doi: 10.4418/2014.69.1.16

DIFFERENTIAL SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES OF *p*-VALENT FUNCTIONS INVOLVING A GENERALIZED DIFFERENTIAL OPERATOR

M. K. AOUF - R. M. EL-ASHWAH - A. M. ABD-ELTAWAB

In the present article, we obtain some applications of first order differential subordination, superordination and sandwich results for higher-order derivatives of *p*-valent functions involving a generalized differential operator. Some of our results improve and generalize previously known results.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disk $U=\{z\in\mathbb{C}:|z|<1\}$ and let H[a,p] be the subclass of H(U) consisting of functions of the form:

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} \dots (a \in \mathbb{C}; p \in \mathbb{N} = \{1, 2, \dots\}).$$

For simplicity H[a] = H[a, 1]. Also, let $\mathcal{A}(p)$ be the subclass of H(U) consisting of functions of the form:

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N}),$$
(1)

Entrato in redazione: 2 aprile 2013 *AMS 2010 Subject Classification:* 30C45.

Keywords: Analytic function, Hadamard product, Differential subordination, Superordination, Sandwich theorems, Linear operator.

which are p-valent in U. We write $\mathcal{A}(1) = \mathcal{A}$.

If $f, g \in H(U)$, we say that f is subordinate to g or g is superordinate to f, written $f(z) \prec g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that $f(z) = g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence, (cf., e.g.,[12], [21] and [22]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Let $\phi: \mathbb{C}^2 \times U \to \mathbb{C}$ and h be univalent function in U. If β is analytic function in U and satisfies the first order differential subordination:

$$\phi\left(\beta(z), z\beta'(z); z\right) \prec h(z), \qquad (2)$$

then β is a solution of the differential subordination (2). The univalent function q is called a dominant of the solutions of the differential subordination (2) if $\beta(z) \prec q(z)$ for all β satisfying (2). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (2) is called the best dominant. If β and ϕ are univalent functions in U and if satisfies first order differential superordination:

$$h(z) \prec \phi\left(\beta(z), z\beta'(z); z\right),$$
 (3)

then β is a solution of the differential superordination (3). An analytic function q is called a subordinant of the solutions of the differential superordination (3) if $q(z) \prec \beta(z)$ for all β satisfying (3). A univalent subordinant \tilde{q} that satisfies $q(z) \prec \tilde{q}(z)$ for all subordinants of (3) is called the best subordinant.

Using the results of Miller and Mocanu [22], Bulboaca [11] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [12]. Ali et al. [1], have used the results of Bulboaca [11] to obtain sufficient conditions for normalized analytic functions $f \in \mathcal{A}$ to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Also, Tuneski [30] obtained a sufficient condition for starlikeness of $f \in \mathcal{A}$ in terms of the quantity $\frac{f''(z)f(z)}{(f'(z))^2}$. Recently, Shanmugam et al. [28] obtained sufficient conditions for the normalized analytic function $f \in \mathcal{A}$ to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)$$

and

$$q_1(z) \prec \frac{z^2 f'(z)}{\{f(z)\}^2} \prec q_2(z).$$

For functions $f \in \mathcal{A}(p)$ given by (1) and $g \in \mathcal{A}(p)$ given by

$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k \quad (p \in \mathbb{N}),$$
(4)

the Hadamard product (or convolution) of f and g is given by

$$(f * g)(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k} = (g * f)(z).$$
 (5)

Upon differentiating both sides of (5) j-times with respect to z, we have

$$(f * g)^{(j)}(z) = \delta(p; j) z^{p-j} + \sum_{k=p+1}^{\infty} \delta(k; j) a_k b_k z^{k-j},$$
 (6)

where

$$\delta(p;j) = \frac{p!}{(p-j)!} \ (p > j; p \in \mathbb{N}; j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \tag{7}$$

For functions $f,g\in\mathcal{A}\left(p\right)$, Aouf et al. [6] (see also [7]) define the linear operator $D^n_{\lambda,p}(f*g)^{(j)}:\mathcal{A}\left(p\right)\to\mathcal{A}\left(p\right)$ by

$$D_{\lambda,p}^{n}(f * g)^{(j)}(z) = \delta(p;j)z^{p-j} + \sum_{k=p+1}^{\infty} \left(\frac{p-j+\lambda(k-p)}{p-j}\right)^{n} \delta(k;j)a_{k}b_{k}z^{k-j}$$

$$(\lambda \ge 0; p > j; p \in \mathbb{N}; j, n \in \mathbb{N}_{0}; z \in U).$$
 (8)

From (8), we can easily deduce that

$$\frac{\lambda z}{p-j} \left(D_{\lambda,p}^{n} (f * g)^{(j)}(z) \right)' = D_{\lambda,p}^{n+1} (f * g)^{(j)}(z) - (1-\lambda) D_{\lambda,p}^{n} (f * g)^{(j)}(z)
(\lambda > 0; p > j; p \in \mathbb{N}; n, j \in \mathbb{N}_{0}; z \in U).$$
(9)

We observe that the linear operator $D_{\lambda,p}^n(f*g)^{(j)}(z)$ reduces to several interesting many other linear operators considered earlier for different choices of j,n,λ and the function g:

(i) For j = 0, $D_{\lambda,p}^n(f * g)^{(j)} = D_{\lambda,p}^n(f * g)$, where the operator $D_{\lambda,p}^n(f * g)$ ($\lambda \ge 0$, $p \in \mathbb{N}, n \in \mathbb{N}_0$) was introduced and studied by Selvaraj et al. [26] (see also [10]) and $D_{\lambda,1}^n(f * g)(z) = D_{\lambda}^n(f * g)(z)$, where the operator $D_{\lambda}^n(f * g)$ was introduced by Aouf and Mostafa [9];

(ii) For

$$g(z) = \frac{z^p}{1 - z} \ (p \in \mathbb{N}; z \in U)$$
 (10)

we have $D_{\lambda,p}^n(f*g)^{(j)}(z)=D_{\lambda,p}^nf^{(j)}(z),\ D_{\lambda,p}^nf^{(0)}(z)=D_{\lambda,p}^nf(z),$ where the operator $D_{\lambda,p}^n$ is the p-valent Al-Oboudi operator which was introduced by El-Ashwah and Aouf [17], $D_{1,p}^nf^{(j)}(z)=D_p^nf^{(j)}(z),$ where the operator $D_p^nf^{(j)}(z)=D_p^nf^{(j)}(z),$ where $D_p^nf^{(j)}(z)=D_p^nf^{(j)}(z)$ is the $D_p^nf^{(j)}(z)=D_p^nf^{(j)}(z)$.

(iii) For

$$g(z) = z^{p} + \sum_{k=p+1}^{\infty} \frac{(\alpha_{1})_{k-p} \dots (\alpha_{q})_{k-p}}{(\beta_{1})_{k-p} \dots (\beta_{s})_{k-p}} \frac{z^{k}}{(1)_{k-p}} \qquad (z \in U),$$
(11)

(for complex parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s ($\beta_j \notin \mathbb{Z}_0^- = \{0, -1, -2, \ldots\}$, $j = 1, \ldots, s$); $q \le s + 1$; $p \in \mathbb{N}$; $q, s \in \mathbb{N}_0$) where $(v)_k$ is the Pochhammer symbol defined in terms to the Gamma function Γ , by

$$(\mathbf{v})_k = \frac{\Gamma(\mathbf{v}+k)}{\Gamma(\mathbf{v})} = \begin{cases} 1 & (k=0), \\ \mathbf{v}(\mathbf{v}+1)(\mathbf{v}+2)\dots(\mathbf{v}+k-1) & (k\in\mathbb{N}). \end{cases}$$

we have $D_{\lambda,p}^n(f*g)^{(j)}(z) = D_{\lambda,p}^n(H_{p,q,s}(\alpha_1)f)^{(j)}(z)$ and $D_{\lambda,p}^0(f*g)^{(0)}(z) = H_{p,q,s}(\alpha_1)f(z)$, where the operator $H_{p,q,s}(\alpha_1)$ is the Dziok-Srivastava operator which was introduced and studied by Dziok and Srivastava [15,16] and which contains in turn many interesting operators such as, $H_{1,2,1}(a,1;c) = L(a,c)$, where the operator L(a,c) was introduced by Carlson and Shaffer [13];

(iv) For

$$g(z) = z^p + \sum_{k=p+1}^{\infty} \left(\frac{p+l+\alpha(k-p)}{p+l}\right)^m z^k$$
 (12)

$$(\alpha \geq 0; l \geq 0; p \in \mathbb{N}; m \in \mathbb{N}_0; z \in U),$$

we have $D_{\lambda,p}^n(f*g)^{(j)}(z) = D_{\lambda,p}^n(I_p(m,\alpha,l)f)^{(j)}(z)$ and $D_{\lambda,p}^0(f*g)^{(0)}(z) = I_p(m,\alpha,l)f(z)$, where the operator $I_p(m,\alpha,l)$ was introduced and studied by Cătas [14] which contains in turn many interesting operators such as, $I_p(m,1,l) = I_p(m,l)$, where the operator $I_p(m,l)$ was investigated by Kumar et al. [19];

(v) For

$$g(z) = z^{p} + \frac{\Gamma(p + \alpha + \beta)}{\Gamma(p + \beta)} \sum_{k=p+1}^{\infty} \frac{\Gamma(k + \beta)}{\Gamma(k + \alpha + \beta)} z^{k}$$
(13)

$$(\alpha \geq 0; p \in \mathbb{N}; \beta > -1; z \in U)$$

we have $D^n_{\lambda,p}(f*g)^{(j)}=D^n_{\lambda,p}\left(Q^\alpha_{\beta,p}f\right)^{(j)}$ and $D^0_{\lambda,p}(f*g)^{(0)}=Q^\alpha_{\beta,p}f$, where the operator $Q^\alpha_{\beta,p}$ was introduced and studied by Liu and Owa [20];

(vi) For j=0 and g of the form (11) with p=1, we have $D_{\lambda,1}^n(f*g)(z)=D_{\lambda}^n(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)(z)$, where the operator $D_{\lambda}^n(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)$ was introduced and studied by Selvaraj and Karthikeyan [25];

(**vii**) For j = 0, p = 1 and

$$g(z) = z + \sum_{k=2}^{\infty} \left[\frac{\Gamma(k+1)\Gamma(2-m)}{\Gamma(k+1-m)} \right]^{n} z^{k}$$
$$(n \in \mathbb{N}_{0}; 0 \le m < 1; z \in U)$$

we have $D_{\lambda,1}^n(f*g)(z) = D_{\lambda}^{n,m}f(z)$, where the operator $D_{\lambda}^{n,m}$ was introduced and studied by Al-Oboudi and Al-Amoudi [2].

In this paper, we will derive several subordination, superordination and sandwich results involving the operator $D_{\lambda,p}^n(f*g)^{(j)}$.

2. Definitions and preliminaries

In order to prove our subordinations and superordinations, we need the following definition and lemmas.

Definition 2.1 ([22]). Denote by Q, the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \right\},\,$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 2.2 ([22]). Let q be univalent in U and θ and φ be analytic in a domain D containing q(U) with $\varphi(w) \neq 0$ when $w \in q(U)$. Set

$$\psi(z) = zq'(z) \varphi(q(z))$$
 and $h(z) = \theta(q(z)) + \psi(z)$. (14)

Suppose that

(i) $\psi(z)$ is starlike univalent in U,

(ii)
$$\Re\left\{\frac{zh'(z)}{\psi(z)}\right\} > 0$$
 for $z \in U$.

If β is analytic with $\beta(0) = q(0)$, $\beta(U) \subset D$ and

$$\theta\left(\beta\left(z\right)\right) + z\beta'\left(z\right)\varphi\left(\beta\left(z\right)\right) \prec \theta\left(q\left(z\right)\right) + zq'\left(z\right)\varphi\left(q\left(z\right)\right),\tag{15}$$

then $\beta(z) \prec q(z)$ and q is the best dominant.

Lemma 2.3 ([11]). Let q be convex univalent in U and θ and ϕ be analytic in a domain D containing q(U). Suppose that (i) $\Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0$ for $z \in U$, (ii) $\Psi(z) = zq'(z) \phi(q(z))$ is starlike univalent in U. If $\beta(z) \in H[q(0), 1] \cap Q$, with $\beta(U) \subseteq D$, and $\theta(\beta(z)) + z\beta'(z) \phi(\beta(z))$ is univalent in U and

$$\theta\left(q\left(z\right)\right)+zq'\left(z\right)\phi\left(q\left(z\right)\right)\prec\theta\left(\beta\left(z\right)\right)+zp'\left(z\right)\phi\left(\beta\left(z\right)\right),\tag{16}$$

then $q(z) \prec \beta(z)$ and q is the best subordinant.

Lemma 2.4 ([24]). The function $q(z) = (1-z)^{-2ab}$ $(a,b \in \mathbb{C}^*(\mathbb{C} \setminus \{0\}))$ is univalent in U if and only if $|2ab-1| \le 1$ or $|2ab+1| \le 1$.

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that η , $\gamma_i \in \mathbb{C}$ (i = 1, 2, 3), γ_4 , $\mu \in \mathbb{C}^*$, $\lambda > 0$, $\delta(p; j)$ is given by (7), p > j, $p \in \mathbb{N}$, $n, j \in \mathbb{N}_0$ and the powers are understood as the principle values.

Theorem 3.1. Let q(z) be univalent in U with q(0) = 1, $q(z) \neq 1$ and let $\frac{zq'(z)}{q(z)}$ be starlike in U. Let $f \in \mathcal{A}(p)$ and assume that f and q satisfy the following conditions:

$$\left[\frac{D_{\lambda,p}^{n}(f*g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}}\right]^{\mu}\left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n}(f*g_{2})^{(j)}(z)}\right]^{\eta} \neq 0,$$
(17)

and

$$\Re\left\{1 + \frac{\gamma_{2}}{\gamma_{4}}q(z) + \frac{2\gamma_{3}}{\gamma_{4}}\left[q(z)\right]^{2} - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0 \quad (z \in U). \tag{18}$$

If

$$\gamma_{1} + \gamma_{2} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\gamma_{1}} \\
+ \gamma_{3} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{2\eta} \\
+ \gamma_{4} \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D_{\lambda,p}^{n+1} (f * g_{1})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)} - 1 \right] \\
+ \gamma_{4} \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D_{\lambda,p}^{n+1} (f * g_{2})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right] \\
\times \gamma_{1} + \gamma_{2} q(z) + \gamma_{3} [q(z)]^{2} + \gamma_{4} \frac{zq'(z)}{q(z)}, \tag{19}$$

then

$$\left[\frac{D_{\lambda,p}^{n}(f*g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}}\right]^{\mu}\left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n}(f*g_{2})^{(j)}(z)}\right]^{\eta} \prec q(z)$$
(20)

and q(z) is the best dominant.

Proof. Define a function ρ by

$$\rho(z) = \left[\frac{D_{\lambda,p}^{n}(f * g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n}(f * g_{2})^{(j)}(z)} \right]^{\eta} (z \in U).$$
 (21)

Then the function ρ is analytic in U and $\rho(0) = 1$. Therefore, differentiating (21) logarithmically with respect to z and using the identity (9) in the resulting equation, we have

$$\gamma_{1} + \gamma_{2} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\eta} + \gamma_{3} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{2\eta} +$$

$$+ \gamma_{4}\mu\left(\frac{p-j}{\lambda}\right) \left[\frac{D_{\lambda,p}^{n+1}(f*g_{1})^{(j)}(z)}{D_{\lambda,p}^{n}(f*g_{1})^{(j)}(z)} - 1\right]$$

$$+ \gamma_{4}\eta\left(\frac{p-j}{\lambda}\right) \left[1 - \frac{D_{\lambda,p}^{n+1}(f*g_{2})^{(j)}(z)}{D_{\lambda,p}^{n}(f*g_{2})^{(j)}(z)}\right]$$

$$= \gamma_{1} + \gamma_{2}\rho(z) + \gamma_{3}\left[\rho(z)\right]^{2} + \gamma_{4}\frac{z\rho'(z)}{\rho(z)},$$

that is,

$$\gamma_1 + \gamma_2 \rho(z) + \gamma_3 \left[\rho(z)\right]^2 + \gamma_4 \frac{z \rho'(z)}{\rho(z)} \prec \gamma_1 + \gamma_2 q(z) + \gamma_3 \left[q(z)\right]^2 + \gamma_4 \frac{z q'(z)}{q(z)}.$$

By setting

$$\theta\left(w\right) = \gamma_{1} + \gamma_{2}w + \gamma_{3}w^{2} \text{ and } \varphi\left(w\right) = \frac{\gamma_{4}}{w},$$

it can be easily observed that θ is analytic function in \mathbb{C} , φ is analytic function in \mathbb{C}^* and $\varphi(w) \neq 0$. Also we see that

$$\psi(z) = zq'(z)\,\varphi(q(z)) = \gamma_4 \frac{zq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + \psi(z) = \gamma_1 + \gamma_2 q(z) + \gamma_3 [q(z)]^2 + \gamma_4 \frac{zq'(z)}{q(z)},$$

it is clear that $\psi(z)$ is starlike univalent in U and

$$\Re\left\{\frac{zh^{'}(z)}{\psi(z)}\right\} = \Re\left\{1 + \frac{\gamma_{2}}{\gamma_{4}}q(z) + \frac{2\gamma_{3}}{\gamma_{4}}\left[q(z)\right]^{2} - \frac{zq^{'}(z)}{q(z)} + \frac{zq^{''}(z)}{q^{'}(z)}\right\} > 0$$

Therefore, Theorem 3.1 now follows by applying Lemma 2.2.

Taking $p = \lambda = 1$, n = j = 0, $g_1 = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k$, $g_2 = z + \sum_{k=2}^{\infty} \frac{(a+1)_{k-1}}{(c)_{k-1}} z^k$, and $c \notin \mathbb{Z}_0^-$ in Theorem 3.1, we obtain the following corollary which improves the result of Shanmugam et al. [27, Theorem 3.1].

Corollary 3.2. . Let q(z) be univalent in U with q(0) = 1, $q(z) \neq 1$ and $\frac{zq'(z)}{q(z)}$ is starlike in U. Let $f \in \mathcal{A}(p)$ such that

$$\left[\frac{L(a,c)f(z)}{z}\right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)}\right]^{\eta} \neq 0, \tag{22}$$

and suppose q satisfies (18). If

$$\begin{split} & \gamma_{1} + \gamma_{2} \left[\frac{L(a,c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} \\ & + \gamma_{3} \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\ & + \gamma_{4} \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_{4} \eta \left(a+1 \right) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right] \\ & \prec \gamma_{1} + \gamma_{2} q(z) + \gamma_{3} \left[q(z) \right]^{2} + \gamma_{4} \frac{z q^{'}(z)}{q(z)}, \end{split}$$

then

$$\left[\frac{L(a,c)f(z)}{z}\right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)}\right]^{\eta} \prec q(z)$$

and q(z) is the best dominant.

Putting $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.2].

Corollary 3.3. Let $-1 \le B < A \le 1$ and assume that

$$\Re\left\{\frac{\gamma_{2}}{\gamma_{4}}\left[\frac{1+Az}{1+Bz}\right]+\frac{2\gamma_{3}}{\gamma_{4}}\left[\frac{1+Az}{1+Bz}\right]^{2}+\frac{1-ABz^{2}}{\left(1+Az\right)\left(1+Bz\right)}\right\}>0\quad\left(z\in U\right),$$

holds. If $f \in A$ such that (22) holds and satisfy the following subordination condition:

$$\begin{split} & \gamma_{1} + \gamma_{2} \left[\frac{L(a,c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} \\ & + \gamma_{3} \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\ & + \gamma_{4} \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_{4} \eta (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right] \\ & \prec \gamma_{1} + \gamma_{2} \left[\frac{1+Az}{1+Bz} \right] + \gamma_{3} \left[\frac{1+Az}{1+Bz} \right]^{2} + \frac{\gamma_{4} (A-B) z}{(1+Az) (1+Bz)}, \end{split}$$

then

$$\left[\frac{L(a,c)f(z)}{z}\right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)}\right]^{\eta} \prec \frac{1+Az}{1+Bz}$$

and the function $\frac{1+Az}{1+Bz}$ is the best dominant.

Putting $q(z) = \left(\frac{1+z}{1-z}\right)^{\vartheta}$ $(0 < \vartheta \le 1)$ in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.31.

Corollary 3.4. Assume that

$$\Re\left\{\frac{\gamma_2}{\gamma_4}\left(\frac{1+z}{1-z}\right)^{\vartheta}+\frac{2\gamma_3}{\gamma_4}\left(\frac{1+z}{1-z}\right)^{2\vartheta}+\frac{1-3z^2}{1-z^2}\right\}>0 \quad (z\in U)$$

holds. If $f \in A$ such that (22) holds and satisfy the following subordination condition:

$$\begin{split} & \gamma_{1} + \gamma_{2} \left[\frac{L(a,c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} \\ & + \gamma_{3} \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\ & + \gamma_{4} \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_{4} \eta (a+1) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right] \\ & \prec \gamma_{1} + \gamma_{2} \left(\frac{1+z}{1-z} \right)^{\vartheta} + \gamma_{3} \left(\frac{1+z}{1-z} \right)^{2\vartheta} + \frac{2\gamma_{4} \vartheta z}{(1-z)^{2}}, \end{split}$$

then

$$\left[\frac{L(a,c)\,f(z)}{z}\right]^{\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{\eta} \prec \left(\frac{1+z}{1-z}\right)^{\vartheta}$$

and the function $\left(\frac{1+z}{1-z}\right)^{\vartheta}$ is the best dominant.

Putting $q(z) = e^{\mu Az}$ ($|\mu A| < \pi$) in Corollary 3.2, we obtain the following corollary which improves the result of Shanmugam et al. [27, Corollary 3.4].

Corollary 3.5. Assume that

$$\Re\left\{1+\frac{\gamma_2}{\gamma_4}e^{\mu Az}+\frac{2\gamma_3}{\gamma_4}e^{2\mu Az}\right\}>0\quad (z\in U)\,,$$

holds. If $f \in A$ such that (22) holds and satisfy the following subordination condition:

$$\begin{split} & \gamma_{1} + \gamma_{2} \left[\frac{L(a,c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} \\ & + \gamma_{3} \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\ & + \gamma_{4} \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_{4} \eta \left(a + 1 \right) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right] \\ & \prec \gamma_{1} + \gamma_{2} e^{\mu Az} + \gamma_{3} e^{2\mu Az} + \gamma_{4} \mu Az. \end{split}$$

then

$$\left[\frac{L(a,c)\,f(z)}{z}\right]^{\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{\eta} \prec e^{\mu Az}$$

and the function $e^{\mu Az}$ is the best dominant.

Taking $\gamma_1 = p = \lambda = 1$, $\gamma_2 = \gamma_3 = n = j = \eta = 0$, $g_1 = z + \sum_{k=2}^{\infty} z^k$, q(z) = 0 $\frac{1}{(1-a)^{2ab}}$ $(a,b\in\mathbb{C}^*)$, $\mu=a$ and $\gamma_4=\frac{1}{ab}$ in Theorem 3.1, then combining this to gather with Lemma 2.4 we obtain the following corollary obtained by Obradovič et al. [23, Theorem 1].

Corollary 3.6. Let $a,b \in \mathbb{C}^*$ such that $|2ab-1| \le 1$ or $|2ab+1| \le 1$. Let $f \in \mathcal{A}$ and suppose that $\frac{f(z)}{z} \neq 0$ $(z \in U)$. If

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z},$$

then

$$\left(\frac{f(z)}{z}\right)^a \prec \frac{1}{(1-z)^{2ab}}$$

and the function $\frac{1}{(1-\tau)^{2ab}}$ is the best dominant.

Remark 3.7. For a = 1, Corollary 3.6 reduces to the recent result obtained by Srivastava and Lashin [29, Theorem 3].

Taking $\gamma_1 = p = \lambda = 1$, $\gamma_2 = \gamma_3 = n = j = \eta = 0$, $g_1 = z + \sum_{k=0}^{\infty} z^k$, q(z) = 0 $(1-z)^{-2ab\cos au e^{-i au}}$ $\left(a,b\in\mathbb{C}^*,| au|<rac{\pi}{2}
ight),\,\mu=a ext{ and } \gamma_4=rac{e^{i au}}{ab\cos au} ext{ in Theorem 3.1,}$ then combining this to gather with Lemma 2.4 we obtain the following corollary obtained by Aouf et al. [5, Theorem 1].

Corollary 3.8. Let $a,b \in \mathbb{C}^*, |\tau| < \frac{\pi}{2}$ and suppose that $|2ab\cos \tau e^{-i\tau} - 1| \le 1$ or $\left|2ab\cos\tau e^{-i\tau}+1\right|\leq 1$. Let $f\in\mathcal{A}$ and suppose that $\frac{\dot{f}(z)}{\tau}\neq 0$ $(z\in U)$. If

$$1 + \frac{e^{i\tau}}{b\cos\tau} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z},$$

then

$$\left(\frac{f(z)}{z}\right)^{a} \prec (1-z)^{-2ab\cos\tau e^{-i\tau}}$$

and the function $(1-z)^{-2ab\cos\tau e^{-i\tau}}$ is the best dominant.

Theorem 3.9. Let q be convex univalent in U with q(0) = 1 and $\frac{zq'(z)}{q(z)}$ is starlike in U. Further assume that

$$\Re\left(\left(\gamma_{2}+2\gamma_{3}q(z)\right)\frac{q(z)q'(z)}{\gamma_{4}}\right)>0. \tag{23}$$

Let $f \in \mathcal{A}(p)$ such that

$$0 \neq \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\eta} \in H[q(0),1] \cap Q. \quad (24)$$

If

$$\gamma_{1} + \gamma_{2} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\eta} \\
+ \gamma_{3} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{2\eta} \\
+ \gamma_{4} \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D_{\lambda,p}^{n+1} (f * g_{1})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)} - 1 \right] \\
+ \gamma_{4} \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D_{\lambda,p}^{n+1} (f * g_{2})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]$$
(25)

is univalent in U and satisfies the following superordination condition

$$\begin{split} & \gamma_{1} + \gamma_{2}q(z) + \gamma_{3}\left[q(z)\right]^{2} + \gamma_{4}\frac{zq'(z)}{q(z)} \\ & \prec \gamma_{1} + \gamma_{2}\left[\frac{D_{\lambda,p}^{n}\left(f * g_{1}\right)^{(j)}(z)}{\delta\left(p;j\right)z^{p-j}}\right]^{\mu}\left[\frac{\delta\left(p;j\right)z^{p-j}}{D_{\lambda,p}^{n}\left(f * g_{2}\right)^{(j)}(z)}\right]^{\eta} \\ & + \gamma_{3}\left[\frac{D_{\lambda,p}^{n}\left(f * g_{1}\right)^{(j)}(z)}{\delta\left(p;j\right)z^{p-j}}\right]^{2\mu}\left[\frac{\delta\left(p;j\right)z^{p-j}}{D_{\lambda,p}^{n}\left(f * g_{2}\right)^{(j)}(z)}\right]^{2\eta} \\ & + \gamma_{4}\mu\left(\frac{p-j}{\lambda}\right)\left[\frac{D_{\lambda,p}^{n+1}\left(f * g_{1}\right)^{(j)}(z)}{D_{\lambda,p}^{n}\left(f * g_{1}\right)^{(j)}(z)} - 1\right] \end{split}$$

$$+\gamma_{4}\eta\left(\frac{p-j}{\lambda}\right)\left[1-\frac{D_{\lambda,p}^{n+1}(f*g_{2})^{(j)}(z)}{D_{\lambda,p}^{n}(f*g_{2})^{(j)}(z)}\right],\tag{26}$$

holds, then

$$q(z) \prec \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\eta}$$
(27)

and q is the best subordinant.

Proof. By setting

$$\theta(w) = \gamma_1 + \gamma_2 w + \gamma_3 w^2 \text{ and } \varphi(w) = \frac{\gamma_4}{w},$$

it can be easily observed that θ is analytic function in \mathbb{C} , φ is analytic function in \mathbb{C}^* and $\varphi(w) \neq 0$. From the assumption of Theorem 3.9, we see that

$$\Re\left\{\frac{\theta^{'}\left(q\left(z\right)\right)}{\varphi\left(q\left(z\right)\right)}\right\}=\Re\left(\left(\gamma_{2}+2\gamma_{3}q\left(z\right)\right)\frac{q\left(z\right)q^{'}\left(z\right)}{\gamma_{4}}\right)>0\text{ for }z\in U,$$

Therefore, Theorem 3.9 now follows by applying Lemma 2.3.

Taking $p = \lambda = 1$, n = j = 0, $g_1 = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k$, $g_2 = z + \sum_{k=2}^{\infty} \frac{(a+1)_{k-1}}{(c)_{k-1}} z^k$, and $c \notin \mathbb{Z}_0^-$ in Theorem 3.9, we obtain the following corollary which improves the result of Shanmugam et al. [27, Theorem 3.11].

Corollary 3.10. Let q be convex univalent in U with q(0) = 1 and $\frac{zq'(z)}{q(z)}$ is starlike in U. Further assume that (23) holds. Let $f \in \mathcal{A}(p)$ such that

$$0 \neq \left\lceil \frac{L(a,c)\,f(z)}{z} \right\rceil^{\mu} \left\lceil \frac{z}{L(a+1,c)\,f(z)} \right\rceil^{\eta} \in H\left[q\left(0\right),1\right] \cap Q.$$

If

$$\begin{split} &\gamma_{1}+\gamma_{2}\left[\frac{L(a,c)\,f(z)}{z}\right]^{\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{\eta}\\ &+\gamma_{3}\left[\frac{L(a,c)\,f(z)}{z}\right]^{2\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{2\eta}\\ &+\gamma_{4}\mu a\left[\frac{L(a+1,c)\,f(z)}{L(a,c)\,f(z)}-1\right]+\gamma_{4}\eta\,\left(a+1\right)\left[1-\frac{L(a+2,c)\,f(z)}{L(a+1,c)\,f(z)}\right] \end{split}$$

is univalent in U and satisfies the following superordination condition

$$\begin{split} & \gamma_{1} + \gamma_{2}q\left(z\right) + \gamma_{3}\left[q\left(z\right)\right]^{2} + \gamma_{4}\frac{zq^{'}\left(z\right)}{q\left(z\right)} \\ & \prec \gamma_{1} + \gamma_{2}\left[\frac{L(a,c)\,f(z)}{z}\right]^{\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{\eta} \\ & + \gamma_{3}\left[\frac{L(a,c)\,f(z)}{z}\right]^{2\mu}\left[\frac{z}{L(a+1,c)\,f(z)}\right]^{2\eta} \\ & + \gamma_{4}\mu a\left[\frac{L(a+1,c)\,f(z)}{L(a,c)\,f(z)} - 1\right] + \gamma_{4}\eta\left(a+1\right)\left[1 - \frac{L(a+2,c)\,f(z)}{L(a+1,c)\,f(z)}\right], \end{split}$$

holds, then

$$q(z) \prec \left[\frac{L(a,c)f(z)}{z}\right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)}\right]^{\eta}$$

and q is the best subordinant.

Combining Theorems 3.1 and 3.9, we get the following sandwich theorem for the linear operator $D_{\lambda n}^{n}(f*g)^{(j)}$.

Theorem 3.11. Let q_i be convex univalent in U with $q_i(0) = 1$ and let $\frac{zq_i'(z)}{q_i(z)}$ (i = 1, 2) be starlike in U. Suppose that q_1 satisfies (23) and q_2 satisfies (18). Let $f \in \mathcal{A}(p)$ such that

$$0 \neq \left[\frac{D_{\lambda,p}^{n}(f * g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n}(f * g_{2})^{(j)}(z)} \right]^{\eta} \in H[q(0),1] \cap Q. \quad (28)$$

If

$$\gamma_{1} + \gamma_{2} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{\eta} \\
+ \gamma_{3} \left[\frac{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)}{\delta(p;j) z^{p-j}} \right]^{2\mu} \left[\frac{\delta(p;j) z^{p-j}}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]^{2\eta} \\
+ \gamma_{4} \mu \left(\frac{p-j}{\lambda} \right) \left[\frac{D_{\lambda,p}^{n+1} (f * g_{1})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{1})^{(j)}(z)} - 1 \right] \\
+ \gamma_{4} \eta \left(\frac{p-j}{\lambda} \right) \left[1 - \frac{D_{\lambda,p}^{n+1} (f * g_{2})^{(j)}(z)}{D_{\lambda,p}^{n} (f * g_{2})^{(j)}(z)} \right]$$
(29)

is univalent in U and

holds, then

$$q_{1}(z) \prec \left[\frac{D_{\lambda,p}^{n}(f * g_{1})^{(j)}(z)}{\delta(p;j)z^{p-j}}\right]^{\mu} \left[\frac{\delta(p;j)z^{p-j}}{D_{\lambda,p}^{n}(f * g_{2})^{(j)}(z)}\right]^{\eta} \prec q_{2}(z)$$
(31)

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

Taking $p = \lambda = 1$, n = j = 0, $g_1 = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k$, $g_2 = z + \sum_{k=2}^{\infty} \frac{(a+1)_{k-1}}{(c)_{k-1}} z^k$, and $c \notin \mathbb{Z}_0^-$ in Theorem 3.11, we obtain the following corollary which improves the result of Shanmugam et al. [27, Theorem 3.12].

Corollary 3.12. Let q_i be convex univalent in U with $q_i(0) = 1$ and $\frac{zq_i'(z)}{q_i(z)}$ be starlike in U for i = 1, 2. Suppose that q_1 satisfies (23) and q_2 satisfies (18). Let $f \in \mathcal{A}(p)$ such that

$$0 \neq \left[\frac{L(a,c)f(z)}{z}\right]^{\mu} \left[\frac{z}{L(a+1,c)f(z)}\right]^{\eta} \in H[q(0),1] \cap Q.$$

If

$$\begin{split} & \gamma_1 + \gamma_2 \left[\frac{L(a,c) f(z)}{z} \right]^{\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{\eta} \\ & + \gamma_3 \left[\frac{L(a,c) f(z)}{z} \right]^{2\mu} \left[\frac{z}{L(a+1,c) f(z)} \right]^{2\eta} \\ & + \gamma_4 \mu a \left[\frac{L(a+1,c) f(z)}{L(a,c) f(z)} - 1 \right] + \gamma_4 \eta \left(a+1 \right) \left[1 - \frac{L(a+2,c) f(z)}{L(a+1,c) f(z)} \right] \end{split}$$

is univalent in U and

$$\begin{split} &\gamma_{1}+\gamma_{2}q_{1}\left(z\right)+\gamma_{3}\left[q_{1}\left(z\right)\right]^{2}+\gamma_{4}\frac{zq_{1}^{'}\left(z\right)}{q_{1}\left(z\right)} \\ &\prec\gamma_{1}+\gamma_{2}\left[\frac{L\left(a,c\right)f(z)}{z}\right]^{\mu}\left[\frac{z}{L\left(a+1,c\right)f(z)}\right]^{\eta} \\ &+\gamma_{3}\left[\frac{L\left(a,c\right)f(z)}{z}\right]^{2\mu}\left[\frac{z}{L\left(a+1,c\right)f(z)}\right]^{2\eta} \\ &+\gamma_{4}\mu a\left[\frac{L\left(a+1,c\right)f(z)}{L\left(a,c\right)f(z)}-1\right]+\gamma_{4}\eta\left(a+1\right)\left[1-\frac{L\left(a+2,c\right)f(z)}{L\left(a+1,c\right)f(z)}\right] \\ &\prec\gamma_{1}+\gamma_{2}q_{2}\left(z\right)+\gamma_{3}\left[q_{2}\left(z\right)\right]^{2}+\gamma_{4}\frac{zq_{2}^{'}\left(z\right)}{q_{2}\left(z\right)}, \end{split}$$

holds, then

$$q_{1}\left(z\right) \prec \left[\frac{L\left(a,c\right)f\left(z\right)}{z}\right]^{\mu} \left[\frac{z}{L\left(a+1,c\right)f\left(z\right)}\right]^{\eta} \prec q_{2}\left(z\right)$$

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

REFERENCES

- [1] R. M. Ali V. Ravichandran K. G. Subramanian, *Differential sandwich theorems* for certain analytic functions, Far East J. Math. Sci. 15 (1) (2004), 87–94.
- [2] F. M. Al-Oboudi K. A. Al-Amoudi, *On classes of analytic functions related to conic domains*, J. Math. Anal. Appl. 339 (2008), 655–667.
- [3] M. K. Aouf, Generalization of certain subclasses of multivalent functions with negative coefficients defined by using a differential operator, Math. Comput. Modelling 50 (9-10) (2009), 1367–1378.
- [4] M. K. Aouf, On certain multivalent functions with negative coefficients defined by using a differential operator, Indian J. Math. 51 (2) (2009), 433–451.

- [5] M. K. Aouf F. M. Al-Oboudi M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Inst. Math. 75 (91) (2005), 93-98.
- [6] M. K. Aouf R. M. El-Ashwah A. M. Abd-Eltawab, Differential subordination and superordination results for higher-order derivatives of p-valent functions involving a generalized differential operator, Southeast Asian Bull. Math. 36 (2012), 475-488.
- [7] M. K. Aouf R. M. El-Ashwah A. M. Abd-Eltawab, Sandwich theorems for higher-order derivatives of p-valent functions involving a generalized differential operator, Int. J. Open Probl. Complex Anal. 4 (3) (2012), 15–33.
- [8] M. K. Aouf A. O. Mostafa, On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl. 55 (4) (2008), 851-861.
- [9] M. K. Aouf A. O. Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis Math. Inform. 21 (2010), 7-20.
- [10] M. K. Aouf A. Shamandy A. O. Mostafa F. Z. El-Emam, On sandwich theorems for multivalent functions involving a generalized differential operator, Comput. Math. Appl. 61 (2011), 2578–2587
- [11] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35 (2) (2002), 287–292.
- [12] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [13] B. C. Carlson D. B. Shaffer, Starlike and Prestarlike Hypergeometric Functions, SIAM J. Math. Anal. 15 (1984), 737–745.
- [14] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the Internat. Symposium on Geomtric Function Theory and Appls., Istanbul, Turkey, August 2007, 241–250.
- [15] J. Dziok H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13.
- [16] J. Dziok H. M. Srivastava, Certain Subclasses of Analytic Functions Associated with the Generalized Hypergeometric Function, Integral Transforms Spec. Funct. 14 (2003), 7–18.
- [17] R. M. El-Ashwah M. K. Aouf, Inclusion and neighborhood properties of some analytic p-valent functions, Gen. Math. 18 (2) (2010), 183–194.
- [18] M. Kamali H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (1) (2004), 53-71.
- [19] S. S. Kumar H. C. Taneja V. Ravichandran, Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J. 46 (2006), 97–109.
- [20] J.-L. Liu S. Owa, Properties of certain integral operators, Int. J. Math. Math. Sci. 3 (1) (2004), 69–75.
- [21] S. S. Miller P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225,

- Marcel Dekker Inc., New York and Basel, 2000.
- [22] S. S. Miller P. T. Mocanu, *Subordinates of differential superordinations*, Complex Var. Elliptic Equ. 48 (10) (2003), 815–826.
- [23] M. Obradovič M. K.Aouf S. Owa, *On some results for starlike functions of complex order*, Publ. Inst. Math. 46 (60) (1989), 79–85.
- [24] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
- [25] C. Selvaraj K. R. Karthikeyan, *Differential subordination and superordination for certain subclasses of analytic functions*, Far East J. Math. Sci. 29 (2) (2008), 419–430.
- [26] C. Selvaraj K. A. Selvakumaran, On certain classes of multivalent functions involving a generalized differential operator, Bull. Korean Math. Soc. 46 (5) (2009), 905–915.
- [27] T. N. Shanmugam V. Ravichandran S. Owa, *On sandwich results for some subclasses of analytic functions involving certain linear operator*, Integral Transforms Spec. Funct. 21 (1) (2010), 1–11.
- [28] T. N. Shanmugam V. Ravichandran S. Sivasubramanian, *Differential sandwich theorems for some subclasses of analytic functions*, Aust. J. Math. Anal. Appl. 3 (1) (2006), Art. 8, 11 pp.
- [29] H. M. Srivastava A. Y. Lashin, *Some applications of the Briot-Bouquet differential subordination*, J. Inequal. Pure Appl. Math. 6 (2) (2005), Art. 41, 7 pp.
- [30] N. Tuneski, *On certain sufficient conditions for starlikeness*, Int. J. Math. Math. Sci. 23 (8) (2000), 521–527.

MOHAMED K. AOUF
Department of Mathematics
Faculty of Science, Mansoura University,
Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

RABHA M. EL-ASHWAH

Department of Mathematics
Faculty of Science, Damietta University,
New Damietta 34517, Egypt
e-mail: r_elashwah@yahoo.com

AHMED M. ABD-ELTAWAB
Department of Mathematics
Faculty of Science, Fayoum University,
Fayoum 63514, Egypt
e-mail: ams03@fayoum.edu.eg