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NEW CLASSES OF INTEGRAL INEQUALITIES
OF FRACTIONAL ORDER

ZOUBIR DAHMANI

In this paper, the Riemann-Liouville fractional operator is used to gen-
erate new classes of integral inequalities using a family of n positive func-
tions, (n ∈N∗). For our results, some interesting classical inequalities can
be deduced as some special cases.

1. Introduction

It is a well known truth that the integral inequalities play an important role in the
theory of differential and integral equations. Indeed this importance seems to
have increased during the last two decades. For details, we refer to [7, 9, 10, 12–
14] and the references therein. Moreover, the study of fractional type inequali-
ties is also of great importance in the existence and uniqueness theory for frac-
tional differential equations. We refer the reader to [1–4, 11] for further infor-
mation and applications.
The aim of this paper is to generalize some classical inequalities. By using
the Riemann-Liouville fractional operator, we generate new classes of integral
inequalities using a family of n positive functions defined on [a,b]. Some inter-
esting classical inequalities of [8] can be deduced as some special cases. Fur-
thermore, our results can be considered as generalizations of order n for some
results in [4, 5].
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2. Preliminaries

In this section, we introduce some definitions and properties related to the frac-
tional integral operator of Riemann-Liouville [6, 11].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥
0, for a continuous function f : [a,b]→ R is defined as

Jα [ f (t)] = 1
Γ(α)

∫ t
a(t− τ)α−1 f (τ)dτ; α > 0,a < t ≤ b,

J0[ f (t)] = f (t),
(1)

where Γ(α) :=
∫

∞

0 e−uuα−1du.

For the convenience of establishing the results, we give the following prop-
erties:

JαJβ [ f (t)] = Jα+β [ f (t)],α ≥ 0,β ≥ 0, (2)

and
JαJβ [ f (t)] = Jβ Jα [ f (t)]. (3)

3. Main Results

In this section, we prove three classes of fractional integral inequalities. These
results allow us in particular to generalize some classical inequalities. The first
class is given by the following two theorems:

Theorem 3.1. Suppose that ( fi)i=1,...,n are n positive continuous and decreasing
functions on [a,b]. Then, the following inequality

Jα

[
∏

n
i 6=p f γi

i f β
p (t)

]
Jα

[
∏

n
i=1 f γi

i (t)
] ≥ Jα

[
(t−a)δ

∏
n
i 6=p f γi

i f β
p (t)

]
Jα

[
(t−a)δ ∏

n
i=1 f γi

i (t)
] (4)

is valid for any a < t ≤ b,α > 0,δ > 0,β ≥ γp > 0, where p is a fixed integer
in {1,2, . . . ,n}.

Proof. Since ( fi)i=1,...,n are positive, continuous and decreasing functions on
[a,b], then we have(

(ρ−a)δ − (τ−a)δ

)(
f β−γp
p (τ)− f β−γp

p (ρ)
)
≥ 0, (5)

for any fixed p∈ {1, . . . ,n} and for any β ≥ γp > 0,δ > 0,τ,ρ ∈ [a, t];a < t ≤ b.
Denote

Kp(τ,ρ) :=
(t− τ)α−1

Γ(α)

n

∏
i=1

f γi
i (τ)

(
(ρ−a)δ − (τ−a)δ

)(
f β−γp
p (τ)− f β−γp

p (ρ)
)
. (6)
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We have

Kp(τ,ρ)≥ 0. (7)

The inequality (7) implies that

0≤
∫ t

a
Kp(τ,ρ)dτ = (ρ−a)δ Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]

+ f β−γp
p (ρ)Jα

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]
− Jα

[
(t−a)δ

n

∏
i6=p

f γi
i f β

p (t)
]

− (ρ−a)δ f β−γp(ρ)Jα

[ n

∏
i=1

f γi
i (t)

]
. (8)

And consequently,

Jα

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]
Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]
≥ Jα

[ n

∏
i=1

f γi
i (t)

]
Jα

[
(t−a)δ

n

∏
i6=p

f γi
i f β

p (t)
]
. (9)

Theorem 3.1 is thus proved.

Remark 3.2. The inequality (4) is reversed if the functions ( fi)i=1,...,n are in-
creasing on [a,b].

Remark 3.3. Applying Theorem 3.1 for α = 1, t = b,n= 1, we obtain Theorem
3 in [8].

The second result is the following theorem:

Theorem 3.4. Suppose that ( fi)i=1,...,n are positive, continuous and decreasing
functions on [a,b]. Then for any fixed p in {1,2, . . . ,n} and for any a < t ≤
b,α > 0,ω > 0,δ > 0,β ≥ γp > 0, we have{

Jα

[ n

∏
i 6=p

f γi
i f β

p (t)
]
Jω

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]
+Jω

[ n

∏
i 6=p

f γi
i f β

p (t)
]
Jα

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]}/
{

Jα

[
(t−a)δ

n

∏
i6=p

f γi
i f β

p (t)
]
Jω

[ n

∏
i=1

f γi
i (t)

]
+Jω

[
(t−a)δ

n

∏
i 6=p

f γi
i f β

p (t)
]
Jα

[ n

∏
i=1

f γi
i (t)

]}
≥ 1. (10)
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Proof. Multiplying both sides of (8) by (t−ρ)ω−1

Γ(ω) ∏
n
i=1 f γi

i (ρ),ω > 0, then inte-
grating the resulting inequality with respect to ρ over (a, t),a < t ≤ b and using
Fubini’s theorem, we obtain

0≤
∫ t

a

∫ t

a

(t−ρ)ω−1

Γ(ω)

n

∏
i=1

f γi
i (ρ)Kp(τ,ρ)dτdρ

= Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]
Jω

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]
+ Jω

[ n

∏
i 6=p

f γi
i f β

p (t)
]
Jα

[
(t−a)δ

n

∏
i=1

f γi
i (t)

]
− Jα

[
(t−a)δ

n

∏
i 6=p

f γi
i f β

p (t)
]
Jω

[ n

∏
i=1

f γi
i (t)

]
− Jω

[
(t−a)δ

n

∏
i 6=p

f γi
i f β

p (t)
]
Jα

[ n

∏
i=1

f γi
i (t)

]
. (11)

This completes the proof of Theorem 3.4.

Remark 3.5. (i) Applying Theorem 3.4 for α = ω , we obtain Theorem 3.1.
(ii) Applying Theorem 3.4 for α = ω = 1, t = b,n = 1, we obtain Theorem 3 of
[8].

Another class of fractional integral inequalities which generalizes the above
theorems is described in the following theorems. We have

Theorem 3.6. Let ( fi)i=1,...,n and g be positive continuous functions on [a,b],
such that g is increasing and ( fi)i=1,...,n are decreasing on [a,b]. Then, the
following inequality

Jα

[
∏

n
i 6=p f γi

i f β
p (t)

]
Jα

[
gδ (t)∏

n
i=1 f γi

i (t)
]

Jα

[
gδ (t)∏

n
i 6=p f γi

i f β
p (t)

]
Jα

[
∏

n
i=1 f γi

i (t)
] ≥ 1 (12)

holds for any a < t ≤ b,α > 0,δ > 0,β ≥ γp > 0, where p is a fixed integer in
{1,2, . . . ,n}.

Proof. Using the conditions of Theorem 3.6, we can write(
gδ (ρ)−gδ (τ)

)(
f β−γp
p (τ)− f β−γp

p (ρ)
)
≥ 0, (13)

for all p = 1, . . . ,n,δ > 0,β ≥ γp > 0,τ,ρ ∈ [a, t];a < t ≤ b.
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Now, let us consider the quantity

Lp(τ,ρ) :=
(t− τ)α−1

Γ(α)

n

∏
i=1

f γi
i (τ)

(
gδ (ρ)−gδ (τ)

)(
f β−γp
p (τ)− f β−γp

p (ρ)
)
. (14)

It is clear that

Lp(τ,ρ)≥ 0. (15)

Therefore,

0≤
∫ t

a
Lp(τ,ρ)dτ = gδ (ρ)Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]
+ f β−γp

p (ρ)Jα

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
− Jα

[
gδ (t)

n

∏
i 6=p

f γi
i f β

p (t)
]
− (gδ (ρ) f β−γp(ρ)Jα

[ n

∏
i=1

f γi
i (t)

]
. (16)

Consequently,

Jα

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]
≥ Jα

[ n

∏
i=1

f γi
i (t)

]
Jα

[
gδ (t)

n

∏
i 6=p

f γi
i f β

p (t)
]
. (17)

Theorem 3.6 is thus proved.

Remark 3.7. Applying Theorem 3.6 for α = 1, t = b,n= 1, we obtain Theorem
4 of [8].

We give also the following result:

Theorem 3.8. Suppose that ( fi)i=1,...,n and g are positive and continuous func-
tions on [a,b], such that g is increasing and ( fi)i=1,...,n are decreasing on [a,b].
Then for any fixed p ∈ {1,2, . . . ,n} and for all α > 0,ω > 0,δ > 0,β ≥ γp > 0,
we have

{
Jα

[ n

∏
i6=p

f γi
i f β

p (t)
]
Jω

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
+Jω

[ n

∏
i6=p

f γi
i f β

p (t)
]
Jα

[
gδ (t)

n

∏
i=1

f γi
i (t)

]}/
{

Jα

[
g(t)

n

∏
i6=p

f γi
i f β

p (t)
]
Jω

[ n

∏
i=1

f γi
i (t)

]
+Jω

[
g(t)

n

∏
i6=p

f γi
i f β

p (t)
]
Jα

[ n

∏
i=1

f γi
i (t)

]}
≥ 1. (18)
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Proof. Using (16), we can write

0≤
∫ t

a

∫ t

a

n

∏
i=1

f γi
i (ρ)

(t−ρ)ω−1

Γ(ω)
Lp(τ,ρ)dτdρ =

Jα

[ n

∏
i 6=p

f γi
i f β

p (t)
]
Jω

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
+ Jω

[ n

∏
i 6=p

f γi
i f β

p (t)
]
Jα

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
− Jα

[
g(t)

n

∏
i 6=p

f γi
i f β

p (t)
]
Jω

[ n

∏
i=1

f γi
i (t)

]
− Jω

[
g(t)

n

∏
i6=p

f γi
i f β

p (t)
]
Jα

[ n

∏
i=1

f γi
i (t)

]
.

(19)

This ends the proof of Theorem 3.8.

Remark 3.9. (i) Applying Theorem 3.8 for α = ω , we obtain Theorem 3.6.
(ii) Applying Theorem 3.8 for α = ω = 1, t = b,n = 1, we obtain Theorem 4 of
[8].

We further have:

Theorem 3.10. Let ( fi)i=1,...,n and g be positive continuous functions on [a,b].
Suppose that for any fixed integer p ∈ {1,2, . . . ,n},(

f δ
p (τ)g

δ (ρ)− f δ
p (ρ)g

δ (τ)
)(

f β−γp
p (τ)− f β−γp

p (ρ)
)
≥ 0;

τ,ρ ∈ [a, t], t ∈]a,b],δ > 0,β ≥ γp > 0. (20)

Then for any α > 0, we have

Jα

[
∏

n
i 6=p f γi

i f β+δ
p (t)

]
Jα

[
gδ (t)∏

n
i=1 f γi

i (t)
]

Jα

[
gδ (t)∏

n
i 6=p f γi

i f β
p (t)

]
Jα

[
f δ
p ∏

n
i=1 f γi

i (t)
] ≥ 1. (21)

Proof. The proof is quite similar to that for Theorem 3.4, provided we replace
the quantity

(
gδ (ρ)− gδ (τ)

)
(in Lp(τ,ρ)) by:

(
f δ
p (τ)g

δ (ρ)− f δ
p (ρ)g

δ (τ)
)

.

Remark 3.11. It is clear that on [a,b], Theorem 6 of [8] would follow as a
special case of Theorem 3.10 when α = 1, t = b,n = 1.

Also, with the same assumptions as before, we get the following generaliza-
tion of Theorem 3.10:
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Theorem 3.12. Let ( fi)i=1,...,n and g be positive continuous functions on [a,b].
Suppose that for any fixed integer p ∈ {1,2, . . . ,n},(

f δ (τ)gδ (ρ)− f δ (ρ)gδ (τ)
)(

f β−γ(τ)− f β−γ(ρ)
)
≥ 0;

τ,ρ ∈ [a, t], t ∈]a,b],δ > 0,β ≥ γp > 0. (22)

Then for all α > 0,ω > 0, the inequality{
Jα

[ n

∏
i 6=p

f γi
i f β+δ

p (t)
]
Jω

[
gδ (t)

n

∏
i=1

f γi
i (t)

]
+Jω

[ n

∏
i 6=p

f γi
i f β+δ

p (t)
]
Jα

[
gδ (t)

n

∏
i=1

f γi
i (t)

]}/
{

Jα

[
gδ (t)

n

∏
i6=p

f γi
i f β

p (t)
]
Jω

[
f δ
p

n

∏
i=1

f γi
i (t)

]
+Jω

[
gδ (t)

n

∏
i6=p

f γi
i f β

p (t)
]
Jα

[
f δ
p

n

∏
i=1

f γi
i (t)

]}
≥ 1 (23)

is valid.

Remark 3.13. (i) Applying Theorem 3.12 for α = ω , we obtain Theorem 3.10.
(ii) Applying Theorem 3.12, for α = ω = 1, t = b, we obtain Theorem 5 of [8].

The third class of fractional integral inequalities is given by the following
theorems:

Theorem 3.14. Let f ,g and (hi)i=1,...,n be positive and continuous functions on
[a,b], such that(

g(τ)−g(ρ)
)( f (ρ)

hp(ρ)
− f (τ)

hp(τ)

)
≥ 0; p ∈ {1,2, . . . ,n},τ,ρ ∈ [a, t],a < t ≤ b. (24)

Then we have
Jα

[
f (t)∏

n
i6=p hi(t)

]
Jα

[
∏

n
i=1 hi(t)

] ≥
Jα

[
g f ∏

n
i6=p hi(t)

]
Jα

[
g∏

n
i=1 hi(t)

] , (25)

for any α > 0,a < t ≤ b.

Proof. Suppose that f ,g and (hi)i=1,...,n are positive and continuous functions on [a,b].
Using (24), we can write

g(τ)
f (ρ)

hp(ρ)
+g(ρ)

f (τ)
hp(τ)

−g(ρ)
f (ρ)

hp(ρ)
−g(τ)

f (τ)
hp(τ)

≥ 0, (26)
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for all τ,ρ ∈ [a, t],a < t ≤ b and for any fixed integer p ∈ {1,2, . . . ,n}.
Therefore,

g(τ) f (ρ)
n

∏
i6=p

hi(ρ)
n

∏
i=1

hi(τ)+g(ρ) f (τ)
n

∏
i6=p

hi(τ)
n

∏
i=1

hi(ρ)

≥ g(ρ) f (ρ)
n

∏
i6=p

hi(ρ)
n

∏
i=1

hi(τ)+g(τ) f (τ)
n

∏
i6=p

hi(τ)
n

∏
i=1

hi(ρ), (27)

for all τ,ρ ∈ [a, t],0 < t ≤ b and for any fixed integer p ∈ {1,2, . . . ,n}.
This implies that

f (ρ)
n

∏
i 6=p

hi(ρ)Jα

[
g

n

∏
i=1

hi(t)
]
+g(ρ)

n

∏
i=1

hi(ρ)Jα

[
f (t)

n

∏
i 6=p

hi(t)
]

≥ g(ρ) f (ρ)
n

∏
i 6=p

hi(ρ)Jα

[ n

∏
i=1

hi(t)
]
+

n

∏
i=1

hi(ρ)Jα

[
g f (t)

n

∏
i6=p

hi(t)
]
. (28)

Multiplying both sides of (28) by (t−ρ)α−1

Γ(α) , then integrating with respect to ρ over
(a, t),0 < t ≤ b, we obtain (25).

Remark 3.15. It is clear that Theorem 7 of [8] would follow as a special case
of Theorem 3.14 when α = 1, t = b,n = 1.

Using two fractional parameters, we give the following generalization of
Theorem 3.14.

Theorem 3.16. Let f ,g and (hi)i=1,...,n be positive and continuous functions on
[a,b], such that(

g(τ)−g(ρ)
)( f (ρ)

hp(ρ)
− f (τ)

hp(τ)

)
≥ 0; p ∈ {1,2, . . . ,n},τ,ρ ∈ [a, t],a < t ≤ b. (29)

Then the inequality

Jα

[
f (t)∏

n
i6=p hi(t)

]
Jω

[
g∏

n
i=1 hi(t)

]
+ Jω

[
f (t)∏

n
i 6=p hi(t)

]
Jα

[
g∏

n
i=1 hi(t)

]
Jα

[
∏

n
i=1 hi(t)

]
Jω

[
g f ∏

n
i6=p hi(t)

]
+ Jω

[
∏

n
i=1 hi(t)

]
Jα

[
g f ∏

n
i6=p hi(t)

] ≥ 1 (30)

holds for any α > 0,ω > 0,a < t ≤ b.

Proof. We use the same arguments as in the proofs of Theorem 3.8 and Theorem 3.14.

At the end, we give the following corollaries:
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Corollary 3.17. Let f ,g and (hi)i=1,...,n be positive functions on [a,b].
(1∗) Suppose that g is continuous and increasing, f and (hi)i=1,...,n are differen-

tiable and there exist (Mi)i=1,...,n, such that Mi := supx∈[a,b]

(
f
hi

)′
(x). Then the

inequality

Jα

[
f (t)∏

n
i6=p hi(t)

]
Jα

[
g∏

n
i=1 hi(t)

]
+MpJα

[
∏

n
i=1 hi(t)

]
Jα

[
tg(t)∏

n
i=1 hi(t)

]
Jα

[
∏

n
i=1 hi(t)

]
Jα

[
g f ∏

n
i6=p hi(t)

]
+MpJα

[
g(t)∏

n
i=1 hi(t)

]
Jα

[
t ∏

n
i=1 hi(t)

] ≥ 1

(31)
holds for any α > 0,a < t ≤ b and for any fixed p ∈ {1,2, . . . ,n}.
(2∗) Suppose that g is continuous and decreasing, f and (hi)i=1,...,n are differentiable

and there exist (mi)i=1,...,n, such that mi := in fx∈[a,b]

(
f

hi

)′
(x), i = 1, . . . ,n. Then the

inequality

Jα

[
f (t)∏

n
i 6=p hi(t)

]
Jα

[
g∏

n
i=1 hi(t)

]
+mpJα

[
∏

n
i=1 hi(t)

]
Jα

[
tg(t)∏

n
i=1 hi(t)

]
Jα

[
∏

n
i=1 hi(t)

]
Jα

[
g f ∏

n
i6=p hi(t)

]
+ Jα mp

[
g(t)∏

n
i=1 hi(t)

]
Jα

[
t ∏

n
i=1 hi(t)

] ≥ 1

(32)
holds for any α > 0,a < t ≤ b and for any fixed p ∈ {1,2, . . . ,n}.

Proof. (1∗) In Theorem 3.14, we replace f
hp
(x) by Vp(x) := f

hp
(x)−Mpx,x ∈ [a,b]. It

is clear that Vp is decreasing, and since g is increasing, hence Vp and g are monotonic in
opposite sense; the condition (24) is satisfied. Then, by a simple calculation we obtain
(31).

To prove (2∗), in Theorem 3.14 we replace f
hp
(x) by Wp(x) := f

hp
(x)−mpx,x ∈

[a,b].

Corollary 3.18. Let f ,g and (hi)i=1,...,n be positive functions on [a,b].
(1∗) Suppose that g is continuous and increasing, f and (hi)i=1,...,n are differen-

tiable and there exist (Mi)i=1,...,n, such that Mi := supx∈[a,b]

(
f
hi

)′
(x). Then for

any p ∈ {1,2, . . . ,n},α > 0,ω > 0,0 < t ≤ b, we have

Rα,ω,Mp(t)
Sα,ω,Mp(t)

≥ 1, (33)

where

Rα,ω,Mp(t) := Jα

[
f (t)

n

∏
i6=p

hi(t)
]
Jω

[
g

n

∏
i=1

hi(t)
]

+ Jω

[
f (t)

n

∏
i 6=p

hi(t)
]
Jα

[
g

n

∏
i=1

hi(t)
]
+MpJα

[ n

∏
i=1

hi(t)
]
Jω

[
tg(t)

n

∏
i=1

hi(t)
]

+MpJω

[ n

∏
i=1

hi(t)
]
Jα

[
tg(t)

n

∏
i=1

hi(t)
]

(34)
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and

Sα,ω,Mp(t) := Jα

[ n

∏
i=1

hi(t)
]
Jω

[
g f

n

∏
i6=p

hi(t)
]
+ Jω

[ n

∏
i=1

hi(t)
]
Jα

[
g f

n

∏
i 6=p

hi(t)
]

+MpJα

[
g(t)

n

∏
i=1

hi(t)
]
Jω

[
t

n

∏
i=1

hi(t)
]

+MpJω

[
g(t)

n

∏
i=1

hi(t)
]
Jα

[
t

n

∏
i=1

hi(t)
]
. (35)

(2∗) Suppose that g is continuous and decreasing, f and (hi)i=1,...,n are differ-

entiable and there exist (mi)i=1,...,n, such that mi := in fx∈[a,b]

(
f
hi

)′
(x), i = 1, ..n.

Then the inequality
Rα,ω,mp(t)
Rα,ω,mp(t)

≥ 1 (36)

holds for any α > 0,ω > 0,a < t ≤ b and for any fixed p ∈ {1,2, . . . ,n}.

Proof. We apply Theorem 3.16.
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