DIFFERENTIAL SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES OF \(p \)-VALENT FUNCTIONS INVOLVING A GENERALIZED DIFFERENTIAL OPERATOR

M. K. AOUF - R. M. EL-ASHWAH - A. M. ABD-ELTAWAB

In the present article, we obtain some applications of first order differential subordination, superordination and sandwich results for higher-order derivatives of \(p \)-valent functions involving a generalized differential operator. Some of our results improve and generalize previously known results.

1. Introduction

Let \(H(U) \) be the class of analytic functions in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) and let \(H[a,p] \) be the subclass of \(H(U) \) consisting of functions of the form:

\[
f(z) = a + apz^p + ap+1z^{p+1} \ldots \ (a \in \mathbb{C}; \ p \in \mathbb{N} = \{1, 2, \ldots \}).
\]

For simplicity \(H[a] = H[a, 1] \). Also, let \(A(p) \) be the subclass of \(H(U) \) consisting of functions of the form:

\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N}), \tag{1}
\]

\[\text{Entrato in redazione: 2 aprile 2013}
\]

\textit{AMS 2010 Subject Classification:} 30C45.

\textit{Keywords:} Analytic function, Hadamard product, Differential subordination, Superordination, Sandwich theorems, Linear operator.
which are \(p \)-valent in \(U \). We write \(A(1) = A \).

If \(f, g \in H(U) \), we say that \(f \) is subordinate to \(g \) or \(g \) is superordinate to \(f \), written \(f(z) \prec g(z) \) if there exists a Schwarz function \(w \), which (by definition) is analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) for all \(z \in U \), such that \(f(z) = g(w(z)) \), \(z \in U \). Furthermore, if the function \(g \) is univalent in \(U \), then we have the following equivalence, (cf., e.g., [12], [21] and [22]):

\[
f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(U) \subset g(U).
\]

Let \(\phi : \mathbb{C}^2 \times U \to \mathbb{C} \) and \(h \) be univalent function in \(U \). If \(\beta \) is analytic function in \(U \) and satisfies the first order differential subordination:

\[
\phi \left(\beta(z), z\beta'(z); z \right) \prec h(z), \quad (2)
\]

then \(\beta \) is a solution of the differential subordination (2). The univalent function \(q \) is called a dominant of the solutions of the differential subordination (2) if \(\beta(z) \prec q(z) \) for all \(\beta \) satisfying (2). A univalent dominant \(\tilde{q} \) that satisfies \(\tilde{q} \prec q \) for all dominants of (2) is called the best dominant. If \(\beta \) and \(\phi \) are univalent functions in \(U \) and if satisfies first order differential superordination:

\[
h(z) \prec \phi \left(\beta(z), z\beta'(z); z \right), \quad (3)
\]

then \(\beta \) is a solution of the differential superordination (3). An analytic function \(q \) is called a subordinant of the solutions of the differential superordination (3) if \(q(z) \prec \beta(z) \) for all \(\beta \) satisfying (3). A univalent subordinant \(\tilde{q} \) that satisfies \(q(z) \prec \tilde{q}(z) \) for all subordinants of (3) is called the best subordinant.

Using the results of Miller and Mocanu [22], Bulboaca [11] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [12]. Ali et al. [1], have used the results of Bulboaca [11] to obtain sufficient conditions for normalized analytic functions \(f \in A \) to satisfy:

\[
q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent functions in \(U \) with \(q_1(0) = q_2(0) = 1 \). Also, Tuneski [30] obtained a sufficient condition for starlikeness of \(f \in A \) in terms of the quantity \(\frac{f''(z)f(z)}{(f'(z))^2} \). Recently, Shanmugam et al. [28] obtained sufficient conditions for the normalized analytic function \(f \in A \) to satisfy

\[
q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)
\]
and
\[q_1(z) \prec \frac{z^2 f'(z)}{\{f(z)\}^2} \prec q_2(z). \]

For functions \(f \in A(p) \) given by (1) and \(g \in A(p) \) given by
\[g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k \quad (p \in \mathbb{N}), \tag{4} \]
the Hadamard product (or convolution) of \(f \) and \(g \) is given by
\[(f \ast g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g \ast f)(z). \tag{5} \]

Upon differentiating both sides of (5) \(j \)–times with respect to \(z \), we have
\[(f \ast g)^{(j)}(z) = \delta(p; j) z^{p-j} + \sum_{k=p+1}^{\infty} \delta(k; j) a_k b_k z^{k-j}, \tag{6} \]
where
\[\delta(p; j) = \frac{p!}{(p-j)!} \quad (p > j; p \in \mathbb{N}; j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \tag{7} \]

For functions \(f, g \in A(p) \), Aouf et al. [6] (see also [7]) define the linear operator
\[D_{\lambda, p}^n (f \ast g)^{(j)} : A(p) \to A(p) \]
by
\[D_{\lambda, p}^n (f \ast g)^{(j)}(z) = \delta(p; j) z^{p-j} + \sum_{k=p+1}^{\infty} \left(\frac{p-j+\lambda(k-p)}{p-j} \right)^n \delta(k; j) a_k b_k z^{k-j} \quad (\lambda \geq 0; p > j; p \in \mathbb{N}; j, n \in \mathbb{N}_0; z \in U). \tag{8} \]

From (8), we can easily deduce that
\[\frac{\lambda z}{p-j} \left(D_{\lambda, p}^n (f \ast g)^{(j)}(z) \right)' = D_{\lambda, p}^{n+1} (f \ast g)^{(j)}(z) - (1-\lambda) D_{\lambda, p}^n (f \ast g)^{(j)}(z) \quad (\lambda > 0; p > j; p \in \mathbb{N}; n, j \in \mathbb{N}_0; z \in U). \tag{9} \]

We observe that the linear operator \(D_{\lambda, p}^n (f \ast g)^{(j)}(z) \) reduces to several interesting many other linear operators considered earlier for different choices of \(j, n, \lambda \) and the function \(g \):
(i) For \(j = 0 \), \(D^n_{\lambda,p} (f \ast g)^{(j)} = D^n_{\lambda,p} (f \ast g) \), where the operator \(D^n_{\lambda,p} (f \ast g) \)
(\(\lambda \geq 0, p \in \mathbb{N}, n \in \mathbb{N}_0 \)) was introduced and studied by Selvaraj et al. [26] (see also [10]) and \(D^n_{\lambda,1} (f \ast g) (z) = D^n_{\lambda} (f \ast g) (z) \), where the operator \(D^n_{\lambda} (f \ast g) \)
was introduced by Aouf and Mostafa [9];

(ii) For
\[
g(z) = \frac{z^p}{1-z} \quad (p \in \mathbb{N}; z \in U)
\]
(10)
we have \(D^n_{\lambda,p} (f \ast g)^{(j)} (z) = D^n_{\lambda,p} f^{(j)} (z) \), \(D^n_{\lambda,p} f^{(0)} (z) = D^n_{\lambda,p} f (z) \), where the operator \(D^n_{\lambda,p} \) is the \(p \)-valent Al-Oboudi operator which was introduced by El-Ashwah and Aouf [17], \(D^n_{1,p} f^{(j)} (z) = D^n_{p} f^{(j)} (z) \), where the operator \(D^n_{p} f^{(j)} \)
\((p > j, p \in \mathbb{N}, n, j \in \mathbb{N}_0)\) was introduced and studied by Aouf [3,4] and \(D^n_{1,p} f^{(0)} \)
\(= D^n_{p} f \), where the operator \(D^n_{p} \) is the \(p \)-valent Salagean operator which was
introduced and studied by Kamali and Orhan [18] (see also [8]);

(iii) For
\[
g(z) = z^p + \sum_{k=p+1}^{\infty} \frac{(\alpha_1)_{k-p} \cdots (\alpha_q)_{k-p}}{(\beta_1)_{k-p} \cdots (\beta_s)_{k-p} (1)_{k-p}} \frac{z^k}{(z \in U)},
\]
(11)
(for complex parameters \(\alpha_1, \ldots, \alpha_q \) and \(\beta_1, \ldots, \beta_s \) \(\beta_j \notin \mathbb{Z}_0 = \{0, -1, -2, \ldots\} \),
\(j = 1, \ldots, s \); \(q \leq s + 1; p \in \mathbb{N}; q, s \in \mathbb{N}_0 \)) where \((v)_k\) is the Pochhammer symbol
defined in terms to the Gamma function \(\Gamma \), by
\[
(v)_k = \frac{\Gamma(v+k)}{\Gamma(v)} = \begin{cases}
1 & (k = 0), \\
\frac{v(v+1)(v+2)\ldots(v+k-1)}{(k \in \mathbb{N})} & (k \in \mathbb{N}).
\end{cases}
\]
we have \(D^n_{\lambda,p} (f \ast g)^{(j)} (z) = D^n_{\lambda,p} (H_{p,q,s}(\alpha_1) f)^{(j)} (z) \) and \(D^n_{\lambda,p} (f \ast g)^{(0)} (z) =
H_{p,q,s}(\alpha_1) f(z) \), where the operator \(H_{p,q,s}(\alpha_1) \) is the Dziok-Srivastava operator
which was introduced and studied by Dziok and Srivastava [15,16] and which contains in turn many interesting operators such as, \(H_{1,2,1}(a,1;c) = L(a,c) \),
where the operator \(L(a,c) \) was introduced by Carlson and Shaffer [13];

(iv) For
\[
g(z) = z^p + \sum_{k=p+1}^{\infty} \left(p+l + \alpha(k-p) \right)^m \frac{z^k}{p+l} \quad (\alpha \geq 0; l \geq 0; p \in \mathbb{N}; m \in \mathbb{N}_0; z \in U),
\]
(12)
we have \(D^n_{\lambda,p} (f \ast g)^{(j)} (z) = D^n_{\lambda,p} (I_p(m,\alpha,l) f)^{(j)} (z) \) and \(D^n_{\lambda,p} (f \ast g)^{(0)} (z) =
I_p(m,\alpha,l) f(z) \), where the operator \(I_p(m,\alpha,l) \) was introduced and studied by Cătăs [14] which contains in turn many interesting operators such as, \(I_p(m,1,l) = I_p(m,l) \), where the operator \(I_p(m,l) \) was investigated by Kumar et al. [19];
(v) For
\[g(z) = z^p + \frac{\Gamma(p + \alpha + \beta)}{\Gamma(p + \beta)} \sum_{k=p+1}^{\infty} \frac{\Gamma(k + \beta)}{\Gamma(k + \alpha + \beta)} z^k \]
(\(\alpha \geq 0; \; p \in \mathbb{N}; \; \beta > -1; z \in U \))

we have \(D_{\lambda,p}^n (f * g)^{(j)} = D_{\alpha \beta}^n (Q_{\alpha \beta}^\gamma f)^{(j)} \) and \(D_{\lambda,p}^0 (f * g)^{(0)} = Q_{\alpha \beta}^\gamma f \), where the operator \(Q_{\alpha \beta}^\gamma \) was introduced and studied by Liu and Owa [20];

(vi) For \(j = 0 \) and \(g \) of the form (11) with \(p = 1 \), we have \(D_{\lambda,1}^n (f * g)(z) = D_{\lambda}^n (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s)(z) \), where the operator \(D_{\lambda}^n (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s) \) was introduced and studied by Selvaraj and Karthikeyan [25];

(vii) For \(j = 0, p = 1 \) and
\[g(z) = z + \sum_{k=2}^{\infty} \left[\frac{\Gamma(k + 1) \Gamma(2 - m)}{\Gamma(k + 1 - m)} \right]^n z^k \]
(\(n \in \mathbb{N}_0; 0 \leq m < 1; z \in U \))

we have \(D_{\lambda,1}^n (f * g)(z) = D_{\lambda}^n (f)(z) \), where the operator \(D_{\lambda}^n \) was introduced and studied by Al-Oboudi and Al-Amoudi [2].

In this paper, we will derive several subordination, superordination and sandwich results involving the operator \(D_{\lambda,p}^n (f * g)^{(j)} \).

2. Definitions and preliminaries

In order to prove our subordinations and superordinations, we need the following definition and lemmas.

Definition 2.1 ([22]). Denote by \(Q \), the set of all functions \(f \) that are analytic and injective on \(\overline{U} \setminus E(f) \), where
\[E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \right\}, \]
and are such that \(f'(\zeta) \neq 0 \) for \(\zeta \in \partial U \setminus E(f) \).

Lemma 2.2 ([22]). Let \(q \) be univalent in \(U \) and \(\theta \) and \(\varphi \) be analytic in a domain \(D \) containing \(q(U) \) with \(\varphi(w) \neq 0 \) when \(w \in q(U) \). Set
\[\psi(z) = z q'(z) \varphi(q(z)) \quad \text{and} \quad h(z) = \theta(q(z)) + \psi(z). \]
(14)

Suppose that

(i) \(\psi(z) \) is starlike univalent in \(U \),
(ii) \(\Re \left\{ \frac{zh'(z)}{\psi(z)} \right\} > 0 \) for \(z \in U \).

If \(\beta \) is analytic with \(\beta(0) = q(0) \), \(\beta(U) \subset D \) and

\[
\theta \left(\beta(z) \right) + z\beta'(z) \phi \left(\beta(z) \right) \prec \theta \left(q(z) \right) + zq'(z) \phi \left(q(z) \right),
\]

then \(\beta(z) \prec q(z) \) and \(q \) is the best dominant.

Lemma 2.3 ([11]). Let \(q \) be convex univalent in \(U \) and \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(U) \). Suppose that

(i) \(\Re \left\{ \frac{\theta'(q(z))}{\phi(q(z))} \right\} > 0 \) for \(z \in U \),

(ii) \(\Psi(z) = zq'(z) \phi(q(z)) \) is starlike univalent in \(U \). If \(\beta(z) \in H[q(0), 1] \cap Q \), with \(\beta(U) \subset D \), and \(\theta \left(\beta(z) \right) + z\beta'(z) \phi \left(\beta(z) \right) \) is univalent in \(U \) and

\[
\theta \left(q(z) \right) + zq'(z) \phi \left(q(z) \right) \prec \theta \left(\beta(z) \right) + zp'(z) \phi \left(\beta(z) \right),
\]

then \(q(z) \prec \beta(z) \) and \(q \) is the best subordinant.

Lemma 2.4 ([24]). The function \(q(z) = (1 - z)^{-2ab} \) \((a, b \in \mathbb{C}^* (\mathbb{C} \setminus \{0\}))\) is univalent in \(U \) if and only if \(|2ab - 1| \leq 1 \) or \(|2ab + 1| \leq 1 \).

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that \(\eta, \gamma_i \in \mathbb{C} \) \((i = 1, 2, 3)\), \(\gamma_, \mu \in \mathbb{C}^* \), \(\lambda > 0 \), \(\delta(p; j) \) is given by (7), \(p > j, p \in \mathbb{N}, n, j \in \mathbb{N}_0 \) and the powers are understood as the principle values.

Theorem 3.1. Let \(q(z) \) be univalent in \(U \) with \(q(0) = 1 \), \(q(z) \neq 1 \) and let \(\frac{zq'(z)}{q(z)} \) be starlike in \(U \). Let \(f \in A(p) \) and assume that \(f \) and \(q \) satisfy the following conditions:

\[
\left[\frac{D^n_{\lambda, p} (f * g_1)(j)(z)}{\delta(p; j) z^{p-j}} \right] \left[\frac{\delta(p; j) z^{p-j}}{D^n_{\lambda, p} (f * g_2)(j)(z)} \right]^{\eta} \neq 0,
\]

and

\[
\Re \left\{ 1 + \frac{\gamma_2}{\gamma_4} q(z) + \frac{2\gamma_3}{\gamma_4} [q(z)]^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)} \right\} > 0 \ (z \in U). \]
If
\[
\gamma_1 + \gamma_2 \left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_1)^{(j)} (z)} \right]^{\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^\eta
\]
\[
+ \gamma_3 \left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{2\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{2\eta}
\]
\[
+ \gamma_4 \left(\frac{p - j}{\lambda} \right) \left[D_{\lambda,p}^{n+1} (f \ast g_1)^{(j)} (z) \right] \frac{D_{\lambda,p}^n (f \ast g_1)^{(j)} (z)}{D_{\lambda,p}^n (f \ast g_1)^{(j)} (z)} - 1
\]
\[
+ \gamma_4 \left(\frac{p - j}{\lambda} \right) \left[1 - D_{\lambda,p}^{n+1} (f \ast g_2)^{(j)} (z) \right] \frac{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)}
\]
\[
< \gamma_1 + \gamma_2 q(z) + \gamma_3 [q(z)]^2 + \gamma_4 \frac{zq'(z)}{q(z)},
\] (19)

then
\[
\left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^\eta < q(z)
\] (20)

and \(q(z)\) is the best dominant.

Proof. Define a function \(\rho\) by
\[
\rho (z) = \left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^\eta (z \in U).
\] (21)

Then the function \(\rho\) is analytic in \(U\) and \(\rho(0) = 1\). Therefore, differentiating (21) logarithmically with respect to \(z\) and using the identity (9) in the resulting equation, we have
\[
\gamma_1 + \gamma_2 \left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^\eta
\]
\[
+ \gamma_3 \left[D_{\lambda,p}^n (f \ast g_1)^{(j)} (z) \right] \frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{2\mu} \left[\frac{\delta (p; j) z^{p-j}}{D_{\lambda,p}^n (f \ast g_2)^{(j)} (z)} \right]^{2\eta}
\]
Let \(q \in A \) be univalent in \(U \) with \(q(0) = 1 \), \(q(z) \neq 1 \) and \(\frac{zq'(z)}{q(z)} \) is starlike in \(U \). Let \(f \in A(\lambda) \) such that

\[
\left[\frac{L(a, c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a + 1, c) f(z)} \right]^\eta \neq 0,
\]

(22)
and suppose \(q \) satisfies (18). If

\[
\gamma_1 + \gamma_2 \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^\eta \\
+ \gamma_3 \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\
+ \gamma_4 \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_4 \eta (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right]
\]

\[
< \gamma_1 + \gamma_2 q(z) + \gamma_3 [q(z)]^2 + \gamma_4 \frac{z q'(z)}{q(z)}
\]

then

\[
\left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^\eta < q(z)
\]

and \(q(z) \) is the best dominant.

Putting \(q(z) = \frac{1+A z}{1+B z} (-1 < B < A < 1) \) in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.2].

Corollary 3.3. Let \(-1 < B < A < 1\) and assume that

\[
\Re \left\{ \frac{\gamma_2}{\gamma_4} \left[1 + A z \right] + \frac{2 \gamma_3}{\gamma_4} \left[1 + A z \right]^2 + \frac{1 - A B z^2}{(1 + A z)(1 + B z)} \right\} > 0 \quad (z \in U),
\]

holds. If \(f \in \mathcal{A} \) such that (22) holds and satisfy the following subordination condition:

\[
\gamma_1 + \gamma_2 \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^\eta \\
+ \gamma_3 \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\
+ \gamma_4 \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_4 \eta (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right]
\]

\[
< \gamma_1 + \gamma_2 \left[\frac{1 + A z}{1 + B z} \right] + \gamma_3 \left[\frac{1 + A z}{1 + B z} \right]^2 + \frac{\gamma_4 (A - B) z}{(1 + A z)(1 + B z)},
\]

then

\[
\left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^\eta < \frac{1 + A z}{1 + B z}
\]

and the function \(\frac{1 + A z}{1 + B z} \) is the best dominant.
Putting \(q(z) = \left(\frac{1 + z}{1 - z} \right)^{\arg} (0 < \arg \leq 1) \) in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.3].

Corollary 3.4. Assume that

\[
\Re \left\{ \gamma_2 \left(\frac{1 + z}{1 - z} \right)^{\arg} + \frac{2\gamma_3}{\gamma_4} \left(\frac{1 + z}{1 - z} \right)^{2\arg} + \frac{1 - 3z^2}{1 - z^2} \right\} > 0 \quad (z \in U),
\]

holds. If \(f \in A \) such that (22) holds and satisfy the following subordination condition:

\[
\gamma_1 + \gamma_2 \left[\frac{L(a, c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{\eta} + \gamma_3 \left[\frac{L(a, c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{2\eta} + \gamma_4 \left[\frac{L(a + 1, c) f(z)}{L(a, c) f(z)} - 1 \right] + \gamma_4 \eta (a + 1) \left[1 - \frac{L(a + 2, c) f(z)}{L(a + 1, c) f(z)} \right]
\]

\[
\approx \gamma_1 + \gamma_2 \left(\frac{1 + z}{1 - z} \right)^{\arg} + \gamma_3 \left(\frac{1 + z}{1 - z} \right)^{2\arg} + \frac{2\gamma_4 \vartheta z}{(1 - z)^2},
\]

then

\[
\left[\frac{L(a, c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{\eta} \prec \left(\frac{1 + z}{1 - z} \right)^{\arg}
\]

and the function \(\left(\frac{1 + z}{1 - z} \right)^{\arg} \) is the best dominant.

Putting \(q(z) = e^{\mu Az} (|\mu A| < \pi) \) in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.4].

Corollary 3.5. Assume that

\[
\Re \left\{ 1 + \frac{\gamma_2}{\gamma_4} e^{\mu Az} + \frac{2\gamma_3}{\gamma_4} e^{2\mu Az} \right\} > 0 \quad (z \in U),
\]

holds. If \(f \in A \) such that (22) holds and satisfy the following subordination condition:

\[
\gamma_1 + \gamma_2 \left[\frac{L(a, c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{\eta} + \gamma_3 \left[\frac{L(a, c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{2\eta} + \gamma_4 \left[\frac{L(a + 1, c) f(z)}{L(a, c) f(z)} - 1 \right] + \gamma_4 \eta (a + 1) \left[1 - \frac{L(a + 2, c) f(z)}{L(a + 1, c) f(z)} \right]
\]

\[
\approx \gamma_1 + \gamma_2 e^{\mu Az} + \gamma_3 e^{2\mu Az} + \gamma_4 \mu Az,
\]
\[
\left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^\eta \prec e^{\mu A z}
\]

and the function \(e^{\mu A z} \) is the best dominant.

Taking \(\gamma_1 = p = \lambda = 1, \gamma_2 = \gamma_3 = n = j = \eta = 0, g_1 = z + \sum_{k=2}^{\infty} z^k \), \(q(z) = \frac{1}{(1-z)^{2ab}} (a,b \in \mathbb{C}^*) \), \(\mu = a \) and \(\gamma_4 = \frac{1}{ab} \) in Theorem 3.1, then combining this to gather with Lemma 2.4 we obtain the following corollary obtained by Obradović et al. [23, Theorem 1].

Corollary 3.6. Let \(a, b \in \mathbb{C}^* \) such that \(|2ab - 1| \leq 1 \) or \(|2ab + 1| \leq 1 \). Let \(f \in \mathcal{A} \) and suppose that \(\frac{f(z)}{z} \neq 0 \) (\(z \in U \)). If

\[
1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z}
\]

then

\[
\left(\frac{f(z)}{z} \right)^a \prec \frac{1}{(1-z)^{2ab}}
\]

and the function \(\frac{1}{(1-z)^{2ab}} \) is the best dominant.

Remark 3.7. For \(a = 1 \), Corollary 3.6 reduces to the recent result obtained by Srivastava and Lashin [29, Theorem 3].

Taking \(\gamma_1 = p = \lambda = 1, \gamma_2 = \gamma_3 = n = j = \eta = 0, g_1 = z + \sum_{k=2}^{\infty} z^k \), \(q(z) = (1-z)^{-2ab \cos \tau e^{-i\tau}} (a,b \in \mathbb{C}^*, |\tau| < \frac{\pi}{2}) \), \(\mu = a \) and \(\gamma_4 = \frac{e^{i\tau}}{ab \cos \tau} \) in Theorem 3.1, then combining this to gather with Lemma 2.4 we obtain the following corollary obtained by Aouf et al. [5, Theorem 1].

Corollary 3.8. Let \(a, b \in \mathbb{C}^*, |\tau| < \frac{\pi}{2} \) and suppose that \(|2ab \cos \tau e^{-i\tau} - 1| \leq 1 \) or \(|2ab \cos \tau e^{-i\tau} + 1| \leq 1 \). Let \(f \in \mathcal{A} \) and suppose that \(\frac{f(z)}{z} \neq 0 \) (\(z \in U \)). If

\[
1 + \frac{e^{i\tau}}{b \cos \tau} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z}
\]

then

\[
\left(\frac{f(z)}{z} \right)^a \prec (1-z)^{-2ab \cos \tau e^{-i\tau}}
\]

and the function \((1-z)^{-2ab \cos \tau e^{-i\tau}} \) is the best dominant.
Theorem 3.9. Let \(q \) be convex univalent in \(U \) with \(q(0) = 1 \) and \(\frac{zq'(z)}{q(z)} \) is starlike in \(U \). Further assume that

\[
\Re \left((\gamma_2 + 2\gamma_3 q(z)) \frac{q(z)q'(z)}{\gamma_4} \right) > 0.
\]

Let \(f \in A(p) \) such that

\[
0 \neq \left[\frac{D^n_{\lambda,p} (f*g_1)(j)(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]^{\eta} \in H[q(0), 1] \cap Q.
\]

If

\[
\gamma_1 + \gamma_2 \left[\frac{D^n_{\lambda,p} (f*g_1)(j)(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]^{\eta} \\
+ \gamma_3 \left[\frac{D^n_{\lambda,p} (f*g_1)(j)(z)}{\delta(p;j)z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j)z^{p-j}}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]^{2\eta} \\
+ \gamma_4 \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D^{n+1}_{\lambda,p} (f*g_1)(j)(z)}{D^n_{\lambda,p} (f*g_1)(j)(z)} - 1 \right] \\
+ \gamma_4 \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D^{n+1}_{\lambda,p} (f*g_2)(j)(z)}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]
\]

is univalent in \(U \) and satisfies the following superordination condition

\[
\gamma_1 + \gamma_2 q(z) + \gamma_3 [q(z)]^2 + \gamma_4 \frac{zq'(z)}{q(z)} < \gamma_1 + \gamma_2 \left[\frac{D^n_{\lambda,p} (f*g_1)(j)(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]^{\eta} \\
+ \gamma_3 \left[\frac{D^n_{\lambda,p} (f*g_1)(j)(z)}{\delta(p;j)z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j)z^{p-j}}{D^n_{\lambda,p} (f*g_2)(j)(z)} \right]^{2\eta} \\
+ \gamma_4 \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D^{n+1}_{\lambda,p} (f*g_1)(j)(z)}{D^n_{\lambda,p} (f*g_1)(j)(z)} - 1 \right]
\]
If starlike in U

Corollary 3.10. Let q be convex univalent in U with $q(0) = 1$ and q' / q is starlike in U. Further assume that (23) holds. Let $f \in A(p)$ such that

$$
0 \neq \left[\frac{L(a, c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a + 1, c) f(z)} \right]^\eta \in H[q(0), 1] \cap Q.
$$

If

$$
\begin{align*}
\gamma_1 + \gamma_2 & \left[\frac{L(a, c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a + 1, c) f(z)} \right]^\eta \\
+ \gamma_3 & \left[\frac{L(a, c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a + 1, c) f(z)} \right]^{2\eta} \\
+ \gamma_4 & \mu \alpha \left[\frac{L(a + 1, c) f(z)}{L(a, c) f(z)} - 1 \right] + \gamma_4 \eta (a + 1) \left[1 - \frac{L(a + 2, c) f(z)}{L(a + 1, c) f(z)} \right]
\end{align*}
$$

holds, then

$$
q(z) \prec \left[\frac{D^n_{\lambda, p} (f \ast g_1)^{(j)} (z)}{D^n_{\lambda, p} (f \ast g_2)^{(j)} (z)} \right]^{\mu} \left[\frac{\delta(p; j) z^{p-j}}{D^n_{\lambda, p} (f \ast g_2)^{(j)} (z)} \right]^{\eta}
$$

and q is the best subordinant.

Proof. By setting

$$
\theta(w) = \gamma_1 + \gamma_2 w + \gamma_3 w^2 \text{ and } \varphi(w) = \frac{\gamma_4}{w},
$$

it can be easily observed that θ is analytic function in \mathbb{C}, φ is analytic function in \mathbb{C}^* and $\varphi(w) \neq 0$. From the assumption of Theorem 3.9, we see that

$$
\Re \left\{ \frac{\theta'(q(z))}{\varphi(q(z))} \right\} = \Re \left(\frac{\gamma_2 + 2\gamma_3 q(z)}{\gamma_4} \frac{q(z) q'(z)}{q(z)} \right) > 0 \text{ for } z \in U,
$$

Therefore, Theorem 3.9 now follows by applying Lemma 2.3. \hfill \Box

Taking $p = \lambda = 1$, $n = j = 0$, $g_1 = z + \sum_{k=2}^{\infty} \frac{(a)_k - 1}{(c)_{k-1}} z^k$, $g_2 = z + \sum_{k=2}^{\infty} \frac{(a+1)_k - 1}{(c)_{k-1}} z^k$, and $c \notin \mathbb{Z}_0$ in Theorem 3.9, we obtain the following corollary which improves the result of Shanmugam et al. [27, Theorem 3.11].
is univalent in U and satisfies the following superordination condition

$$
\gamma_1 + \gamma_2 q(z) + \gamma_3 [q(z)]^2 + \gamma_4 \frac{zq^\prime(z)}{q(z)} < \gamma_1 + \gamma_2 \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} + \gamma_3 \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} + \gamma_4 \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_4 \eta (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right],
$$

holds, then

$$q(z) < \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta}$$

and q is the best subordinant.

Combining Theorems 3.1 and 3.9, we get the following sandwich theorem for the linear operator $D^n_{\lambda,p} (f * g)^{(j)}$.

Theorem 3.11. Let q_i be convex univalent in U with $q_i(0) = 1$ and let $\frac{zq_i^\prime(z)}{q_i(z)}$ ($i = 1, 2$) be starlike in U. Suppose that q_1 satisfies (23) and q_2 satisfies (18). Let $f \in A(p)$ such that

$$0 \neq \left[\frac{D^n_{\lambda,p} (f * g_1)^{(j)} (z)}{\delta(p;j) z^{p-j}} \right]^\mu \left[\frac{\delta(p;j) z^{p-j}}{D^n_{\lambda,p} (f * g_2)^{(j)} (z)} \right]^{\eta} \in H[q(0), 1] \cap Q. \quad (28)$$

If

$$
\gamma_1 + \gamma_2 \left[\frac{D^n_{\lambda,p} (f * g_1)^{(j)} (z)}{\delta(p;j) z^{p-j}} \right]^\mu \left[\frac{\delta(p;j) z^{p-j}}{D^n_{\lambda,p} (f * g_2)^{(j)} (z)} \right]^{\eta} + \gamma_3 \left[\frac{D^n_{\lambda,p} (f * g_1)^{(j)} (z)}{\delta(p;j) z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j) z^{p-j}}{D^n_{\lambda,p} (f * g_2)^{(j)} (z)} \right]^{2\eta} + \gamma_4 \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D^{n+1}_{\lambda,p} (f * g_1)^{(j)} (z)}{D^n_{\lambda,p} (f * g_1)^{(j)} (z)} - 1 \right] + \gamma_4 \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D^{n+1}_{\lambda,p} (f * g_2)^{(j)} (z)}{D^n_{\lambda,p} (f * g_2)^{(j)} (z)} \right],
$$

(29)
is univalent in U and

$$
\gamma_1 + \gamma_2 q_1(z) + \gamma_3 [q_1(z)]^2 + \gamma_4 \frac{z q_1'(z)}{q_1(z)} < \gamma_1 + \gamma_2 \left[\frac{D_{\lambda,p}^n(f \ast g_1)^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^n(f \ast g_2)^{(j)}(z)} \right]^{\eta} \\
+ \gamma_3 \left[\frac{D_{\lambda,p}^n(f \ast g_1)^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^n(f \ast g_2)^{(j)}(z)} \right]^{2\eta} \\
+ \gamma_4 \left(\frac{p-j}{\lambda} \right) \left[\frac{D_{\lambda,p}^{n+1}(f \ast g_1)^{(j)}(z)}{D_{\lambda,p}^n(f \ast g_1)^{(j)}(z)} - 1 \right] \\
+ \gamma_4 \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D_{\lambda,p}^{n+1}(f \ast g_2)^{(j)}(z)}{D_{\lambda,p}^n(f \ast g_2)^{(j)}(z)} \right] \\
< \gamma_1 + \gamma_2 q_2(z) + \gamma_3 [q_2(z)]^2 + \gamma_4 \frac{z q_2'(z)}{q_2(z)}
$$

(30)

holds, then

$$
q_1(z) < \left[\frac{D_{\lambda,p}^n(f \ast g_1)^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^n(f \ast g_2)^{(j)}(z)} \right]^{\eta} < q_2(z)
$$

(31)

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

Taking $p = \lambda = 1$, $n = j = 0$, $g_1 = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k$, $g_2 = z + \sum_{k=2}^{\infty} \frac{(a+1)_{k-1}}{(c)_{k-1}} z^k$, and $c \notin \mathbb{Z}_0^-$ in Theorem 3.11, we obtain the following corollary which improves the result of Shanmugam et al. [27, Theorem 3.12].

Corollary 3.12. Let q_i be convex univalent in U with $q_i(0) = 1$ and $\frac{z q_i'(z)}{q_i(z)}$ be starlike in U for $i = 1, 2$. Suppose that q_1 satisfies (23) and q_2 satisfies (18). Let $f \in \mathcal{A}(p)$ such that

$$
0 \neq \left[\frac{L(a,c)f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)} \right]^{\eta} \in H[q(0), 1] \cap Q.
$$
If
\[
\gamma_1 + \gamma_2 \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta_1} + \gamma_3 \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta_1} + \gamma_4 \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_4 (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right]
\]
is univalent in \(U \) and
\[
\gamma_1 + \gamma_2 q_1(z) + \gamma_3 [q_1(z)]^2 + \gamma_4 \frac{z q_1'(z)}{q_1(z)},
\]
holds, then
\[
q_1(z) \prec \left[\frac{L(a,c) f(z)}{z} \right]^\mu \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta_1} \prec q_2(z)
\]
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and the best dominant.

REFERENCES

MOHAMED K. AOUF
Department of Mathematics
Faculty of Science, Mansoura University,
Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

RABHA M. EL-ASHWAH
Department of Mathematics
Faculty of Science, Damietta University,
New Damietta 34517, Egypt
e-mail: r_elashwah@yahoo.com

AHMED M. ABD-ELTAWAB
Department of Mathematics
Faculty of Science, Fayoum University,
Fayoum 63514, Egypt
e-mail: ams03@fayoum.edu.eg