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NILRADICALS OF SKEW HURWITZ SERIES RINGS

MORTEZA AHMADI - AHMAD MOUSSAVI - VAHID NOUROZI

For a ring endomorphism α of a ring R, Krempa called α a rigid en-
domorphism if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is called rigid
if there exists a rigid endomorphism of R. In this paper, we extend the
α-rigid property of a ring R to the upper nilradical Nil∗(R) of R. For an
endomorphism α and the upper nilradical Nil∗(R) of a ring R, we intro-
duce the condition (∗): Nil∗(R) is an α-ideal of R and aα(a) ∈ Nil∗(R)
implies a∈Nil∗(R) for a∈ R. We study characterizations of a ring R with
an endomorphism α satisfying the condition (∗), and we investigate their
related properties. The connections between the upper nilradical of R and
the upper nilradical of the skew Hurwitz series ring (HR,α) of R are also
investigated.

1. Introduction

Rings of formal power series have been of interest and have had important appli-
cations in many areas, one of which has been differential algebra. In an earlier
paper by Keigher [8], a variant of the ring of formal power series was con-
sidered, and some of its properties, especially its categorical properties, were
studied. In the papers [9], [10], Keigher demonstrated that the ring of Hurwitz
series has many interesting applications in differential algebra. While there are
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many studies of these rings over a commutative ring, very little is known about
them over a noncommutative ring. In the present paper we study Hurwitz series
over a noncommutative ring with identity, examine its structure and properties.

Throughout this paper R denotes an associative ring with identity. We use
Nil∗(R), Nil∗(R) and Nil(R) to represent the lower nilradical (i.e., the prime
radical), the upper nilradical (i.e., sum of all nil ideals) and the set of all nilpotent
elements of R, respectively.
A ring R is called 2-primal [2] if the ring’s prime radical coincides with the set
of nilpotent elements of the ring.

Every reduced ring (i.e., Nil(R) = 0) is obviously a 2-primal ring. Observe
that R is a 2-primal ring if and only if Nil∗(R) = Nil∗(R) = Nil(R) if and only if
Nil∗(R) is a completely semiprime ideal (i.e., a2 ∈ Nil∗(R) implies a ∈ Nil∗(R)
for a ∈ R) of R. Also, Nil∗(R) = Nil(R) if and only if Nil∗(R) is completely
semiprime.

Hence the class of rings which satisfy Nil∗(R) = Nil(R) properly contains
the class of 2-primal rings; while there exists a ring R with Nil∗(R) = Nil(R)
which is not 2-primal [[3], Example 3.3]. We refer to [[3], [5] and [6]] for more
details on 2-primal rings.

For a ring endomorphism α of a ring R, Krempa [11] called α a rigid en-
domorphism if aα(a) = 0 implies a = 0 for a ∈ R. We called R an α-rigid ring
[6] if the endomorphism α of R is rigid. Note that any rigid endomorphism is a
monomorphism, and α-rigid rings are reduced rings. But there exists an endo-
morphism of a reduced ring which is not rigid [[6],Example 9]. However, if α

is an inner automorphism (i.e., there exists an invertible element u ∈ R such that
α(r) = u−1ru for any r ∈ R) of a reduced ring R, then α is rigid.

The ring T = (H(R),α), or simply by T = (HR,α), of skew Hurwitz series
over a ring R is defined as follows: the elements of T = (HR,α) are functions
f : N→ R, where N is the set of all natural numbers. Let supp( f ) denote the
support of f ∈ T , i.e. supp( f ) = {i ∈ N : 0 6= f (i) ∈ R}, Π( f ) denote the
minimal element in supp( f ) and ∆( f ) denote the maximal element in supp( f )
if it exists, the operation of addition in T is componentwise and the operation of
multiplication for each f ,g ∈ T is defined by:

( f g)(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) for all n ∈ N.

where
(n

k

)
is the binomial coefficient.

Define the mappings hn : N→ R, n ≥ 1 via hn(n− 1) = 1 and hn(m) = 0
for each (n−1) 6= m ∈ N and h′r : N→ R via h′r(0) = r and h′r(n) = 0 for each
0 6= n ∈ N and r ∈ R. It can be easily shown that T = (HR,α) is a ring with
identity h1.
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For a ring R, the subring R′ of T = (HR,α) defined by {h′r : r ∈ R}, we have
R∼= R′. For any subset A of R define A′ = {h′r : r ∈ A}. If A is an ideal of R, then
A′ is an ideal of R′.

The ring (hR,α) of skew Hurwitz polynomials over a ring R is a subring of
(HR,α) that consists elements of the form f ∈ (HR,α) that ∆( f )< ∞.

In this paper, we investigate the relationship between the upper nilradical
Nil∗(R) of a ring R and the upper nilradical Nil∗(HR,α) of the skew Hurwitz
series ring (HR,α) of R.
We shall always assume that α is an endomorphism of a given ring and it is a
nonzero and non-identity endomorphism, unless especially noted.

2. α-completely semiprime ideals

In this section, we introduce α-completely semiprime ideals of a ring R, and
then we investigate their equivalent conditions and related properties.
A ring R is said to be prime if AB 6= 0 for any nonzero ideals A,B of R. An ideal
P of R is prime if R/P is a prime ring. R is said to be strongly prime if R is
prime with no nonzero nil ideals. An ideal P of R is strongly prime if R/P is
a strongly prime ring. An ideal P of a ring R is minimal strongly prime if P is
minimal among strongly prime ideals of R.

We can show that there exists a minimal strongly prime ideal of a ring R
using Zorn’s lemma. Observe that for a ring R, Nil∗(R) = {a ∈ R : (a) is a nil
ideal of R}=

⋂
{P : P is a strongly prime ideal of R} [15].

An ideal P of a ring R is completely prime if ab∈P implies a∈P or b∈P for
a,b ∈ R. Observe that every completely prime ideal of R is strongly prime and
every strongly prime ideal is prime, but the converses do not hold, in general.

Recall that an ideal I of R is called an α-ideal if α(I) ⊆ I, and I is called
α-invariant if α−1(I) = I. Note that every α-invariant ideal is a α-ideal.

Let mSpecs(R) be the set of all (minimal) strongly prime ideals of a ring R.

Proposition 2.1. Let R be a ring.
(1) If P is α-invariant for each P ∈ mSpecs(R), then Nil∗(R) is α-invariant;
(2) If P is an α-ideal for each P ∈ mSpecs(R), then Nil∗(R) is an α-ideal;
(3) If R satisfies Nil∗(R) = Nil(R), then

(a) Nil∗(R) is an α-ideal of R, and
(b) Nil∗(R) is α-invariant, where α is a monomorphism.

Proof. (1) Let a ∈ α−1(Nil∗(R)). Then α(a) ∈ Nil∗(R)⊂ P and so a ∈ α−1(P)
= P for all P ∈ mSpecs(R). Thus a ∈ Nil∗(R) and so α−1(Nil∗(R))⊂ Nil∗(R).
Now, if a ∈ Nil∗(R), then a ∈ P = α−1(P) and so α(a) ∈ P for all
P ∈ mSpecs(R). Thus α(a) ∈ Nil∗(R) and so a ∈ α−1(Nil∗(R)). Therefore
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Nil∗(R)⊂ α−1(Nil∗(R)) and so Nil∗(R) is α-invariant.
(2) Let a ∈ Nil∗(R). Then a ∈ P for all P ∈mSpecs(R). Thus α(a) ∈ α(P)⊂ P.
Therefore α(a) ∈ Nil∗(R) and so Nil∗(R) is an α-ideal.
(3) Recall that a ring R satisfies Nil∗(R) = Nil(R) if and only if Nil∗(R) is a
completely semiprime ideal of R.
(a) Let a ∈ Nil∗(R). Then an = 0 for some positive integer n. Thus (α(a))n =
α(an) = α(0) = 0, and so α(a) ∈ Nil(R) = Nil∗(R). Therefore Nil∗(R) is an
α-ideal.
(b) By (a), we have Nil∗(R)⊂ α−1(Nil∗(R)). Thus it suffices to show
α−1(Nil∗(R)) ⊂ Nil∗(R). Let a ∈ α−1(Nil∗(R)). Then α(a) ∈ Nil∗(R) and
so (α(a))n = 0 for some positive integer n. Thus α(an) = 0 = α(0) and so
an = 0, because α is a monomorphism. Hence a ∈ Nil(R) = Nil∗(R). Thus
α−1(Nil∗(R))⊂ Nil∗(R). Consequently, Nil∗(R) is α-invariant.

Corollary 2.2. If R is a 2-primal ring, then Nil∗(R) is an α-ideal of R and
Nil∗(R) is α-invariant when α is a monomorphism.

In the next example, parts (1) and (2) show that the converses of Proposition
2.1 (1) and (3) (a) do not hold, respectively; while part (3) illustrates that the
converse of Proposition 2.1 (2) does not hold, and that the condition “α is a
monomorphism” in Proposition 2.1 (3) ( b) is not superfluous.

Example 2.3. (1) Let R = Z2⊕Z2. Then R is a commutative reduced ring.
Define α : R→ R by α(a,b) = (b,a). Then Nil∗(R) = {(0,0)} is α-invariant
since α is an automorphism. However, P = {0}⊕Z2 ∈ mSpecs(R) is not α-
invariant: For (0,1) ∈ P, α(0,1) 6∈ P. Hence P is not an α-ideal and so it is not
α-invariant.
(2) Let R = Mat2(F) be the 2×2 full matrix ring over a field F . Let α : R→ R

be an endomorphism defined by α

((a b
c d

))
=
( a −b
−c d

)
. Then Nil∗(R) =(0 0

0 0

)
is a strongly prime ideal of R and Nil∗(R) is an α-ideal. But Nil∗(R) 6=

Nil(R).
(3) Let R = F [x] be the polynomial ring over a field F . Then R is a commu-
tative domain, and so it satisfies Nil∗(R) = Nil(R) = {0}. Let α : R→ R be
an endomorphism defined by α( f (x)) = f (0). Clearly Nil∗(R) is an α-ideal.
However, Nil∗(R) is not α-invariant. For ax ∈ α−1(Nil∗(R)) but ax 6∈ Nil∗(R),
where ax ∈ R and 0 6= a ∈ F . Moreover, for P = 〈x+1〉= {g(x)(x+1) : g(x) ∈
R} ∈ mSpecs(R), we have x+ 1 ∈ P, but α(x+ 1) = 1 6∈ P. Thus P is not an
α-ideal.

Now we extend the α-rigid property of a ring R to its upper nilradical
Nil∗(R) to study the connection of the upper nilradical Nil∗(R) of a ring R and
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the upper nilradical Nil∗(HR,α) of the skew Hurwitz series ring (HR,α) of R
as follows.

Let α be an endomorphism and Nil∗(R) be an α-ideal of a ring R. Nil∗(R)
is called to be α-completely semiprime if aα(a) ∈ Nil∗(R) implies a ∈ Nil∗(R)
for a ∈ R.

Note that if R is an α-rigid ring, then Nil∗(R) is an α-completely semiprime
ideal of R but the converse does not hold by the next example.

Example 2.4. Let R=

(
F F
0 F

)
, where F is a field. Then Nil∗(R)=

(
0 F
0 0

)
=

Nil(R). Let α : R→ R be defined by α

((
a b
0 c

))
=

(
a 0
0 c

)
. Then obviously

α is not a monomorphism. Thus R is not α-rigid. Now we show that Nil∗(R) is
an α-completely semiprime ideal of R:

Clearly Nil∗(R) is an α-ideal of R. If
(

a b
0 c

)
α

((
a b
0 c

))
∈ Nil∗(R),

then
(

a2 bc
0 c2

)
∈ Nil∗(R). Since Nil∗(R) =

(
0 F
0 0

)
, we obtain a2 = 0 and

c2 = 0. Thus a = 0 = c and so
(

a b
0 c

)
=

(
0 b
0 0

)
∈ Nil∗(R).

Observe that if I is an α-ideal, then α : R/I → R/I defined by α(a+ I) =
α(a)+ I for a ∈ R is also an endomorphism of R/I.

Proposition 2.5. If Nil∗(R) is an α-completely semiprime ideal of a ring R,
then Nil∗(R) = Nil(R), i.e., Nil∗(R) is a completely semiprime ideal of R.

Proof. Note that aα(a)∈Nil∗(R) if and only if aα(a) = 0 for a= a+Nil∗(R)∈
R/Nil∗(R). Then Nil∗(R) is an α-completely semiprime ideal of R if and only if
the factor ring R/Nil∗(R) is a α-rigid ring, where α : R/Nil∗(R)→ R/Nil∗(R)
defined by α(a+Nil∗(R)) = α(a)+Nil∗(R). Thus R/Nil∗(R) is reduced, and
so Nil∗(R) = Nil(R).

Example 2.3 (3) illustrates that the converse of Proposition 2.5 does not
hold. Indeed, for the ring R = F [x] which satisfies Nil∗(R) = Nil(R) = {0} with
α in Example 2.3 (3). But Nil∗(R) is not α-completely semiprime:
For, if 0 6= a ∈ F and f (x) = ax ∈ R, then f (x)α( f (x)) ∈ Nil∗(R), but f (x) 6∈
Nil∗(R).

Under certain conditions, the converse of Proposition 2.5 can be done as the
next result shows:

Lemma 2.6 ([5], Theorem 5, Theorem 8 and Corollary 13). Let R be a ring.
Then the following are equivalent:
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(1) Nil∗(R) = Nil(R);
(2) P is a completely prime ideal of R for each P ∈ mSpecs(R);
(3) P = {a ∈ R : ab ∈ Nil∗(R) for some b ∈ R\P} for each P ∈ mSpecs(R).

Proposition 2.7. Assume that for each P∈mSpecs(R), P is an α-invariant ideal
of a ring R. Then the following are equivalent:

(1) Nil∗(R) = Nil(R);
(2) Nil∗(R) is an α-completely semiprime ideal of R.

Proof. It is enough to show that (1)⇒ (2). Suppose that Nil∗(R) = Nil(R).
Clearly, Nil∗(R) is an α-ideal of R by Proposition 2.1 (3). Let aα(a) ∈ Nil∗(R)
then aα(a) ∈ P for all P ∈ mSpecs(R). Since P is completely prime and α-
invariant by Lemma 2.6 and hypothesis, a ∈ P for all P ∈ mSpecs(R) and so
a ∈ Nil∗(R). Thus Nil∗(R) is an α-completely semiprime ideal of R.

There exists a ring R with Nil∗(R) 6= Nil(R), even though every strongly
prime ideal of R is α-invariant (Example 2.3 (2)); while, the condition “P is an
α-invariant ideal of a ring R for each P ∈ mSpecs(R)” cannot be replaced by
the condition “Nil∗(R) is an α-invariant ideal”. In fact, for the α-invariant ideal
Nil∗(R) = {0,0}= Nil(R) in Example 2.3 (1), (0,1)α(0,1) = (0,0) ∈ Nil∗(R)
but (0,1) 6∈ Nil∗(R).

However, we have the following:

Theorem 2.8. For a ring R, the following are equivalent:
(1) Nil∗(R) is an α-completely semiprime ideal of R;
(2) Nil∗(R) = Nil(R) and P is α-invariant for each P ∈ mSpecs(R);
(3) P is an α-ideal such that aα(a)∈P implies a∈P for each P∈mSpecs(R)

Proof. (1)⇒ (2) Observe that Nil∗(R) = Nil(R) by Proposition 2.5. Let P ∈
mSpecs(R) and a ∈ α−1(P). Then α(a) ∈ P. By Lemma 2.6, there exists b ∈
R\P such that α(a)b ∈ Nil∗(R) since Nil∗(R) = Nil(R). Thus bα(a) ∈ Nil∗(R)
and so abα(ab) = abα(a)α(b) ∈ Nil∗(R). Since Nil∗(R) is an α-completely
semiprime ideal of R, ab ∈ Nil∗(R) and so ab ∈ P. Thus a ∈ P by Lemma
2.6 and therefore α−1(P) ⊆ P. Now, we show that P ⊆ α−1(P). Let a ∈ P,
then there exists b ∈ R\P such that ab ∈ Nil∗(R) by Lemma 2.6 and Nil∗(R) is
an α-ideal by Proposition 2.1 (3). Thus α(a)α(b) = α(ab) ∈ Nil∗(R). Then
α(a)α(b) ∈ P and hence α(a) ∈ P, by Lemma 2.6. Therefore a ∈ α−1(P) and
so P is α-invariant.
(2)⇒ (3) Follows from Lemma 2.6.
(3)⇒ (1) Clearly Nil∗(R) is an α-ideal of R by Proposition 2.1(2). Let aα(a)∈
Nil∗(R) then aα(a) ∈ P for all P ∈ mSpecs(R). By hypothesis, a ∈ P for all
P∈mSpecs(R) and so a∈Nil∗(R). Thus Nil∗(R) is an α-completely semiprime
ideal of R.
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From Theorem 2.8, observe that if R is an α-rigid ring, then P is α-invariant
for each P ∈ mSpecs(R), equivalently,
P is an α-ideal of R for each P ∈ mSpecs(R) and α is a monomorphism.

Hence, we have the following.

Corollary 2.9. The following are equivalent:
(1) R is an α-rigid ring;
(2) R is a reduced ring, α is a monomorphism and P is an α-ideal for each

P ∈ mSpecs(R).

Proof. It is enough to show (2)⇒ (1). Let P ∈ mSpecs(R) and aα(a) = 0 for
a ∈ R. Then aα(a) ∈ P. Since R is reduced, P is a completely prime ideal of R.
Thus a ∈ P or α(a) ∈ P. If a ∈ P, then α(a) ∈ P because P is an α-ideal. Thus
α(a) ∈ Nil∗(R) = {0} and so a = 0 because α is a monomorphism. Therefore
R is an α-rigid ring.

3. The upper nilradical of the skew Hurwitz series ring

In this section, we characterize the upper nilradical Nil∗(HR,α) of the skew
Hurwitz series ring (HR,α) of a ring R using the upper nilradical Nil∗(R) of R.

Proposition 3.1. Let Nil∗(R) be an α-completely semiprime ideal of a ring R.
For a,b ∈ R we have the following.

(1) If ab ∈ Nil∗(R), then aαn(b),αn(a)b ∈ Nil∗(R) for any positive integer
n;

(2) If aαk(b) or αk(a)b ∈ Nil∗(R) for some positive integer k, then ab ∈
Nil∗(R).

Proof. Note that Nil∗(R) is completely semiprime, since R satisfies Nil∗(R) =
Nil(R) by Theorem 2.8.
(1) It is enough to show that aα(b)∈Nil∗(R) for ab∈Nil∗(R). If ab∈Nil∗(R),
then bα(a)α(bα(a)) = bα(ab)α2(a) ∈ Nil∗(R) by hypothesis. Since Nil∗(R)
is an α-completely semiprime ideal of R, we have bα(a) ∈ Nil∗(R). Then
α(a)b ∈ Nil∗(R), because Nil∗(R) is completely semiprime. Similarly, using
ba ∈ Nil∗(R), we obtain aα(b) ∈ Nil∗(R).
(2) Suppose that aαk(b) ∈ Nil∗(R) for some positive integer k. Then, by the
previous part, we obtain αk(ab) = αk(a)αk(b) ∈ Nil∗(R). Since Nil∗(R) is α-
invariant by Theorem 2.8 and Proposition 2.1(2), αk−1(ab) ∈ α−1(Nil∗(R)) =
Nil∗(R) and so αk−2(ab) ∈ α−1(Nil∗(R)) = Nil∗(R). Continuing this process,
we have ab ∈ Nil∗(R) by induction. Similarly, αk(a)b ∈ Nil∗(R) for some pos-
itive integer k implies ab ∈ Nil∗(R).
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Note that if Nil∗(R) is an α-completely semiprime ideal of a ring R, then
(H(Nil∗(R)),α) is an ideal of the skew Hurwitz series ring (HR,α) of R by
Proposition 3.1.

Theorem 3.2. Let Nil∗(R) be an α-completely semiprime ideal of a ring R and
char(R) = 0. Assume that f ,g ∈ (HR,α). Then the following are equivalent:

(1) f g ∈ (H(Nil∗(R)),α);
(2) f (i)g( j) ∈ Nil∗(R) for each i≥ 0 and j ≥ 0.

Proof. (1)⇒ (2) Assume that f g ∈ (H(Nil∗(R)),α), then

( f g)(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) ∈ Nil∗(R) for all n ∈ N.

We claim that f (i)g( j) ∈ Nil∗(R) for all i, j. We proceed by induction on i+ j.
Then we obtain ( f g)(0) = f (0)g(0) ∈ Nil∗(R) and so this proves for i+ j = 0.
Now suppose that our claim is true for i+ j ≤ n−1. We have

( f g)(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) ∈ Nil∗(R).

Multiplying f (0) from the right hand-side, we obtain f (0)g(n) f (0) ∈ Nil∗(R)
by Proposition 3.1. Since Nil∗(R) = Nil(R) by Theorem 2.8, f (0)g(n) ∈
Nil∗(R). Now we have

n

∑
k=1

(
n
k

)
f (k)αk(g(n− k)) ∈ Nil∗(R).

Multiplying α( f (1)) from the right hand-side, we obtain
(n

1

)
f (1)α(g(n−1)

f (1))∈Nil∗(R) and since char(R) = 0 , f (1)α(g(n−1) f (1))∈Nil∗(R). Hence
f (1)g(n− 1) ∈ Nil∗(R) by Proposition 3.1. Continuing this process, we can
prove f (i)g( j)∈Nil∗(R) for all i, j with i+ j = n. Therefore f (i)g( j)∈Nil∗(R)
for all i and j.
(2)⇒ (1) It follows directly from Proposition 3.1.

Corollary 3.3. If Nil∗(R) is an α-completely semiprime ideal of a ring R and
char(R) = 0. Then (H(Nil∗(R)),α) is a completely semiprime ideal of T =
(HR,α).

Proof. Let 0 6= f 2 ∈ (H(Nil∗(R)),α) where f ∈ T . Then ( f (n))2 ∈ Nil∗(R)
for all n by Theorem 3.2. Since Nil∗(R) = Nil(R) by Theorem 2.8, we have
f (n) ∈ Nil∗(R) for all n and so f ∈ (H(Nil∗(R)),α). Thus (H(Nil∗(R)),α) is a
completely semiprime ideal of T .
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Example 2.3 (1) shows that the condition “Nil∗(R) is an α-completely semi-
prime ideal of R” in Theorem 3.2 and Corollary 3.3 is not superfluous: indeed,

(1) (1,0)α(1,0) = (0,0)∈Nil∗(R), but (1,0) 6∈Nil∗(R). Thus Nil∗(R) is not
α-completely semiprime.

(2) For f = h′(1,0)+h′(1,0)h1 and g = h′(0,1)+h′(1,0)h1 ∈ (HR,α), we have f g =

0 ∈ (H(Nil∗(R)),α) but (1,0).(1,0) 6∈ Nil∗(R). Thus (H(Nil∗(R)),α)
does not satisfy the conclusion of Theorem 3.2 (2).

(3) (h′(1,0)h1)
2 = 0∈ (H(Nil∗(R)),α) but h′(1,0)h1 6∈ (H(Nil∗(R)),α) showing

that the conclusions in Corollary 3.3 does not hold for Nil∗(R).
(4) Moreover, (h′(1,0)h1)

2 = 0 ∈ (H(P),α) but h′(1,0)h1 6∈ (H(P),α) ; this il-
lustrates that not every completely semiprime ideal of a ring R can be
lifted to a completely semiprime ideal of the skew Hurwitz series ring
(HR,α) of R, in general. However, we have the following:

Lemma 3.4. If Nil∗(R) is an α-completely semiprime ideal of a ring R and
char(R) = 0. Then (H(P),α) is a completely prime ideal of T = (HR,α) for
each P ∈ mSpecs(R).

Proof. Note that P is an α-invariant ideal (as well as a completely prime ideal by
Lemma 2.6) for each P ∈ mSpecs(R) by Theorem 2.8. Let h = f g ∈ (H(P),α)
with g 6∈ (H(P),α), where f ,g ∈ T . Then

h(n) = ( f g)(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) ∈ P for all n ∈ N.

(1) If g(0) 6∈ P, then f (0)g(0) ∈ P implies f (0) ∈ P because P is completely
prime. Thus h(1) ∈ P implies f (1) ∈ P because P is α-invariant. By the
same method, h(2) ∈ P implies f (2) ∈ P. Continuing this process, we
have f (n) ∈ P for each n and hence f ∈ (H(P),α).

(2) If g(0),g(1), · · · ,g(n−1) ∈ P and g(n) 6∈ P, then we have

n−1

∑
k=0

f h′g(k)hk+1 ∈ (H(P),α).

Since g(n) 6∈ P, by the same method of the above (1), we have f ∈
(H(P),α).

(3) Continuing this process, f ∈ (H(P),α) and so (H(P),α) is a completely
prime ideal of T .

For the skew Hurwitz series ring T = (HR,α) of a ring R, if Nil∗(T ) is a com-
pletely semiprime ideal of T , i.e., Nil∗(T ) = Nil(T ), then Nil∗(R) = Nil(R):
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For, if a∈Nil(R), then h′a ∈Nil(T ) =Nil∗(T ). Thus 〈h′a〉 is a nil ideal of T gen-
erated by h′a and so 〈h′a〉

⋂
R′ is a nil ideal of R′ and hence 〈a〉

⋂
R is a nil ideal of

R. Since Nil∗(R) is the sum of all nil ideals of R, we have a ∈ 〈a〉
⋂

R⊆ Nil∗(R)
and so Nil(R) = Nil∗(R). Therefore R satisfies Nil∗(R) = Nil(R). But the con-
verse does not hold by the next example.

Example 3.5. Let F be a field and let V be an infinite dimensional left vec-
tor space over F with {v1,v2, · · ·} a basis. For the endomorphism ring A =
EndF(V ), define

I = { f ∈ A : rank( f )< ∞, f (vi) ∈∑
j<i

Fv j}.

Let R be the F-subalgebra of A generated by I and the identity 1A of A. Note
that I = Nil(R) = Nil∗(R), and so Nil∗(R) is a 1R-completely semiprime ideal
of R where 1R is the identity endomorphism of R. Moreover hI ⊆ HR since
every element in I is strongly nilpotent in HR, where hI and HR denote the
Hurwitz polynomial ring and the Hurwitz series ring over I and R, respectively.
Let f ,g ∈ HR are defined as follows:

f (n) = e(2n+1)(2n+2),g(n) = e(2n+2)(2n+3) for all n ∈ N.

where ei j is the infinite matrix unit over F with (i, j)-entry 1 and 0 elsewhere.
Then f ,g ∈ H(Nil∗(R)) and f 2 = 0 = g2. However, ( f + g)k(n) = ei(k+i), for
each k,n and so it is not nilpotent. Hence f 6∈ Nil∗(HR), or g 6∈ Nil∗(HR).
Therefore H(Nil∗(R))* Nil∗(HR).

We note that Example 3.5 also shows that

Nil∗(HR,α) 6= (H(Nil∗(R)),α).

even if Nil∗(R) is an α-completely semiprime ideal of R, in general. However,
we have the following:

Theorem 3.6. Let Nil∗(R) be an α-completely semiprime ideal of a ring R and
char(R) = 0. Then the following are equivalent:

(1) Nil∗(HR,α) is a completely semiprime ideal of T = (HR,α);
(2) (H(Nil∗(R)),α) = Nil∗(T ).

Proof. (1) ⇒ (2) Suppose that Nil∗(T ) is a completely semiprime ideal of
T = (HR,α). It is enough to show that (H(Nil∗(R)),α) ⊆ Nil∗(T ) by Lemma
3.4. Let f ∈ (H(Nil∗(R)),α). Since R satisfies Nil(R) = Nil∗(R) as a subring,
h′f (n) is a nilpotent element in T , and thus h′f (n) ∈ Nil(T ) = Nil∗(T ) for each n.
Then h′f (n)hn+1 ∈Nil∗(T ) and hence f ∈Nil∗(T ). Therefore (H(Nil∗(R)),α)⊆
Nil∗(T ).
(2)⇒ (1) It follows from Corollary 3.3.
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Observe that if R is an α-rigid ring and char(R) = 0, then (HR,α) is a
reduced ring by [[4], Proposition 2.8.] and thus Nil∗(HR,α) = {0}. Moreover,
we have the following consequence of Theorem 3.6.

Corollary 3.7. If R is an α-rigid ring, then Nil∗(HR,α) is a completely semi-
prime ideal of (HR,α) if and only if Nil∗(HR,α) = {0}.

The following example shows that the condition “Nil∗(R) is an α-comple-
tely semiprime ideal of R” in Theorem 3.6 is not superfluous.

Example 3.8. Consider the 2× 2 full matrix ring R = Mat2(F) over a field F

and the automorphism α of R is defined by α

((
a b
c d

))
=

(
a −b
−c d

)
in

Example 2.3 (2). Clearly Nil∗(R) =
(

0 0
0 0

)
is not α-completely semiprime,

and (H(Nil∗(R)),α) =

(
0 0
0 0

)
. We claim that Nil∗(HR,α) is not a completely

semiprime ideal of T = (HR,α), even though (H(Nil∗(R)),α) = Nil∗(T ).
First, we show that Nil∗(T ) = (H(Nil∗(R)),α). Assume on the contrary that

Nil∗(T ) 6=
(

0 0
0 0

)
. Let 0 6= f ∈Nil∗(T ), where ∏( f ) = s. Note that αs(R) = R

and R′h′f (s)R
′ = R′. Then R′ f R′ = R′h′f (s)R

′hs+1 + · · · , and so there exists g ∈

Nil∗(T ) with g(s) =
(

1 0
0 0

)
. But g is not a nilpotent; which is a contradiction.

Thus Nil∗(T ) =
(

0 0
0 0

)
= (H(Nil∗(R)),α). However, Nil(T ) 6= Nil∗(T ) since

h′Ah2 ∈ Nil(T ), where A =

(
0 1
0 0

)
. Thus Nil∗(T ) is not a completely semi-

prime ideal of T .
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