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QUADRUPLE FIXED POINT THEOREM FOR HYBRID PAIR
OF MAPPINGS UNDER GENERALIZED NONLINEAR
CONTRACTION

BHAVANA DESHPANDE - AMRISH HANDA

We establish a quadruple coincidence and common quadruple fixed
point theorem for hybrid pair of mappings under generalized nonlinear
contraction on a non-complete metric space, which is not partially or-
dered. It is to be noted that to find quadruple coincidence point, we do
not employ the condition of continuity of any mapping involved therein.
We also give an example to validate our result. We improve, extend and
generalize various known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all non-empty closed
bounded subsets of X. Let D(x, A) denote the distance from x to A C X and H
denote the Hausdorff metric induced by d, that is,

D(x, A) = infd(x, a)

acA

and H(A, B) = max {supD(a, B), supD(b, A)} , forall A, B € CB(X).
acA beB
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The study of fixed points for multivalued contractions and non-expansive map-
pings using the Hausdorff metric was initiated by Markin [31]. The existence of
fixed points for various multivalued contractive mappings has been studied by
many authors under different conditions. For details, we refer the reader to ([4],
[14], [15], [26], [35], [43]) and the reference therein. The theory of multivalued
mappings has application in control theory, convex optimization, differential in-
clusions and economics. Nadler [39] extended the famous Banach Contraction
Principle [6] from single-valued mapping to multivalued mapping.

Bhaskar and Lakshmikantham [10] established some coupled fixed point
theorems and applied these results to study the existence and uniqueness of so-
lution for periodic boundary value problems. Lakshmikantham and Ciric [27]
proved coupled coincidence and common coupled fixed point theorems for non-
linear contractive mappings in partially ordered complete metric spaces and ex-
tended the results of Bhaskar and Lakshmikantham [10].

Berinde and Borcut [8] introduced the concept of tripled fixed point for
single-valued mappings in partially ordered metric spaces and established the
existence of tripled fixed point for single-valued mappings in partially ordered
metric spaces.

Karapinar [25] introduced the concept of quadruple fixed point for single
valued mappings in partially ordered metric spaces and established the existence
of quadruple fixed point for single-valued mappings in partially ordered metric
spaces.

Many researchers have studied coupled, tripled and quadruple fixed point
theorems for single valued mappings including([3], [5], [7], [9], [11], [16], [17],
[18], [19], [23], [24], [28], [30], [36], [37], [38], [40], [42], [45]).

Recently Samet et al. [41] claimed that most of the coupled fixed point
theorems for single valued mappings on ordered metric spaces are consequences
of well-known fixed point theorems. Some of our basic references are ([12],
[13], [32], [33], [34D.

Coupled fixed point theory were extended by Abbas et al. [2] to multival-
ued mappings and obtained coupled coincidence point and common coupled
fixed point theorems involving hybrid pair of mappings satisfying generalized
contractive conditions in complete metric spaces.

The concepts of tripled fixed point theory were extended by Deshpande et
al. [20] in the settings of multivalued mappings and obtained tripled coinci-
dence point and common tripled fixed point theorems involving hybrid pair of
mappings under generalized nonlinear contraction.

Further quadruple fixed point theory were extended to multivalued map-
pings by Deshpande and Handa [21]: they obtained quadruple coincidence point
and common quadruple fixed point theorems involving hybrid pair of mappings
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under ¢ — Y contraction.
In [21], Deshpande and Handa introduced the following for multivalued
mappings:

Definition 1.1. Let X be a non-empty set, F : X* — 2% (a collection of all non-
empty subsets of X) be a multivalued mapping and g be a self-mapping on X.
An element (x, y, z, w) € X*#is called

(1) a quadruple fixed point of F if x € F(x,y,z,w),y € F(y, 2z, w, x), z € F(z,
w,x,y)and w € F(w, x, y, 7).

(2) a quadruple coincidence point of hybrid pair {F, g} if g(x) € F(x, y, z,
w), 8(y) € F(y,z, w, x), g(z) € F(z, w, x, y) and g(w) € F(w, x, y, 2).

(3) a common quadruple fixed point of hybrid pair {F, g} if x = g(x) € F(x,
v,z w),y=8u) €F(y,z,w,x),z=g(z) € F(z, w, x,y) and w = g(w) € F(w,
X, Y, 7).

We denote the set of quadruple coincidence points of mappings F and g by
C{F, g}. Note that if (x, y, z, w) € C{F, g}, then (y, z, w, x), (z, w, x, y) and (w,
X, y, z) are also in C{F, g}.

Definition 1.2. Let F : X* — 2% be a multivalued mapping and g be a self-
mapping on X. The hybrid pair {F, g} is called w-compatible if g(F(x, y, z,
w)) C F(gx, gy, gz, gw) whenever (x, y, z, w) € C{F, g}.

Definition 1.3. Let F : X* — 2% be a multivalued mapping and g be a self-
mapping on X. The mapping g is called F-weakly commuting at some point (x,
v, 2, w) € X*if g%x € F(gx, gy, 82, gw), &7y € F(gy, 8z, gw, gx), g7z € F(gz,
gw, gx, gv) and g*w € F(gw, gx, gy, 82)-

Lemma 1.4. Let (X, d) be a metric space. Then, for eacha € X and B € CB(X),
there is by € B such that D(a, B) = d(a, by), where D(a, B) = infpcpd(a, D).

Very few papers were devoted to coupled, tripled and quadruple fixed point
problems for hybrid pair of mappings including ([1], [2], [20], [21], [22], [29],
[44]).

In this paper, we prove a quadruple coincidence and common quadruple
fixed point for hybrid pair of mappings under generalized nonlinear contraction
on a non-complete metric space, which is not partially ordered. It is to be noted
that to find quadruple coincidence point, we do not employ the condition of
continuity of any mapping involved therein. We improve, extend and generalize
the results of Abbas et al. [2], Bhaskar and Lakshmikantham [10], Ding et
al. [23] and Lakshmikantham and Ciric [27]. An example is also given to
demonstrate the effectiveness of our result.
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2. Main results

Let @ denote the set of all functions ¢ : [0, +o0) — [0, +o0) satisfying
(ip) @ is non-decreasing,
(iig) limy—e @"(¢) = O for all 7 > 0, where " (1) = @"(¢(1)).
It is clear that ¢(r) < t for each 7 > 0. In fact, if ¢(#y) > 1y for some #y > 0,
then, since ¢ is non-decreasing, ¢"(fy) > 1, for all n € N, which contradicts with
lim,,—, @™ (fo) = 0. In addition, it is easy to see that ¢(0) = 0.

Theorem 2.1. Let (X, d) be a metric space, F : X* — CB(X) and g : X — X be
two mappings. Suppose that there exists ¢ € ® such that

H(F(x,y,z2,w),F(p,q,r.s)) ¢))
I d(gx, gp), D(gx, F
d(gy, g9), D(gy, F 7D(gq, F(q, 1, s, p)),
(%@%%%F %FUSMD

) ,
d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, 1)),
< ¢ | max D(gx, F(p, q,r, s))+D(gp, F(x,y,2, W)) )

2
D(gy, F(g, 1 s, p));D(gq F(y 2w, X))
D(gz, F(r, s, p, q))erD(gr-, F(z, w x, y))
D(gW, F(S' p7 q7 r));_D(gs7 F(W' x7 y7 )

=

)

J

forallx,y, z,w, p, q, r,s € X. Furthermore assume that F(X*) C g(X) and g(X)
is a complete subset of X. Then F and g have a quadruple coincidence point.
Moreover, F and g have a common quadruple fixed point if one of the following
conditions holds:

(a) F and g are w-compatible.

’}1_r>1°10g X=p, hmg y=gq, hmg =1 hmg w=s
for some (x,y, z, w) € C{F, g} and for some p, q, r, s € X and g is continuous
at p,q,rands.
(b) g is F-weakly commuting for some (x,y, z, w) € C{F, g} and gx, gy, gz
and gw are fixed points of g, that is, g*x = gx, g%y = gy, g°z = gz and g*w = gw.
(¢) g is continuous at x, y, 7 and w.

lim g"p = x, hmgq Y, hmg r=z, hmg s=w

n—soo

for some (x,y, z, w) € C{F, g} and for some p, q,r,s € X.
(d) g(C{F, g}) is a singleton subset of C{F, g}.
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Proof. Let xo, Yo, zo, wo € X be arbitrary. Then F(xo, Yo, zo, wo), F (Yo, zo, Wo,
x0), F(zo, wo, X0, yo) and F (wo, xo, o, z0) are well defined. Choose gx; € F (x,
Y0, 20, Wo), &1 € F(yo, 20, wo, Xo), 821 € F(z0, wo, X0, yo) and gw; € F(wy,
X0, Yo, 20), because F (X*) C g(X). Since F : X* — CB(X), therefore by Lemma
1.4, there exist u; € F(x1, y1, 21, wi), u2 € F(y1, 21, w1, x1), u3 € F(zy, wy, x1,
y1) and uy € F(wy, x1, y1, z1) such that

d(gx1, uy) < H(F(xo0, yo, 2o, wo), F(x1, y1, z1, 1)),
d(gy1, uz) < H(F(yo, z0, wo, X0), F(y1, z1, wi, x1)),
d(gz1, uz) < H(F(zo, wo, X0, Y0), F(z1, wi, x1, y1)),
d(gwi, ug) < H(F(wo, X0, Yo, 20), F(w1, x1, y1, 21))-

Since F(X*) C g(X), therefore there exist x2, y2, z2, wa € X such that u; = gx»,
uy = gys, u3 = gz and ugy = gws. Thus

d(gx1, gx2) < H(F(xo, Yo, 20, o), F(x1, y1, z1, 1)),
d(gy1, gv2) < H(F (yo, zo, wo, Xo0), F(y1, z1, wi, x1)),
d(gz1, gz2) < H(F (20, wo, X0, Y0), F(z1, w1, X1, 1)),
d(gwi, gw2) < H(F(wo, X0, Yo, 20), F(w1, x1, y1, 21)).

Continuing this process, we obtain sequences {x,}, {yn}, {z»} and {w,,} in X
such that for all n € N, we have gx,+1 € F(Xu, Yus Zns Wn)s &nt1 € F(Yny Zny W,
Xn), 8Zn+1 € F(2n, Wn, X, Yn) and gwpy1 € F(Wy, Xy, Yn, 2n) such that

d(gxn; 8%n+1)
SH(F(anJn—l,anl anl),F(XmYn,Zn,Wn))

) wa)), )
(gxn 1y F(xn 15Yn—1:32n—1,Wn— 1))7
d(8Yn—1,8Yn),D(&Yns F (Vs 2n, Wiy Xn)),
D(gYn—1,F (Yn—1,Zn—1,Wn—1,Xn-1))5
d(82n—1,82n), D(82n, F (20, Wiy XnsYn)),
D(8zn—1,F (Zn—1,Wn—1,%n—1,Yn—1))
d(gwnflaan)aD(anaF(Wnaxn’ynazn))a
D(gWn—1,F(Wn—1,Xn—1,Yn—1,2n-1))5

(gxn 1,8%n), (gxna (xnaynazna

< @ | max

IA

D(%n—1,F (Xn:Yn52n:Wn)) +D(8%n F (Xn—1,Yn—1,Zn—1,Wn—1))
D(gyn-1,F (yn,zmwn,xn))JrD(Zg)m F(yn— 17Zn—17Wn—l7xn71))7
D(gzn—1,F (zmwn,xmyn)HD(ngmF (zn- 1,w,171,xn71,yn71))7
D(gwnfl7F(men7))mzn))+D2(gW F(Wn—1,%n-1,Yn— 1,zn71))7

L 2
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< @ |max

Thus
d(g-xnagxn+l)
< @ |max
Similarly

d(gyn,8Yn+1)

< @ |max

< ¢ | max

\

BHAVANA DESHPANDE - AMRISH HANDA

(gxn lgxn); (gxnaganrl))d(gynfl7gyn)7
)

) (an 1,an) d(gznagzn+l)>
) d(gxn—lzygxwrl)

d(8Vn,&Yn+1

d(an l7gwn)7 ( EWn, 8Wn+1
)

(gyn l s8Vn+1 (g Zn— 1 gzn+1) (anfl,anJrl)
’ 2

(gxn lgxn); (gxnaganrl))d(gynfl7gyn)7
)

d(gyn; 8¥nt1),d(82n—1,8%n),d (82, 82n 1),
) M

d(gwn 17gwl’l)7 (gwnagwl’l-l-l 9
d(gyn— 1g)n+1) d(820-1,8%n11) d(8Wn—1,8Wn+1)
2 ) 2

(gxn 1,8%n), (gxnaganrl))d(gynfl7gyn)7

)
d(8yn,8¥n+1),d (anfl7an),d(§zn7an+l)7
d(gWn—1,8Wn),d(§Wn, gWy 1), LELE1)
d(gyn— lgyn+1) (gzn—127g2n+1) d(gw”*lz‘rgwwrl)

d(gxn—_1,8%), (gxn,gan) d(gyn—1,8Vn),

)
d(8Yn,8Yn+1),d(82n—1,8%n)d(82n,8Zn+1),
d(gwn-1,8wn),d(g wn,gwnm,w
d(gyn— 1gyn+1) (gznfa,gznﬂ) d(gwn—lzaanJrl)

d(gwn, 8Wnt1)

< @ | max

d(gxn—_1,8%), (gxn,gxnm d(gyn—1,8Vn),

)
d(8Vn;&Yn+1)-d(82n—1,82n),d(82n,8Zn+1),

d(gXn—1,8%n+1
d(an lagwn)a (ngan-',-l), (g 3 1)
d(gyn— 7gyn+1) d(8zn-1,82n+1) A(8Wn—1,8Wn+1)

2 ) 2

Combining them, we get

max{ d (8, 8Xn1),d(8Yn, 8¥n+1), }
d(an,anJrl)7d(8wn,gwn+1)

< @ | max

d(gxn—1,8%n),d(8Xn, 8%n+1),d(8Yn—1,8Yn)-

d(8yn,8¥n+1),d(82n—1,87n),d(82n, 8Zn+1)
d n—1:8+n

d(gwn 1>an) (gwn,gwnﬂ),w
(gyn Igyn-%—l) (an_lz,gz,,_H) d(gwn—lzagwn+1)

i

)

)

)

)

IA
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d(gxnfl7gxn))d(gxﬂ)gxl%%l)vd(gynflagyn)a
d(8Yn:8Yn+1)-d(82n—1,82n),d(82n: 8Zn+1),

S (P max d(anfl,an),d(an,gW,H»l)7
d(8%n—1,8%)+d(8%n,8%n+1) d(&Vn—1,8Yn)+d(8Vn:8¥n+1)

I 9

2 2
d(82n—1,82n)+d(82n,8%n+1) d(gWn—1,8Wn)+d(gWn,gWn11)
2 ) 2

d(gxn—1,8%n),d(gVn—1,8Vn),d(82n—1,82n),
S (p max d(gwn,17gwn)7d(gxn,gxn+1),d(gyn,gyn+1),
d(8zn,82n+1),d(8Wn, 8Wni1)

Thus

max{ d (g%, 8xnt1), d(8Yns 8Ynt1), }
d(gzl’la ng’l-H)? d(an, an-H)

d(gxn—1, 8%n), d(&Vn—1, 8Yn), d(8Zn—1, 8zn);
<@ |max{ d(gwn—1, gWn), d(8Xn, &Xnt1), d(&Vns 8¥n+1),
d(gzl’la ng’l-H)? d(an, an-H)

If we suppose that
d(gxn-1, 8%n), d(g¥n—1, &¥n), d(82n-1, 82n),

max q d(gwp—1, 8Wn), d(8%n, &%nt1), A(&Vns &Vn+1),
d(an, an-‘rl)a d(an, gwn—H)

= max{ d(gxn, gxn-‘rl)? d(g)’m gyn+l)7 }
d(8zn, 82nt1), d(gWn, gWns1)

Then, by (2) and by the fact that ¢(¢) < ¢ for all > 0, we have

d(gzn, 8znt1), d(gWn, &Wni1)

d(8Xn, gxnt1)s d(8Vns &Yn+1), H
< max
=¢ |: { d(an, an-H)a d(gwm gwn-‘rl)

max{ d(gxi’h gxn+l)7 d(gy}’h g)’n+1)7 }

< max{ d(gx'h gxn-i-l)? d(gym gyn-i—l)a }’

which is a contradiction. Thus we must have

d(gxn—1, 8%n), d(8Vn—1, &n), d(8Zn—1, 82n),
max < d(gwn—1, Wn), d(8Xn, 8Xn+1), d(8Vn, &¥n+1),
d(8zn, 87n+1), d(8Wn, §Wn+1)
_max{ d(gxn-1, 8%n), d(g¥n-1, 8Yn), }
d(8zn—1, 82n), d(8Wn—1, §Wn)

163

2
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Hence by (2), we have for all n € N

max{ d(gxnv gxn+1)7 d(gynv gYn+1), }
d(8zn, 8zn+1), d(&Wn, §Wni1)

d(gxn—la gxn)v d(gyn—h gyn)v }:|
< max
- q’{ { d(gzn—1, 82n), d(gWn—1, gWn)

< o [max{ d(gxo, gx1), d(gyo, 1), H

)
d(gzo, 821), d(gwo, gw1)

Thus

d(gx, 8Xni1), d(&Vn, 8ni1) }
max ) R <o 5 7 ;
{ d<gzn7 an+1), d(gW,“ an—H) SS9 ( ) ( )

where

d(gX(), gxl)a d(gy07 gy1)7 }
0 = max .
{ d(gz0, 821), d(gwo, gw1)

Without loss of generality, one can assume that max{d(gxo, gx1), d(gyo, 1),
d(gz0, 821), d(gwo, gw1)} # 0. In fact, if this is not true, then gxo = gx; € F(x,

Y0, 20, Wo), &0 = &v1 € F (Yo, 20, Wo, Xo), 820 = gz1 € F(z0, wo, Xo, yo) and
gwo = gwi € F(wo, X0, Y0, 20), that is, (xo, Yo, 20, o) is a quadruple coincidence
point of F and g. Thus, for m, n € N with m > n, we have by (3) that

d(gxm gxm+n)
< d(gxn, &xnt1) +d(8Xns1, &Xnt2) + - +d(8Xntm—1, &Xm+n)

Smax{ d(gxrn gxn-i-l), d(gym gyn_i_l)’ }
d(ana an+1), d(gwn, gwnJrl)

—i—max{ d(ganrh gxn+2)v d(gynJrl: gyn+2)7 }
d(gzn+17 an+2)7 d(an+17 gwn+2)

+ ...+ max
{ d(anerfla an+m)> d(aner,l, an+m)

<@"(8)+ @ (8) +...+ " L(8)

d(gxn+m71a gxn+m)a d(gynerfla gyner)a }

which implies, by (iig ), that {gx, } is a Cauchy sequence in g(X). Similarly we
obtain that {gy,}, {gz,} and {gw,} are Cauchy sequences in g(X). Since g(X)
is complete, therefore there exist x, y, z, w € X such that

lim gx, = gx, lim gy, = gy, lim gz, = gz and lim gw, = gw. 4
n—soo n—oo n—oo n—soo
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Now, since gxn+1 € F(Xn, Y, Zny Wn), 8¥nt1 € F(Vny Zny Wns Xn), 8Zn+1 € F(2n,
W, Xn, Yn) and gw,1 € F (Wy, X, Yn, Zn), therefore

D(gxnt1, F(x, y, 2, w)) <H(F(Xn, Yny 70y Wa), F(x, ¥, 2, w)),
D(gyn+1, F(y 2, w, x)) < H(F(Yu, 20y W, Xa), F(y, 2, w, X)),
D(gzn+1, F(z, w, x, ) < H(F(2n, Way Xu, Ya), F(z, w, X, ¥)),
D(gwnt1, F(w, x,y, 2)) <H(F(Wn, Xps Yns 2n), F(w, x, 3, 2)),

by using condition (1), we get

D(ganrla F(X Y, Z,w )) < (P[An]a
(gyn+la (y W, x)) < (P[An];
D(gzn+1, F(z, w, x,y)) < @[A],
D(gwps1, F(w, x, y, 2)) < @[A,].
Thus
D(gxn+17 (X Y, w ))7
D (gyn+1, F(y, z, w, x)),
< 0lA,], 5
TN Digg, Feowx, ), (5O ®
D(gwni1, F(w, x, y, 2)
where
( d(g-xn7gx)7d(gxn7gxn+l)7D(gxaF(-x)yvzaW))7
d( ymgy)ad(gyn’gynJrl)vD(g ,F(y,z,w,x)),
d(anvgz)7d(anaan+l)vD(gva(vaaxa)’))y
d(gw,,,gw) d(an,an+1), (gw F(w,x,y,z )a
A, = max D(gxn,F (x,:2, W))+d(gx gxnm

D(gyn,F (yz,w )) d(gygyn+1)
D(gzn,F (z,w,x >))+d(gz 8Znt1)

2 9
(an (W)C7y Z))+d(gw7gwn+l)
2

Now, by (4), there exists ng € N such that for all n > ny,

D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
A, —
"= MY Dlgz, F(z, w, x, y)),
D(gw, F(w, x, y, 2))



166

BHAVANA DESHPANDE - AMRISH HANDA

Combining this with (5), we get for all n > ny,

( D(gxn+la ()C Yz, w ))7

D(gyﬂ+17 (y7 Z, W, X)),
(an+1, (Za W, X, y))
(an+1, (Wv X, Y, 2 )

(gXny7Z7 )7

( )
(&, F(y, z, w, X)),
=@ | max D(gz, F(z, w, x, y)),

i D(gw, F(w, x, ¥, z))

max

o S

D

Now, we claim that

D
D
max - o
D

If this is not true, then

max > 0.

Then, by (6) and by the fact that ¢(¢) < ¢ for all t > 0, we get

D(gxn+17 (X Yz, W ))) D(g (X Y 2, W
D

max (gynJrlv (y7 Z, W, X)), < max D(gy (y, Z, W, X)),
D(gzn+1, F(z, w, x, y)), D(gz, F(z, w, x, y)),
D(an+1, (Wv X, Y Z ) D(gW F(W X, Y, 2 ))

Letting n — o

D(gx, F(x, y, z, w)), D(gx, F(x, y, z, w
max D(gy, F(y, z, w, x)), < max D(gy, F(y, z, w, x))

D(gz, F(z, w, x, y)), D(gz, F(z, w, x, ¥)),

D(gw, F(w, x, y, 2)) D(gw, F(w, x, ¥, z))

in the above inequality, by using (4), we obtain

which is a contradiction. So (7) holds. Thus, it follows that

gxEF(x,y, 2, w), gy € F(y, 2, w, x),
gz € F<Z7 W, X, y)7 gw € F(W7 X, ), Z),

(6)

(7
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that is, (x, y, z, w) is a quadruple coincidence point of F and g. Hence C{F, g}
is non-empty.
Suppose now that (a) holds. Assume that for some (x, y, z, w) € C{F, g},

lim g"x = p, hmgy q, hmg z=rand lim g"w =s, (8)

n—oo n—yoo

where p, g, r, s € X. Since g is continuous at p, g, r and s. We have, by (8), that
D, g, r and s are fixed points of g, that is,

gr=p, 89 =4q, gr=rand gs=s. ®
As F and g are w-compatible, so, foralln > 1,
grxeF (¢ 'x gy g 'z g w),
gy EF(g" Yy, "1z, " Iw, g 1)
g'zE F(g" 'z, ¢ 'w, g x, " ly), (10)
gweF(g 'w g 'y, gy ¢ ).
Now, by using (10), we obtain

n—1

D(g"x,F(p,q,1,5)) <H(F (" 'x,8" 'y,8"'2,¢""'w),F(p,q,n1,5)),
D(g"y,F(q,r,5,p)) <H(F(g" 'y, ¢" 'z,8" 'w,¢" 'x),F(q,r,5,p)),
D(g"z,F(r,s,p,q)) <H(F(¢" 2,8 'w,g" 'x,8"'y),F(r,5,p,9)),
D(g"w,F(s,p,q,r)) <H(F(g" 'w,g" 'x,8" 'y,8" '2),F (s,p,q,7)),

which, by (1), implies that

D(g"x, F(p, q, 1, 5)) < @[V,],
D(g"y, F(q, 1, s, p)) < @[V4],
D(g"z, F(r, s, p, q)) < @[V4l, (11)
D(g"w, F(s, p, g, 1)) < @[V,
where
d(g"x,gp),D(gp. F(p,q,r,s)), 2ErLprs)) tdlens’)
V. — max d(g"y,89),D(gq,F(q,r,s p))i(gnyF(q Hp))+d(gq,i"y)
d(g"2,8r), D(gr,F (1,5, p,q)), A&l p ) Ldlend)
d(g"w,gs),D(gs,F (s, p.q,r)), D(g"w.F (s,p.4, r))+d(gs7g"W)

By (8) and (9), there exists ng € N such that for all n > ny,

D(gp, F(p, q, 1, 3)),
D(gq, F(q, 1, 5, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, 1)

V,, = max
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Combining this with (11), we get for all n > ny,

D(g"x, F(p, g 1, 5)),
D(g"y, F(q, 1, s, p)),
D(g"z, F(r, s, p, q)),
D(g "w F(s, p, q, 1))

D(gp, F(p
27

max

(12)

< ¢ | max

oS

( F
(gr, F(r, s, p, q)

Now, we claim that

( _
max <r, 5 . 4) =0 (13)

If this is not true, then

F

(gq, F

max P > 0.
F

(
Then, by (12) and by the fact that ¢(z) < ¢ for all 7 > 0, we get for all n > ny,

D(g"x, F(p, q, 1, 5)), D(gp, F(p, g, 1, 5)),
D(g"y, F(q, 1, s, p)), D(gq, F(q ns, p)),
max " < max
D(g"z, F(r, s, p, ), D(gr, F(r, s, p, 4)),
D(g"w, F(s, p, q, 1)) D(gs, F(s, p, q, 1))
On taking limit as n — oo in the above inequality, by using (8) and (9), we get
D(gp, F(p, q, 1, 5)), D(gp, F(p, g, 1, 5)),
D(gq, F(q, r, s, p)), D(gq, F(q, 1, s, p)),
max < max ,
D(gr, F(r, s, p, q)), D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, 1)) D(gs, F(s, p, q, 1)
which is a contradiction. So (13) holds. Thus, it follows that
gpEF(p, g, 1,5), 84 € F(q, r. s, p), (14)

greF(r, s, p,q), 8€F(s, p,q,r).
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Thus, by (9) and (14), we have

p=8pEF(p,q rs),q=89<€F(q,rs,p),
r=greF(r,s, p q),s=gs€F(s, p,q,r),

that is, (p, ¢, r, s) is a common quadruple fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y, z, w) € C{F, g},
g is F-weakly commuting, that is, g’x € F(gx, g, 82, gw), &2y € F (g, 82, gw,
gx), 8°2 € F(gz, gw, gx, gy), &°w € F(gw, gx, gy, 82) and g°x = gx, g%y = gy,
§°z = gz, &'w = gw. Thus gx = g%x € F(gx, gy, 82, §w), &y = &7y € F(gy, &z,
gw, gx), 82 =gz € F(gz, gw, gx, gy) and gw = g*w € F (gw, gx, g, g2), that s,
(gx, gy, gz, gw) is a common quadruple fixed point of F and g.
Suppose now that (¢) holds. Assume that for some (x, y, z, w) € C{F, g}
and for some p, g, r, s € X,
limg"'p=ux, limg'qg=y, limg'r=zand lim g"s = w. (15)
n—oo n—oo n—oo n—oo
Since g is continuous at x, y, z and w. Therefore, by (15), we get that x, y, z and
w are fixed points of g, that is,

gx=x, gy=y, gz=zand gw =w. (16)
Since (x, y, z, w) € C{F, g}. Therefore, by (16), we get

x=gx€F(x,y z,w),y=g8y€F(y, z, w, x),
1=g8z€F(z,w,x,y), w=gwe F(w, x, y, 2),

that is, (x, y, z, w) is a common quadruple fixed point of F and g.
Finally, suppose that (d) holds. Let g(C{F, g}) = {(x, x, x, x) }. Then {x} =
{gx} = F(x, x, x, x). Hence (x, x, x, x) is quadruple fixed point of F and g. [

Example 2.2. Suppose that X = [0, 1], equipped with the metric d : X x X —
[0, 4-o0) defined by d(x, y) = max{x, y} and d(x, x) =0 for all x, y € X. Let
F : X* — CB(X) be defined as

{0}, forx, y, z, w=1,

F(x, y, z, w) :{ [0, M] ,forx, y, z, we [0, 1),

and g : X — X be defined as

g(x)=x% forallxeX.
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Define @ : [0, o) — [0, +o0) by
Lofort#1
_) 2
(1) { %, forr =1.
Now, for all x, y, z, w, p, g, r, s € X with x, y, z, w, p, g, r, s € [0, 1), we have
Case (a) If x> +y* + 22 +w? = p?> + ¢* +r> + %, then

H(F(x,y,z,w), F(p, q, 1, 5))
_p2+q2—|—F2+S2
- 8

—_—

1 1 1
< —max{x?, p*} + 3 max{y?, ¢°} + 3 max{z%, r*} + 3 max{w?, s>}

oo

1 1
~d(gy, 8q) + gd(gz, gr)+

1
< —d
<3 (gx, gp)+8

(d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, 1, ),
d(gy; gq), D(gy, F(y, z, w, x)), D(gq, F(q, 1, 5, P)),
d(gz, gr), D(gz, F(z, w, x,y)), D(gr, F(r, 5, p, q)),
1 d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, 1)),
< Emax D(gx, F(p, g, S))+D(gp F(x, 52 W))7
D(gy, F(q, 1., p)) D(gq, F(y, 2, w, X))’
D(gz, F(r, s, p, q)) D(gr, F(z, w, x, y))’
D(gw, F(s, p, g, r))zzrD(gs F(w, x,,2))
i d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, ¢, 1 5)), )]
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, 5, p, q)),
d(gw, &s), D( " F(w, x,y, z)), D(gs, F(s, p, q, 1)),
< @ |max D(gx, F(p, g, 1,5)+D(gp, F(x, ), 2, vv))

D(gy F(g, 1,5, p))%D(gq F(y,z,w, x))
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))
2)

2
D(gw, F(s, p, q, 7)) +D(gs, F(w, x,y, 2 ) )
L \ 2 .

Case (b)) f > +y> + 22 +w? # p* +@* +r* + s> with x> +y? + 22 +w? <
PP +q>+r*+5%, then
H(F(x,y, z, w), F(p, q, 1, )
PP RS
B 8
1 1 1
< —max{x?, p2}+§max{y2, q2}+§max{z2, r2}+§max{w2, s?}

— 00|

1 1
~d(gz, gr)+ cd(gw, gs) <

1
~d(gy, 8q) + g 2

< —d(gx, gp)+ 2

oo
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d(gx, gp)
d(gy, gq)
d(gz, gr),
d(gw, gs),

)

I

IN
| =

d(gx, gp)
d(gy, g9)
d(gz, gr)

d(gw, gs)
max
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F(x,y,z, w))
F(y, z, w, X))
D(gz, F(z, w, x, y))

( W? F(W7 x7 y7 ))7

D(gx, F(p, g, 1, S))ZD(gp,
D(gy, F(q, 1.5, p));D(gq F(y,z,w x)
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y)
D(gw,

, D(gp, F(p, q, 1, %)),
(89, F(q, 1, s, p)),
(g, F(r, 5, p, q)

),
(gs,) (s, p, q, 1),

yz,W)

D(gx,
D(gy,

, D
, D

D
(x,

)
! )
F(s,p; g r));rD(g& F(w, x, y, Z))

J

ns)),
s, P));
F(r, s, p, q)

),
F(s, p, q, 1)),

, D(gx, F(x, y, z, w)), D(gp, F(p, q,
, D(gy, F(y, z, w, x)), D(gq, F(q, r,
, D(gz, F(z, w, x, y)), D(gr,

)
, D(gw, F(w, x, y, z)), D(gs,
D(gx, F(p, g, 1, s))+D(gp F(x,y,2,w)
D(gy

2
F(g, 1,5, p))+D(gq,
2
D(gz, F(r, s, p, 9))+D(gr F(z, w, x, y)
2
D(gw, F(s, p, q,1))+D(gs, F(w, x, y, 2
2

F(y, z, w, X)

)
)
)
)

Similarly, we obtain the same result for PP Hrr+s2 <P+ + 2w

Thus the contractive condi
x7y7Z7W7p7q7 r7se[07 1
we[0,1)and p, g, 1, s =

tion (1) is satisfied for all x, y, z, w, p, g, r, s € X with

). Again, for all x, y, z, w, p, q, r, s € X with x, y, z,
1, we have

H(F(x,y,z,w), F(p, q, 1, 5))
Y 42w
- 8
1 1 1 1
< gmax{xz, p2}+ fmax{yz, )+ fmax{zz, )+ gmax{wz, 2}
1
gd(gx gp)+ d(gy, gq) + Sd(gz, gr)+ d(gw, gs)
d(gx gp), D(gx, F(x, y, z, w )), D(gp, F(p, q, 1, 5)),
d(gy, 89), D(gy F(y, z, w, x)), D(gq, F(q, 1, 5, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),
1 d(gw, gs), D(gw, F(w, x, y, 2)), D(gs, F(s, p, q, 1)),
< Emax D(gx, (p7q r s))+D(gP Fx, 9 2 W) <
D(gy, F(g, 1, s, p)) D(gq, F(y, z, w, X))
D(gz, F(r, s, p, q));D(gnF(zv W, X, y))
D(gw, F (s, p, ¢, r))2+D(gv F(w, x, y, Z))
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(d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, g, 7, 5)), )]
d(gy, g9), D(gy, F(y, z, w, x)), D(gq, F(q, 1, s, p)),
d(gz, gr), D(gz, F(z, w, x, y))))7 D(gr, F(r, s, p, )))

d(gw, gs), D(gw, F(w, x, y, 2)), D(gs, F(s, p, g,
< ¢ | max D(gx, F(p, q,r, Y))+D(gp F(x,9 2, W))

D(gy, F(g, 1 s, p))%gD(gq F 2w, x))
D(gz, F(r, 5, p, ));D(gr F(z,w, x, y))
D(gw, F (s, p, 4, r))2+D(gs7 F(w, x,y,2)

)7?

)

Thus the contractive condition (1) is satisfied for all x, y, z, w, p, g, r, s € X with
x,y,z,w€|0,1)and p, g, r, s = 1. Similarly, we can see that the contractive
condition (1) is satisfied for all x, y, z, w, p, g, r, s € X with x, y, z, w, p, q, T,
s = 1. Hence, the hybrid pair {F, g} satisfies the contractive condition (1), for all
X, ¥, 2, W, p, q, I, s € X. In addition, all the other conditions of Theorem 2.1 are
satisfied and z = (0, 0, 0, 0) is a common quadruple fixed point of hybrid pair
{F, g}. The function F : X* — CB(X) involved in this example is not continuous
at the point (1, 1,1, 1) € X*.

Remark 2.3. We improve, extend and generalize the result of Ding et al. [23]
in the following sense:

(i) We prove quadruple coincidence and common quadruple fixed point the-
orem while Ding et al. [23] proved coupled coincidence and common coupled
fixed point theorems.

(ii) We prove our result in the settings of hybrid pair of mappings.

(iii) To prove our result we consider non complete metric space and the
space is also not partially ordered.

(iv) The mapping F : X* — CB(X) is discontinuous and not satisfying mixed
g-monotone property.

(v) The function @ : [0, 4-o0) — [0, +o0) involved in our theorem and exam-
ple is discontinuous.

(vi) Our proof is simple and different from the other results in the existing
literature.

If we put g = I (I is the identity mapping) in Theorem 2.1, then we have the
following result:

Corollary 2.4. Let (X, d) be a complete metric space, F : X* — CB(X) be a
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mapping. Suppose that there exists ¢ € ® such that

H(F(x, y,z,w), F(p, q, 1, 5))

d(x, p), D(x, F(x, y, z, w)), D(p, F(p, q, 1, 5)), )]

d(y, q), D(y, F(y, z, w, x)), D(q, F(q, 1, s, p)),

d(z, r), D(z, F(z, w, x, ¥)), D(r, F(1, 5, p, q)),

d(w7 s)7 D W? F(W x y7 Z))? D(s? F(s7 p7 q? r))?

< @ | max D(x, F(p, q,r, s))J;D(p F(x,y,z,w)) ,

D(y, F(g,r, s, p));D(q, F(y, 2, w,x))
D(z, F(r,s, p q))erD(n F(z,w,x,y))
D(w, F(s, p, q r))2+D(37 F(w,x, 3, 2))

forallx,y,z,w, p,q,r,s € X. Then F has a quadruple fixed point.

If we put ¢(t) = kt where 0 < k < 1 in Theorem 2.1, then we have the
following result:

Corollary 2.5. Let (X, d) be a metric space. Assume F : X* — CB(X) and
g: X — X be two mappings satisfying

H(F(x, y, z,w), F(p, q, 1, 5))

(d(gx, gp), D(gx, F(x, y, z, w)
d(gy, gq), D(gy, F(y, )
d(gz, gr), D(gz, )
d(gw, gs), D( 7F(W X, y, z))
D(gx, F(p,q, 1, S))+D(gp

F
F

< kmax

D(gy, F(q, 1,5, p))+D(gq, F(y, 2, w, x)

)
D(gz, F(r,5,p, q )) D(gr, F(z, w, x, y)
( )

2
D(gw, F (s, p,q,r))+D(gs, F(w, x,y, 2
2

N Nt Nl

)

for all x, y, z, w, p, q, r, s € X, where 0 < k < 1. Furthermore assume that
F(X*) C g(X) and g(X) is a complete subset of X. Then F and g have a quadru-

ple coincidence point. Moreover, F and g have a common quadruple fixed point,
if one of the following conditions holds:

(a) F and g are w-compatible.

lim g"x = p, hmgy q, hmg Z=r, hmg w=s
n—oo

for some (x,y, z, w
atp,q,rands.

(b) g is F-weakly commuting for some (x, y, z, w) € C{F, g} and gx, gy, gz
and gw are fixed points of g, that is, g°x = gx, g%y = gy, g°z = gz and g*w = gw.

) € C{F, g} and for some p, q, r, s € X and g is continuous
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(¢) g is continuous at x, y, 7 and w.

lim ¢"p =x, lim g"g =y, lim g"r =z, lim g"s =w

n—oo

for some (x,y, z, w) € C{F, g} and for some p,q,r,s € X.
(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put g = I (I is the identity mapping) in Corollary 2.5, then we have the
following result:

Corollary 2.6. Let (X, d) be a complete metric space, F : X* — CB(X) be a
mapping satisfying

H(F(x, y,z,w), F(p, q, 1, 5))

(d(x, p), D(x, F(x,y, z, w)), D(p, F(p, q, 1, 5)),
d(y, q), D(y, F(y, z, w, x)), D(q, F(q, 1, s, p)),
d(z, r), D(z, F(z, w, x, y)), D(r; F(r, s, p, q)),
d(w, s), D(w, F(w, x, , z)), D(s, F(s, p, q, 1)),
< kmax D@H,qm»w@ F(x,5,2,w))

D(y,F(q,15, p))w;D(cL (0n 2w, x)
D(z, F(r, s, p, q))+D(r,
( r)

B
=
=
<
=

F(z,
2
D(w, F(s, p, g, r))+D(s, F(w, x, 5, 2
2

forall x,y,z,w, p,q,r,s € X, where 0 < k < 1. Then F has a quadruple fixed
point.
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