad \alpha \geq 1
$$

and

$$
\left[\Gamma_{k}^{(2 n)}(k)\right]^{\alpha-1} \leq \frac{\left[\Gamma_{k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha x)} \leq \frac{\left[\Gamma_{k}^{(2 n)}(2 k)\right]^{\alpha}}{\Gamma_{k}^{(2 n)}(k+\alpha k)}, \quad 0<\alpha \leq 1
$$

Corollary 3.3. For all $x \in[0, k]$, we have

$$
\frac{k^{\alpha}}{\Gamma_{k}(\alpha k+k)} \leq \frac{\left[\Gamma_{k}(k+x)\right]^{\alpha}}{\Gamma_{k}(k+\alpha x)} \leq 1, \quad \alpha \geq 1
$$

and

$$
1 \leq \frac{\left[\Gamma_{k}(k+x)\right]^{\alpha}}{\Gamma_{k}(k+\alpha x)} \leq \frac{k^{\alpha}}{\Gamma_{k}(\alpha k+k)}, \quad 0<\alpha \leq 1
$$

Theorem 3.4. Let f be the function defined by

$$
f(x)=\frac{\left[\Gamma_{q, k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha k)}
$$

then for all $\alpha>1$ (resp. $0<\alpha<1)$ fis decreasing (resp. increasing) on $(0, \infty)$.
Proof. Since that $\Gamma_{q, k}$ is an infinitely differentiable function on $(0,+\infty)$, we have

$$
\Gamma_{q, k}^{(n)}(x)=\int_{0}^{\left(\frac{[k]_{q}}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}} t^{x-1}(\log (t))^{n} E_{q, k}^{-\frac{q^{k} k^{k} k^{k}}{\left[k_{q}\right.}} d_{q} t, \quad x>0, n \in \mathbb{N} .
$$

We consider $I=\left(0,\left(\frac{[k]_{q}}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}\right)$ and the subspace $C^{*}(I)$ obtained from $C(I)$ by requiring its members to satisfy:
(i) $\omega(x)=O\left(x^{\theta}\right)$ (for any $\left.\theta>-k\right)$ as $x \rightarrow 0$,
(ii) $\omega(x)=O(1)$ as $x \rightarrow\left(\frac{[k]_{q}}{\left(1-q^{k}\right)^{2}}\right)^{\frac{1}{k}}$.

Then we have,

$$
L(\omega)=\int_{0}^{\left(\frac{\left(k_{q} q^{\prime}\right.}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}} \omega(t) t^{k-1}(\log (t))^{2 n} E_{q, k}^{-\frac{q^{k} k^{k}}{k_{q}}} d_{q} t .
$$

The operator L is a positive linear functional on $C^{*}(I)$.
By applying the inequality (3), we obtain for $\beta>\delta>0$

$$
\frac{\left[\Gamma_{q, k}^{(2 n)}(k+\delta)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha \delta)} \gtrless \frac{\left[\Gamma_{q, k}^{(2 n)}(k+\beta)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha \beta)} .
$$

Theorem 3.4 is thus proved.
In particular, we have the following results
Corollary 3.5. For all $x \in[0, k]$, we have:

$$
\frac{\left[\Gamma_{q, k}^{(2 n)}(2 k)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha k)} \leq \frac{\left[\Gamma_{q, k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha x)} \leq\left[\Gamma_{q, k}^{(2 n)}(k)\right]^{\alpha-1}, \quad \alpha \geq 1
$$

and

$$
\left[\Gamma_{q, k}^{(2 n)}(k)\right]^{\alpha-1} \leq \frac{\left[\Gamma_{q, k}^{(2 n)}(k+x)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha x)} \leq \frac{\left[\Gamma_{q, k}^{(2 n)}(2 k)\right]^{\alpha}}{\Gamma_{q, k}^{(2 n)}(k+\alpha k)}, \quad 0<\alpha \leq 1 .
$$

Corollary 3.6. For all $x \in[0, k]$, we have

$$
\frac{k^{\alpha}}{\Gamma_{q, k}(\alpha k+k)} \leq \frac{\left[\Gamma_{q, k}(k+x)\right]^{\alpha}}{\Gamma_{q, k}(k+\alpha x)} \leq 1, \quad \alpha \geq 1,
$$

and

$$
1 \leq \frac{\left[\Gamma_{q, k}(k+x)\right]^{\alpha}}{\Gamma_{q, k}(k+\alpha x)} \leq \frac{k^{\alpha}}{\Gamma_{q, k}(\alpha k+k)}, \quad 0<\alpha \leq 1 .
$$

Remark 3.7. Applying Theorem 3.1 and Theorem 3.4 for $k=1$, we obtain the Theorem 2.1 and Theorem 3.2 in [13].

Theorem 3.8. For $s>0$, let f be the function defined by

$$
f(x)=\frac{\left[B_{k}(k(x+1), s)\right]^{\alpha}}{B_{k}(k(\alpha x+1), s)}
$$

then for all $\alpha>1$ (resp. $0<\alpha<1$) fis decreasing (resp. increasing) on $(0, \infty)$.

Proof. The k-Beta function is defined by

$$
B_{k}(t, s)=\frac{1}{k} \int_{0}^{1} x^{\frac{t}{k}-1}(1-x)^{\frac{s}{k}-1} d x
$$

We consider the interval $I=(0,1)$ and the subspace $C^{*}(I)$ obtained from $C(I)$ by requiring its members to satisfy:
(i) $\omega(x)=O\left(x^{\theta}\right)($ for $\theta>-1)$ as $x \rightarrow 0$
(ii) $\omega(x)=O(1)$ as $x \rightarrow 1$.

For $\omega \in C^{*}(I)$, we define

$$
L(\omega)=\int_{0}^{1} \omega(x)(1-x)^{\frac{s}{k}-1} d x
$$

L is a positive linear functional on $C^{*}(I)$.
Applying the inequality (3), we obtain for $\beta>\delta>0$

$$
\frac{\left[B_{k}(k(\delta+1), s)\right]^{\alpha}}{B_{k}(k(\alpha \delta+1), s)} \gtrless \frac{\left[B_{k}(k(\beta+1), s)\right]^{\alpha}}{B_{k}(k(\alpha \beta+1), s)} .
$$

Theorem 3.8 is thus proved.
Corollary 3.9. For $x \in[0, k]$ and $s>0$, we have

$$
\frac{k^{2(\alpha-1)}\left(\alpha k^{2}+s\right)}{\alpha\left(k^{2}+s\right)^{\alpha}} \frac{\left[B_{k}\left(k^{2}, s\right)\right]^{\alpha}}{B_{k}\left(\alpha k^{2}, s\right)} \leq \frac{\left[B_{k}(k(x+1), s)\right]^{\alpha}}{B_{k}(k(\alpha x+1), s)} \leq\left[B_{k}(k, s)\right]^{\alpha-1} \quad \alpha \geq 1
$$

Theorem 3.10. For $s>0$, let f be the function defined by

$$
f(x)=\frac{\left[B_{q, k}(k+x, s)\right]^{\alpha}}{B_{q, k}(k+\alpha x, s)}
$$

then for all $\alpha>1$ (resp. $0<\alpha<1$) fis decreasing (resp. increasing) on $(0, \infty)$.
Proof. The q, k-Beta function is defined by

$$
B_{q, k}(t, s)=\int_{0}^{1} x^{t-1}\left(1-q^{k} x^{k}\right)_{q, k}^{\frac{s}{k}-1} d_{q} x .
$$

We consider the interval $I=(0,1)$ and the subspace $C^{*}(I)$ obtained from $C(I)$ by requiring its members to satisfy:
(i) $\omega(x)=O\left(x^{\theta}\right)$ (for any $\left.\theta>-k\right)$ as $x \rightarrow 0$
(ii) $\omega(x)=O(1)$ as $x \rightarrow 1$

Then we put,

$$
L(\omega)=\int_{0}^{1} \omega(x) x^{k-1}\left(1-q^{k} x^{k}\right)_{q, k}^{\frac{s}{k}-1} d_{q} x
$$

L is defined on $C^{*}(I)$ and it is a positive linear functional on $C^{*}(I)$.
Applying the inequality (3), we obtain for $\beta>\delta>0$

$$
\frac{\left[B_{q, k}(k+\delta, s)\right]^{\alpha}}{B_{q, k}(k+\alpha \delta, s)} \gtrless \frac{\left[B_{q, k}(k+\beta, s)\right]^{\alpha}}{B_{q, k}(k+\alpha \beta, s)}
$$

Theorem 3.10 is thus proved.
Corollary 3.11. For $x \in[0, k]$ and $s>0$, we have

$$
\frac{[k]_{q}^{\alpha}[\alpha k+s]_{q}}{[k+s]_{q}^{\alpha}[\alpha k]_{q}} \frac{B_{q, k}^{\alpha}(k, s)}{B_{q, k}(\alpha k, s)} \leq \frac{\left[B_{q, k}(k+x, s)\right]^{\alpha}}{B_{q, k}(k+\alpha x, s)} \leq\left[B_{q, k}(k, s)\right]^{\alpha-1} \quad \alpha \geq 1
$$

Theorem 3.12. Let f be the function defined by

$$
f(x)=\frac{\left[\zeta_{k}(x+k+1) \Gamma_{k}(x+k+1)\right]^{\alpha}}{\zeta_{k}(\alpha x+k+1) \Gamma_{k}(\alpha x+k+1)}
$$

then for all $\alpha>1$ (resp. $0<\alpha<1$) fis decreasing (resp. increasing) on $(0, \infty)$.
Proof. From the definition of Zeta function, we can write

$$
\zeta_{k}(s) \Gamma_{k}(s)=\int_{0}^{\infty} x^{s-k} \frac{1}{e^{x}-1} d x, \quad s>k
$$

We consider the subspace $C^{*}(I)$ obtained from $C(I)$ by requiring its members to satisfy:
(i) $\omega(x)=O\left(x^{\theta}\right)$ (for any $\theta>-1$) as $x \rightarrow 0$
(ii) $\omega(x)=O\left(x^{\varphi}\right)$ (for any finite φ) as $x \rightarrow+\infty$.

Then we have,

$$
L(\omega)=\int_{0}^{\infty} \omega(x) \frac{x}{e^{x}-1} d x
$$

The linear functional L is well-defined on $C^{*}(I)$ and it is positive.
Applying the inequality (3), we obtain $\beta>\delta>0$

$$
\frac{\left[\zeta_{k}(\delta+k+1) \Gamma_{k}(\delta+k+1)\right]^{\alpha}}{\zeta_{k}(\alpha \delta+k+1) \Gamma_{k}(\alpha \delta+k+1)} \gtrless \frac{\left[\zeta_{k}(\beta+k+1) \Gamma_{k}(\beta+k+1)\right]^{\alpha}}{\zeta_{k}(\alpha \beta+k+1) \Gamma_{k}(\alpha \beta+k+1)}
$$

Theorem 3.12 is thus proved.
Remark 3.13. Applying Theorem 3.12 for $k=1$, we obtain the inequality for ζ function proved in [11].

REFERENCES

[1] C. Alsina - M. S. Tomas, A geometrical proof of a new inequalitie for the Gamma function, J. Ineq. Pure. App. Math. 6 (2) (2005), Art. 48. [ONLINE: http:// jipam.vu. edu.au/article. php?sid=508].
[2] L. Bougoffa, Some inequalities involving the Gamma function, J. Ineq. Pure. App. Math. 7 (5) (2006), Art. 179. [ONLINE: http:// jipam.vu. edu.au/article. php?sid=796].
[3] K. Brahim - Y. Sidomou, Some inequalities for the q, k-Gamma and Beta functions, Malaya Journal of Matematik 1 (1) (2014), 61-71.
[4] R. Diaz - E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Matematicas 15 (2) (2007), 179-192.
[5] R. Diaz - C. Teruel, q, k-Generalized Gamma and Beta functions, J. Nonlinear Math. Phys. 12 (1) (2005), 118-134.
[6] S. S. Dragomir - R.P. Agarwal - N. S. Barnett, Inequalities for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal. 5 (2) (2000), 103-165.
[7] G. Gasper - R. Rahman, Basic hypergeometric series 2nd Edition, (2004), Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge.
[8] F. H. Jackson, On a q-Definite integrals Quarterly Journal of Pure and Applied Mathematics 41 (1910), 193-203.
[9] V. G. Kac - P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[10] C. G. Kokologiannaki - V. Krasniqi, Some properties of k-Gamma function, Le Mathematiche 68 (1) (2013), 13-22.
[11] A. McD. Mercer, Some new inequalities for the Gamma, Beta and Zeta functions, J. Ineq. Pure. App. Math. 7 (1) (2006), Art. 29 [ONLINE: http:// jipam.vu.edu.au/article.php?sid=636].
[12] P. M. Rajković - S. D. Marinkonvić, Fractional integrals and derivatives in q calculus, Applicable analysis and discrete mathematics 1 (2007), 311-323.
[13] M. Sellami - K. Brahim - N. Bettaibi, New inequalities for some special and q special functions, J. Ineq. Pure. App. Math. 8 (2) (2007), Art. 47, 7pp.

SABRINA TAF
Department of Mathematics Faculty SEI, UMAB University of Mostaganem, Algeria e-mail: sabrina481@hotmail.fr

BOCHRA NEFZI
Department of Mathematics
Faculty of Science of Tunis, Tunisia e-mail: asimellinbochra@gmail.com

LATIFA RIAHI
Department of Mathematics
Faculty of Science of Tunis, Tunisia e-mail: riahilatifa2013@gmail.com

