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FIBONACCI DIFFERENCE SEQUENCE SPACES
FOR MODULUS FUNCTIONS

KULDIP RAJ - SURUCHI PANDOH - SEEMA JAMWAL

In the present paper we introduce the Fibonacci difference sequence
spaces [(F,F,p,u) and l.(F,F,p,u) by using a sequence of modulus
functions and a new band matrix £. We also make an effort to study
some inclusion relations, topological and geometric properties of these
spaces. Furthermore, the a—, 3 —, Y— duals and matrix transformation of
the space [ (F ,F, p,u) are determined.

1. Introduction and Preliminaries

Let w be the space of all real or complex-valued sequences. By /., ¢, co and
[y (1 < p < o), we denote the sets of all bounded, convergent, null sequences
and p-absolutely convergent series, respectively. The notion of difference se-
quence spaces was introduced by Kizmaz [18], who studied the difference se-
quence spaces lw(A), c¢(A) and c¢o(A). The notion was further generalized by Et
and Colak [11] by introducing the spaces l.(A™),c(A™) and co(A™). In 1981,
Kizmaz [18] defined the sequence spaces

X(A)={x=(x) ew: (xx —x41) €X}
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for X = l..,c and co. The difference space bv,, consisting of all sequences (xy)
such that (x; —x;_1) is in the sequence space /,,, was studied in the case 0 < p <
1 by Altay and Basar [4] and in the case 1 < p < o by Bagar and Altay [7] and
Colak et al. [9]. The paranormed difference sequence space

AA(p) ={x= (%) €w: (xx —x+1) €A(p)}

was examined by Ahmad and Mursaleen [6] and Malkowsky [21], where A (p)
is any of the paranormed spaces /. (p), ¢(p) and co(p) defined by Simons [29]
and Maddox [22]. Recently, Altay et al. [5] have defined the sequence spaces
bv(u,p) and bv..(u, p) by

bv(u,p) = {x=(x) €w: Zk:]uk(xk —xp1) [P < oo}

and

bVeo(ut, p) = {x = (xx) € w SUp futg (xg — xp—1)|P* < oo},
keN

where u = (uy) is an arbitrary fixed sequence and 0 < py < H < oo for all k € N.
These spaces are generalization of the space bv), for 1 < p < oo,

Definition 1.1. A modulus function is a function f : [0,e0) — [0, o) such that
1. f(x) =0if and only if x =0,
2. flx+y) < f(x)+ f(y), forall x,y > 0,
3. fisincreasing,
4. f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,0). The modulus func-
tion may be bounded or unbounded. For example, if we take f(x) = 175, then
f(x) is bounded. If f(x) =x”,0 < p < 1 then the modulus function f(x) is un-
bounded. Subsequently, modulus function has been discussed in ([2], [3], [23],
[24], [28]) and references therein.

Definition 1.2. Let X be a linear metric space. A function p : X — R is called
paranorm, if

(P1) p(x)>0forallx € X,
(P2) p(—x)=p(x)forallx € X,

(P3) p(x+y) < p(x)+p(y) forall x,y € X,
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(P4) if (A,) is a sequence of scalars with A, — A as n — oo and (x,) is a se-
quence of vectors with p(x, —x) — 0 as n — oo, then p(A,x, — Ax) —
0 asn — oo

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric
of any linear metric space is given by some total paranorm (see [30, Theorem
10.4.2, p. 183]).

Definition 1.3. Let X and Y be two sequence spaces and A = (a,) be an infinite
matrix of real or complex numbers a,;, where n,k € N. Then we say that A
defines a matrix mapping from X into Y if for every sequence x = (x;);_, € X,
the sequence Ax = {A,(x)}"_, and the A-transform of x is in Y, where

An(x) =Y amxe (neN). (1)
k=0

By (X,Y) we denote the class of all matrices A such that A : X — Y. Thus
A € (X,Y) if and only if the series on the right-hand side of (1) converges for
each n € N and every x € X and we have Ax € Y for all x € X.

Definition 1.4. The matrix domain X4 of an infinite matrix A in a sequence
space X is defined by

Xa={x=(x) ew:Axe X} ()
which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by several authors
(see [11, [19], [26]). In [17] Kara introduce the Fibonacci difference sequence
spaces [,(F) and I.(F') as

R " ; p
I,(F) = {x: (xn) EW:Z ff x,,—ffﬂxn_]’ <oo}7 1 < p<oo,
n n+1 n
and
I.(F) = {x = (x,) €Ew: sup I Xp— f"“xn,l‘ < oo}.
neN Snt1 In

The sequence {f, }:_, of Fibonacci numbers is given by the linear recurrence
relations fo = f1 = 1 and f, = f,—1 + fu—2, n > 2. Fibonacci numbers have
many interesting properties and applications in arts, sciences and architecture.
For example, the ratio sequences of Fibonacci numbers converges to the golden
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ratio which is important in sciences and arts. Also, in [14] some basic properties
of Fibonacci numbers are given as follows:

" 1
lran +/5

=5 = « (golden ratio),

n—eo  f,

ka:fn+2_1 (HGN),
k=0

1
— converges,
Zk: Tk

foctfus1 — f2=(=1)""  (n>1) (Cassini formula).
Substituting for £, in Cassini’s formula yields f2 | + f,fu—1 — f2 = (=1)"*1.
Let f, be the nth Fibonacci number for every n € N. Then we define the infinite
matrix £ = (fux) by

R _f% (k:n_1)7
=9y 75 (k=n),

0 (0<k<n—1lork>n)

where n,k € N (see [17]).
Define the sequence y = (y,) by the £ transform of a sequence x = (x,,), i.e.,

Y

fox _ _
. 0 =2X0 (n=0),
L=E(x) =4 /i neN). (3)
Y ( ) { f{an ﬁ}+]xn 1 (I’l 1) ( )

Definition 1.5. A sequence space X with a linear topology is called a K-space,
provided each of the maps p, : X — R defined by p,(x) = x, is continuous for
all n € N. A K-space X is called an FK-space provided X is complete linear

metric space. An FK-space whose topology is normable is called a BK-space.
1

The space ,(1 < p < o) is a BK-space with ||x||, = (Z ]xk|p) and cp, ¢ and

I, are BK-spaces with ||x||cc = sup | x|
k

Let F = (F;) be a sequence of modulus functions. Let p = (py) be any bounded
sequence of positive real numbers and u = (1) be a sequence of strictly positive
real numbers. F = (f,;) denotes a Fibonacci band matrix and f; is the kth Fi-
bonacci number for every k € N. In this paper we define the following sequence
spaces:

Pk
I(F,F,p,u) = {x: (xx) Ew: Z [ukaOJ{ka—f]}:lxkl’)] < oo}7

k
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and

Lo(F,F,p,u) = {x: (xx) ew:iug
S

uy Fy, (‘fﬁlxk — ﬁ}:lxklolpk < oo}.

With the notation of (2), the sequence spaces I[(F, F,p,u) and l.(E,F,p,u)
may be redefined as follows

I(E,F,pu)={l(F,p,u)}; (1<p<e) and L.(F,F,p,u)={l-(F,p,u)}s.

4)

The following inequality will be used throughout the paper. Let p = (px) be

a sequence of positive real numbers with 0 < p; < suppy = H, and let D =
k

max {1,271}, Then, for the factorable sequences (a;) and (b;) in the complex
plane, we have
|a + bi|"* < D(Jag|™* + bi|"*). &)

In this paper, we define Fibonacci difference sequence spaces defined by a se-
quence of modulus functions and Fibonacci matrix £. We investigate some
topological properties of these new sequence spaces and establish some inclu-
sion relations concerning these spaces. Also we determine the o—, B— and y—
duals of the space I(F,F,p,u) and l.(F,F,p,u) in third section of this paper.
In the fourth section of the paper we construct the matrix transformation of the
space (I(F,F,p,u),X) and (I.(F,F,p,u),X) , where 1 < p < oo and X is any
of the spaces I, 1, c and cp. In the last section, we characterize some geometric
properties of the space [(F, F, p,u).

2. Some topological properties of the spaces [(F', F, p,u) and L.(E, F, p,u)

Theorem 2.1. Let F = (Fy) be a sequence of modulus functions and p = (px)
be a bounded sequence of positive real numbers and u = (uy) be a sequence of
strictly positive real numbers. Then I(F,F,p,u) and l..(F,F,p,u) are linear
spaces over the complex field C.

Proof. Letx,y € [(F,F,p,u). Then

Pk
Jx St
u Fy, ‘7)61c — 7)(1{_1‘ < oo
( Jer Sk

Pk
Jk Jix1
urFy <‘fk+1yk - 7}%—1 ‘)] < oo,

)y

k

and

)y

k




142 KULDIP RAJ - SURUCHI PANDOH - SEEMA JAMWAL

For A, € C, there exist integers M, and N, such that |[A| <M and |u| < Ny.
Using inequality (5) and definition of modulus function, we have

Z uka(’l(J{:xk—ﬁ}zl >+'u(fkfi1 fl}Hy )D]pk

k

so that Ax+ wy € I[(F,F, p,u). This proves that [(F,F, p,u) is a linear space.
Similarly we can prove that L.(F, F, p,u) is a linear space. O

Theorem 2.2. Let F = (F;) be a sequence of modulus functions and p = (py)
be a bounded sequence of positive real numbers and u = (uy) be a sequence of
strictly positive real numbers. Then l(ﬁ ,F,p,u) is a paranormed space with

1

uky ‘ixk—@xk—l‘ Bk
Jies1 Ji

where 0 < py < suppy = H < o0 and K = max(1,H).

k

g(x) = sup (Z

Proof. Clearly g(x) = g(—x), for all x € [(F,F,p,u). It is trivial that —xk—

f’}* iy 1 =0, for x = 0. Since £ < 1, using Minkowsky inequality, we have

A s

( " <f+l _T%_]‘)Hk&(‘]{.ﬁyk—ﬁyk1‘>rk>K
Jin PE\ &

< urk (fﬂk_kakID )

IN

<
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uy F ‘i)’k—@ykq‘ . ?'
T S+ Jr

Hence g(x) is subadditive. For the continuity of multiplication let us take any
complex number ¢. By definition, we have

s =sn (5 s f ) )] )

where Cy, is a positive integer such that |a| < Cy. Now, Let o — 0 for any fixed
x with g(x) = 0. By definition for || < 1, we have

+<Z |

f f Pk
Z uiFy, ‘—kxk — ﬂxk,l‘ < € forn > no(S). (6)
T S+ Jr
Also for 1 < n < ng, taking o small enough. Since F; is continuous, we have
Pk
Z u Fy, ‘ixk — @xk,l ‘ <E. @)
T S+ Tk

Now from equation (6) and (7), we have
g(ax) — 0 as o — 0.
This completes the proof. Ul

Theorem 2.3. Let F = (F;) be a sequence of modulus functions. If p = (py) and
q = (qx) are bounded sequences of positive real numbers with 0 < p; < g < oo
for each k, then I(E, F,p,u) C I(F,F,q,u).

Proof. Letx € I(F,F,p,u). Then

Pk
Z Mkﬂ(‘}{ixk—f?:xkl’)] < oo,

k

This implies that
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for sufficiently large values of k (say) k > kg, for some fixed ko € N. Since Fy is

increasing and p; < g; we have
uiF ‘ i . fk+1xk 1‘
Jiet1 Jr

Y | wiFi ‘ka_@k 1‘ qk< Y
fk+1 fk _ka

Pk

k>ko

< oo,
Hence x € [(F, F,q,u). This completes the proof. O
Theorem 2.4. Let F = (Fy) be a sequence of modulus functions and B =
th%wFt() > 0. Then I(F,F,p,u) CI(F,p,u).

Proof. In order to prove that [(E, F, p,u) C I(F,p,u). Let B > 0. By definition

of B, we have Fi(t) > B(t), for all t > 0. Since > 0, we have ¢ < %Fk(t) for
all r > 0.
Let x = (x3) € [(F,F,p,u). Thus, we have
P
Z ‘ Ji e _fk+1xk 1‘ Z W F, ’ Ji e S ‘ '
St Jr p frer fi
which implies that x = (x;) € [(F, p,u). This completes the proof. O

Theorem 2.5. Let F' = (F)) and F" = (F") are sequences of modulus func-
tions, then

IE,F p,u)nI(F, F" p,u) CUE,F' +F", p,u).
Proof. Letx = (x) € I(F,F',p,u)NI(F,F", p,u). Therefore

7 Pk
Z [uka (‘ﬁ{ixk—ﬁ}zlxk1’> < o0

and

Then, we have
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/ " Jk St "
Thus, Z uk(Fk +Fk ) ‘karl — Txk,l‘ < oo,

%
Therefore, x = (x;) € [(F, F'+ F", p,u) and this completes the proof. O

Theorem 2.6. Let F = (F;) and F' = (F)) be two sequences of modulus func-
tions, then
(P, F',p.u) CUF FoF' p,u).

Proof. Let € > 0 and choose & > 0 with 0 < 6 < 1 such that F(¢) < € for

0<r<9.
ukF’<

Y Bl = Y[Rl + Y [Fe ()]
k 1 2

Write y, =

fk—lxk — f;:] Xi_1 ))] and consider

where the first summation is over y; < & and second summation is over y; > 8.
Since F; is continuous, we have

Y [Fe(y) < & ®)
1
and for y; > &, we use the fact that

Yk Yk
<—=<14+=.
Yk 5 +6

By the definition, we have for y, > &
k
Flye) < 2F(1)%

Hence

Y [Fi(ye))P < max (1, (2Fk(1)6*1)H) Yyl ©)
X

2
From equation (8) and (9), we have

l(ﬁ,]—",p,u) C I(F,fof’,p,u).

This completes the proof. O
Theorem 2.7. Let 1 < py < H < oo for all k € N. Then I(F,F,p,u) is a BK-
space with the norm |[x||, ¢ 7 , ) = |Ex]|,, i.e.,

i 50 = (£ i) ")

and o
Il 7.y = 59 1B (Fn(x))]
neN
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Proof. Since (4) holds, [, and [ are BK-spaces with respect to their natural
norms and the matrix F is a triangle; Theorem 4.3.12 of Wilansky [30, p.63]
gives the fact that the spaces [(F', F, p,u) and L..(F, F, p,u) are BK-spaces with
the given norms, where 1 < pp < H < oo for all k € N. This completes the
proof. 0

Remark 2.8. One can easily check that the absolute property does not hold on
the spaces [(F', F,p,u) and l.(E,F,p,u), that is 15l 7 oy 7 XN 7
and [|x[[,_z 7 ) 7 [IX]ll1 (2 7 p.u) fOr at least one sequence in both the spaces
I(F,F,p,u) and L.(F,F,p,u); this shows that [(F, F,p,u) and L.(F,F,p,u)
are the sequence spaces of non-absolute type, where |x| = (Jxx|) and 1 < p; <
H < forall ke N.

Theorem 2.9. The sequence space I(F,F, p,u) of non absolute type is linearly
isomorphic to the space l,, that is, I(F,F,p,u) = Iy, for1 < pp <H < o for
all ke N.

Proof. 1t is enough to show that the existence of a linear bijection between the
spaces [(F,F,p,u) and I, for 1 < py < H < o for all k € N. Consider the
transformation 7' defined with the notation of (3), from [(F', F, p,u) to [ by x —
y=Tx. Then Tx =y = Fx € I, for every x € [(F,F, p,u). Also, the linearity
of T is clear. Further it is trivial that x = 0 whenever Tx = 0 and hence T is
injective.
We assume that y = (yi) € [, for 1 < py < H < oo for all k € N and define the
sequence x = (x) by
k42

Jir .

=Y

Then in the case 1 < py < H < oo forall k € N and p = oo, we get

_ f f P\
x|l 2 — wF ‘*kx —ﬂx _ ’
H ”[(F7_7'—,p7u) (Zk: i k k( fk+1 k fk k—1
1

| fi & fin e R "\
— F . .
(Zk: _uk k(‘fkﬂj;)fjfjﬂyj Ji ]Zf)fjfj—s-lyj’

(L)’

k
= yllp <

keN.

Xk —

and o
Il .70 = 510 [ D] = e <
(S
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respectively. Hence T is linear bijection which shows that the spaces [, and
I(F,F,p,u) are linearly isomorphic for 1 < py < H < oo for all k € N. This
concludes the proof. Ul

We wish to exhibit some inclusion relations concerning the space I(F', F, p,u).

Theorem 2.10. The inclusion 1, C I(F,F, p,u) strictly holds for 1 < py <H <
oo for all k € N.

Proof. To prove the validity of the inclusion [, C [(F, F, p,u) for 1 < py <H <
o for all k € N, it suffices to show the existence of a number M > O such that
||x||l(1:",]:.,p,u) < M”x”[’ for every x € ll"

Letx €/, and 1 < py < H <o forall k € N. Since the inequalities Fk(J{—L) <1
and F; (f’}—zl) < 2 hold for every k € N, we obtain with the notation of (3),

Z [uka ’Fk ] < Zzl’k 1 [ukaOXk‘ + |2xk 1‘):|
k
Pk
S 22pk—1 Z |:Mka|xk|:| —|—2 [uka]2xk_1 |:| )
k k

and

A Pk Pk
sup [ Fi(|F(x)))| " < 3sup [weFill)|
keN keN

which together yield, as expected,
5l 7 puy S 4llxllp  for 1 <p <o (10)

Further, since the sequence x = (x) = (f2.;) = (1,2%,32,5%,...) belongs to
I(F,F,p,u)— I, the inclusion I, C I(F,F,p,u) is strict for 1 < py < H < oo
for all kK € N. Similarly, one can easily prove that the inequality (10) also holds
in the case p = 1, and so we omit the details. This completes the proof. O

3. The o—,B— and y— duals of the space [(F, F, p,u)
The a—, f— and y— duals of the sequence space X are respectively defined by
X*={a=(ar) ew:ax= (qxy) €1y forallx= (x;) € X},

XP ={a= (&) ew:ax= (axi) € cs forallx = (x) € X}

and
X"={a= (ax) € w:ax = (arxy) € bs forallx = (x;) € X},
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where cs and bs are the sequence spaces of all convergent and bounded series,
respectively [8]. We assume throughout that p,g > 1 with %4— % =1 and denote
the collection of all finite subsets of N by H.

In this section, we determine o—,— and y— duals of the sequence space
I(F,F,p,u) of non-absolute type. Since the case p = 1 can be proved by same
analogy, we omit the proof of that case and consider only the case 1 < py < H <
oo for all k € N in the proof of Theorem 3.5. In [27] the following known results
are fundamental for our investigation.

Lemma 3.1. A = (au) € (I5,1) if and only if

Z Ank

nek

Lemma 3.2. A = (a,x) € (Ip,c) if and only if

sup )

oo, 1< p<Loo,

lim a,; exists for allk € N, an
n—yoo
sup Y [an|? < oo, 1< p<oo, (12)
neN f
Lemma 3.3. A = (ay) € (Iw,c) if and only if (11) holds and
,}glgo;\ankr:;uggank\. (13)

Lemma 3.4. A = (au) € (I,1) if and only if (12) holds with 1 < p < oo,
Theorem 3.5. The ac— dual of the space I(F,F,p,u) is the set

) Pk
dA] _ {a:(ak)EWI SUPZ [“ka< Z J{;C;]lan q)] <°°}7

KeH i nek
Proof. Let 1 < p; < H < oo for all k € N. For any fixed sequence a = (a,) € w,
we define the matrix B = (b,) by
P
" aken

2
by = Z uka<‘ fn+1 Ay
(k> n)

where 1 < pr < H < oo forall k € N.

T SeSrer1

for all n,k € N. Also, for every x = (x,,) € w, we put y = Fx. Then it follows by
(3) that

i =)

k k=0 Jifre+1

n fr%Jrl Pk B
wFi ‘ y anyk‘ —B,(y) (neN).  (14)
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Thus, we observe by (14) that ax = a,x, € I; whenever x € I[(F, F, p,u) if and
only if B(y) € [; whenever y € [,,. Therefore, we drive by using Lemma 3.1 that

fnz+1 o\ "
sup Y luFe| | ) %an < oo,

KeH nek
which implies that [I(F, F, p,u)]* = d;. m

Theorem 3.6. Define the sets dAz, ds and d. by

. I f2+1 Pk

d=<a=(ay) ew: u Fy ) / ‘ exists for allk € N 3
{ () Z ( ]Z;C fkfk—i—l

n fa& g Pk
d3 = ag) Ew:su urF / i < oo
’ { = (o) pz kk(;(fkfkﬂ“) }
d4:{a:(ak)€w:r}1_r>1(}ol;

neN =0
n n f2 Pk
+1
uka ‘ J ‘ =
-0 < ]Z;cfkflﬁ-l

f2 Pk
urF ‘ Las ’ < oo,
Zk: ¢ k( szcfkfkﬂ !
Then [I(F, F,p,u)|P = dyNd and [1..(F, F,p,u)|P = dy Ndy where 1 < p; <

H < ooforallk e N.
Theorem 3.7. [I(F, F,p,u)]Y = ds, where 1 < p; < H < oo forall k € N.

and

Proof. The result can be obtained from Lemma 3.4. 0

4. Matrix transformations related to the sequence space [(£', F, p,u)

In this section, we characterize the classes (I(F,F,p,u),X), where 1 < p; <
H < oo forall k € Nand X is any of the spaces /., /1, ¢ and cp.
For simplicity in notation, we write

oo fg Pk
Qnk = ui ’ Jtl an~‘ for all k,n € N.
(=L | k( kafk+1 !

k Jj=k

The following lemma is essential for our results.

Lemma 4.1 ([15], Theorem 4.1). Let A be an FK-space, U be a triangle, V be
its inverse and | be an arbitrary subset of w. Then we have A = (ay;) € (Ay, 1)
if and only if

cm = (c(”)) € (A,c) forallneN

mk
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and
C= (Cﬂk) € (17“)7
where
(n) Y ayvie (0<k<m),
Cmk = Jj=k
0 (k> m)

and N

Cok = ) anjvjk forallk,m,n € N.

Jj=k

Now, we list the following conditions:

m f2 q Pk
I -
ik (’jz;(fkfkﬂa"]‘ >] =

m f2 Dk
uiF) ‘ Jtl an" =dy, VYnkeN,
¢ k( kafk+1 ! g

j=k

m
sup Z

meN =0

lim
m—yeo

4 fj2+1
l/thk ‘ Ani
Jg;(fkfk+l "

supz |Gn]? < oo,

neN
Z dnk

neN

Pk
)] =Y |au| foreachneN,
k

. m

supZ q<oo

NeH

Y

lim d,, =di; keN,
n—oo

,}E)Qo;ldnk\ =) lal,

P2
nggozk:ﬁnk =0,
Sup |dpk| < oo,
nkeN

m 2 . Pk
j+
sup |upFy Z J a,,j’ < oo,
kmeN i Seiert

15)

(16)

a7

(18)

(19)

(20)

2y

(22)

(23)

(24)
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sup Y |dnk| < oo, (25)
keN;

sup [ YY) | <ee. (26)
N.KeEH ' neNkek

Then by combining Lemma 4.1 with the results in (see [27]), we immediately
derive the following results.

Theorem 4.2. (a) A = (ay) € (L (F,F,p,u),l.) if and only if (16), (23) and
(24) hold.

(b) A = (an) € (11 (F,F,p,u),c) if and only if (16), (20), (23) and (24) hold.
(c) A= (aw) € (L(E,F,p,u),co) if and only if (16), (20) with d, =0, (23) and
(24) hold.

(d) A= (an) € (11 (F,F,p,u),ly) if and only if (16), (24) and (25) hold.

Theorem 4.3. Let 1 < pp < H < oo for all k € N. Then we have

(a) A= (an) € (I(F,F,p,u),L.) if and only if (15), (16) and (18) hold.

(b) A = (an) € (I(F,F,p,u),c) ifand only if (15), (16), (18) and (20) hold.
(c) A = (ay) € (I(F,F,p,u),co) if and only if (15), (16), (18) and (20) with
dr =0 hold.

(d)A = (an) € (I(F,F,p,u),ly) ifand only if (15), (16) and (19) hold.

Theorem 4.4. (a) A = (au) € (I.(F,F,p,u),ls) if and only if (16), (17) and
(18) with g =1 hold.

(b) A = (an) € (Io(E,F,p,u),c) if and only if (16), (17), (20) and (21) hold.
(c) A= (an) € (I.(F,F,p,u),co) ifand only if (16), (17) and (22) hold.

(d) A = (an) € (Io(E, F,p,u),ly) if and only if (16), (17) and (26) hold.

5. Some geometric properties of the space [(F, F, p,u)

In this section, we study some geometric properties of the space I(F', F, p,u) for
(1 < pr < H < o) for all k € N. For these properties, (see [10], [20], [25]).

A Banach space X is said to have the Banach-Saks property if every bounded
sequence (x,) in X admits a subsequence (z,,) such that the sequence {#(z)} is
convergent in the norm in X [19], where

tk(z)Z%(Zo+Z1+...+Zk) (ke N). (27)

A Banach space X is said to have the weak Banach-Saks property whenever,
given any weakly null sequence (x,) C X, there exists a subsequence (z,) of
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(xn) such that the sequence {#;(z)} is strongly convergent to zero.
In [12], Garcia-Falset introduces the following coefficient:

R(X) =sup{ lgn inf ||x, —x[| : (x,) C B(X),xs =0, x€B(X)}, (28)

where B(X) denotes the unit ball of X.

Remark 5.1. A Banach space X with R(X) < 2 has the weak fixed point prop-
erty [13].

Let 1 < p < . A Banach space is said to have the Banach-Saks type p or the
property (BS), if every weakly null sequence (x;) has a subsequence (xy,) such
that for some C > 0,

Y | < Clnt 15 (29)

=0

for all n € N (See [16]).
Now, we may give the following results related to some geometric properties of
the space [(F', F,p,u), where 1 < py < H < oo forall k € N.

Theorem 5.2. Let 1 < py < H < oo for all k € N. Then the space (F,F,p,u)
has the Banach-Saks type p.

Proof. Let (g,) be a sequence of positive numbers for which ¥ g, < % and also
let (x,) be a weakly null sequence in B(I(F,F,p,u)). Set ap = xo =0 and
a) = xp, = x1. Then there exists m; € N such that

oo

Y a (i)el?

i=m;+1

< €. (30)
1(F,F,p,u)

Since (x,) being a weakly null sequence implies x, — 0 coordinatewise, there
is an ny € N such that

< €,

m )
an(i)e(’)
i=0

l(F,f,p,u)
when n > ny. Set ap = x,,,. Then there exists an my > m; such that

oo

Z az(i)e(i)

i=mp+1

< &.

I(F,F ,pu)

Again using the fact that x, — 0 coordinatewise, there exists an n3 > ny such
that

< &,

my ]
an(i)e(’)
i=0

I(F,F,pu)
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when n > nj.
If we continue this process, we can find two increasing subsequences (m;) and
(n;) such that

m;
an(i)e( ) <§gj
=0 I(E.F.p.u)
foreachn >n;, i and
Y aj(i)e? <¢j,
i=mj+ I(F.F p.u)
where b; = Xn; - Hence,
n
Y 4
J=0 1(F,F,p.u)
n mj—1
NS (T ae+ ¥ aed+ ¥ alie
j=0 \_ i=0 i=mj_1+1 i=mj+1 I(B,F\pu)

IA
=
3
‘M\‘_
B
=
~_

i=0 U(EFpu) I(F F.p.u)
+ Z < Z aj(l)e(’)>
Jj=0 \i=m;+1 I(F,]:,p,u)

n
+228j.

(FFpu) 170

< Z( Z aj(i)e(i)>

i:mj,1+1

On the other hand, it can be seen that ||x[|;z 7 , ) < 1. Therefore, we have that

m; .
< Z aj(i)e(’)>
0 \ i=m;_1+1 I(FF p,u)

Pk
fi o S
ma,-@—ﬁa,-(z—l)\)]

Pk

T‘M:

J=0i=m;_1+1
n oo Pk
S;}; uka< fil aj(i)— fl}zl (l—l)‘)] <(n+1).

Hence, we obtain

1
<(n+1)7%

mj .
( ) aj(i)e(’)>
0 \ i=mj_1+1
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1
By using the fact 1 < (n+ 1) foralln € Nand 1 < py < oo, we have

1 1
<(n+1)+1<2(n+1)7.
1(F.F,pu)

i a;(i)
=0

Hence, [(F, F, p,u) has the Banach-Saks type p. This concludes the proof. []

Remark 5.3. Note that R(I(F, F,p,u)) = R(l,) = 27 since I(F,F,p,u) is lin-
early isomorphic to /,.

Hence by Remarks 5.1 and 5.3, we have the following theorem.

Theorem 5.4. The space I(F ,F,p,u) has the weak fixed point property, where
1 <ppr <H<ooforallkeN.
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