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QUADRUPLE FIXED POINT THEOREM FOR HYBRID PAIR
OF MAPPINGS UNDER GENERALIZED NONLINEAR

CONTRACTION

BHAVANA DESHPANDE - AMRISH HANDA

We establish a quadruple coincidence and common quadruple fixed
point theorem for hybrid pair of mappings under generalized nonlinear
contraction on a non-complete metric space, which is not partially or-
dered. It is to be noted that to find quadruple coincidence point, we do
not employ the condition of continuity of any mapping involved therein.
We also give an example to validate our result. We improve, extend and
generalize various known results.

1. Introduction and Preliminaries

Let (X , d) be a metric space and CB(X) be the set of all non-empty closed
bounded subsets of X . Let D(x, A) denote the distance from x to A ⊂ X and H
denote the Hausdorff metric induced by d, that is,

D(x, A) = inf
a∈A

d(x, a)

and H(A, B) = max
{

sup
a∈A

D(a, B), sup
b∈B

D(b, A)
}
, for all A, B ∈CB(X).
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The study of fixed points for multivalued contractions and non-expansive map-
pings using the Hausdorff metric was initiated by Markin [31]. The existence of
fixed points for various multivalued contractive mappings has been studied by
many authors under different conditions. For details, we refer the reader to ([4],
[14], [15], [26], [35], [43]) and the reference therein. The theory of multivalued
mappings has application in control theory, convex optimization, differential in-
clusions and economics. Nadler [39] extended the famous Banach Contraction
Principle [6] from single-valued mapping to multivalued mapping.

Bhaskar and Lakshmikantham [10] established some coupled fixed point
theorems and applied these results to study the existence and uniqueness of so-
lution for periodic boundary value problems. Lakshmikantham and Ciric [27]
proved coupled coincidence and common coupled fixed point theorems for non-
linear contractive mappings in partially ordered complete metric spaces and ex-
tended the results of Bhaskar and Lakshmikantham [10].

Berinde and Borcut [8] introduced the concept of tripled fixed point for
single-valued mappings in partially ordered metric spaces and established the
existence of tripled fixed point for single-valued mappings in partially ordered
metric spaces.

Karapinar [25] introduced the concept of quadruple fixed point for single
valued mappings in partially ordered metric spaces and established the existence
of quadruple fixed point for single-valued mappings in partially ordered metric
spaces.

Many researchers have studied coupled, tripled and quadruple fixed point
theorems for single valued mappings including([3], [5], [7], [9], [11], [16], [17],
[18], [19], [23], [24], [28], [30], [36], [37], [38], [40], [42], [45]).

Recently Samet et al. [41] claimed that most of the coupled fixed point
theorems for single valued mappings on ordered metric spaces are consequences
of well-known fixed point theorems. Some of our basic references are ([12],
[13], [32], [33], [34]).

Coupled fixed point theory were extended by Abbas et al. [2] to multival-
ued mappings and obtained coupled coincidence point and common coupled
fixed point theorems involving hybrid pair of mappings satisfying generalized
contractive conditions in complete metric spaces.

The concepts of tripled fixed point theory were extended by Deshpande et
al. [20] in the settings of multivalued mappings and obtained tripled coinci-
dence point and common tripled fixed point theorems involving hybrid pair of
mappings under generalized nonlinear contraction.

Further quadruple fixed point theory were extended to multivalued map-
pings by Deshpande and Handa [21]: they obtained quadruple coincidence point
and common quadruple fixed point theorems involving hybrid pair of mappings
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under ϕ−ψ contraction.
In [21], Deshpande and Handa introduced the following for multivalued

mappings:

Definition 1.1. Let X be a non-empty set, F : X4→ 2X (a collection of all non-
empty subsets of X) be a multivalued mapping and g be a self-mapping on X .
An element (x, y, z, w) ∈ X4 is called

(1) a quadruple fixed point of F if x∈F(x, y, z, w), y∈F(y, z, w, x), z∈F(z,
w, x, y) and w ∈ F(w, x, y, z).

(2) a quadruple coincidence point of hybrid pair {F, g} if g(x) ∈ F(x, y, z,
w), g(y) ∈ F(y, z, w, x), g(z) ∈ F(z, w, x, y) and g(w) ∈ F(w, x, y, z).

(3) a common quadruple fixed point of hybrid pair {F, g} if x = g(x)∈ F(x,
y, z, w), y = g(y) ∈ F(y, z, w, x), z = g(z) ∈ F(z, w, x, y) and w = g(w) ∈ F(w,
x, y, z).

We denote the set of quadruple coincidence points of mappings F and g by
C{F, g}. Note that if (x, y, z, w) ∈C{F, g}, then (y, z, w, x), (z, w, x, y) and (w,
x, y, z) are also in C{F, g}.

Definition 1.2. Let F : X4 → 2X be a multivalued mapping and g be a self-
mapping on X . The hybrid pair {F, g} is called w-compatible if g(F(x, y, z,
w))⊆ F(gx, gy, gz, gw) whenever (x, y, z, w) ∈C{F, g}.

Definition 1.3. Let F : X4 → 2X be a multivalued mapping and g be a self-
mapping on X . The mapping g is called F-weakly commuting at some point (x,
y, z, w) ∈ X4 if g2x ∈ F(gx, gy, gz, gw), g2y ∈ F(gy, gz, gw, gx), g2z ∈ F(gz,
gw, gx, gy) and g2w ∈ F(gw, gx, gy, gz).

Lemma 1.4. Let (X , d) be a metric space. Then, for each a∈X and B∈CB(X),
there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = infb∈B d(a, b).

Very few papers were devoted to coupled, tripled and quadruple fixed point
problems for hybrid pair of mappings including ([1], [2], [20], [21], [22], [29],
[44]).

In this paper, we prove a quadruple coincidence and common quadruple
fixed point for hybrid pair of mappings under generalized nonlinear contraction
on a non-complete metric space, which is not partially ordered. It is to be noted
that to find quadruple coincidence point, we do not employ the condition of
continuity of any mapping involved therein. We improve, extend and generalize
the results of Abbas et al. [2], Bhaskar and Lakshmikantham [10], Ding et
al. [23] and Lakshmikantham and Ciric [27]. An example is also given to
demonstrate the effectiveness of our result.
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2. Main results

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) limn→∞ ϕn(t) = 0 for all t > 0, where ϕn+1(t) = ϕn(ϕ(t)).

It is clear that ϕ(t)< t for each t > 0. In fact, if ϕ(t0)≥ t0 for some t0 > 0,
then, since ϕ is non-decreasing, ϕn(t0)≥ t0 for all n∈N, which contradicts with
limn→∞ ϕn(t0) = 0. In addition, it is easy to see that ϕ(0) = 0.

Theorem 2.1. Let (X , d) be a metric space, F : X4→CB(X) and g : X → X be
two mappings. Suppose that there exists ϕ ∈Φ such that

H(F(x,y,z,w),F(p,q,r,s)) (1)

≤ ϕ


max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2




,

for all x, y, z, w, p, q, r, s∈X . Furthermore assume that F(X4)⊆ g(X) and g(X)
is a complete subset of X . Then F and g have a quadruple coincidence point.
Moreover, F and g have a common quadruple fixed point if one of the following
conditions holds:

(a) F and g are w-compatible.

lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz = r, lim
n→∞

gnw = s

for some (x, y, z, w) ∈C{F, g} and for some p, q, r, s ∈ X and g is continuous
at p, q, r and s.

(b) g is F-weakly commuting for some (x, y, z, w) ∈C{F, g} and gx, gy, gz
and gw are fixed points of g, that is, g2x = gx, g2y = gy, g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w.

lim
n→∞

gn p = x, lim
n→∞

gnq = y, lim
n→∞

gnr = z, lim
n→∞

gns = w

for some (x, y, z, w) ∈C{F, g} and for some p, q, r, s ∈ X .

(d) g(C{F, g}) is a singleton subset of C{F, g}.
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Proof. Let x0, y0, z0, w0 ∈ X be arbitrary. Then F(x0, y0, z0, w0), F(y0, z0, w0,
x0), F(z0, w0, x0, y0) and F(w0, x0, y0, z0) are well defined. Choose gx1 ∈ F(x0,
y0, z0, w0), gy1 ∈ F(y0, z0, w0, x0), gz1 ∈ F(z0, w0, x0, y0) and gw1 ∈ F(w0,
x0, y0, z0), because F(X4)⊆ g(X). Since F : X4→CB(X), therefore by Lemma
1.4, there exist u1 ∈ F(x1, y1, z1, w1), u2 ∈ F(y1, z1, w1, x1), u3 ∈ F(z1, w1, x1,
y1) and u4 ∈ F(w1, x1, y1, z1) such that

d(gx1, u1)≤ H(F(x0, y0, z0, w0), F(x1, y1, z1, w1)),

d(gy1, u2)≤ H(F(y0, z0, w0, x0), F(y1, z1, w1, x1)),

d(gz1, u3)≤ H(F(z0, w0, x0, y0), F(z1, w1, x1, y1)),

d(gw1, u4)≤ H(F(w0, x0, y0, z0), F(w1, x1, y1, z1)).

Since F(X4)⊆ g(X), therefore there exist x2, y2, z2, w2 ∈ X such that u1 = gx2,
u2 = gy2, u3 = gz2 and u4 = gw2. Thus

d(gx1, gx2)≤ H(F(x0, y0, z0, w0), F(x1, y1, z1, w1)),

d(gy1, gy2)≤ H(F(y0, z0, w0, x0), F(y1, z1, w1, x1)),

d(gz1, gz2)≤ H(F(z0, w0, x0, y0), F(z1, w1, x1, y1)),

d(gw1, gw2)≤ H(F(w0, x0, y0, z0), F(w1, x1, y1, z1)).

Continuing this process, we obtain sequences {xn}, {yn}, {zn} and {wn} in X
such that for all n ∈N, we have gxn+1 ∈ F(xn, yn, zn, wn), gyn+1 ∈ F(yn, zn, wn,
xn), gzn+1 ∈ F(zn, wn, xn, yn) and gwn+1 ∈ F(wn, xn, yn, zn) such that

d(gxn,gxn+1)

≤ H(F(xn−1,yn−1,zn−1,wn−1),F(xn,yn,zn,wn))

≤ ϕ



max



d(gxn−1,gxn),D(gxn,F(xn,yn,zn,wn)),
D(gxn−1,F(xn−1,yn−1,zn−1,wn−1)),

d(gyn−1,gyn),D(gyn,F(yn,zn,wn,xn)),
D(gyn−1,F(yn−1,zn−1,wn−1,xn−1)),

d(gzn−1,gzn),D(gzn,F(zn,wn,xn,yn)),
D(gzn−1,F(zn−1,wn−1,xn−1,yn−1)),

d(gwn−1,gwn),D(gwn,F(wn,xn,yn,zn)),
D(gwn−1,F(wn−1,xn−1,yn−1,zn−1)),

D(gxn−1,F(xn,yn,zn,wn))+D(gxn,F(xn−1,yn−1,zn−1,wn−1))
2 ,

D(gyn−1,F(yn,zn,wn,xn))+D(gyn,F(yn−1,zn−1,wn−1,xn−1))
2 ,

D(gzn−1,F(zn,wn,xn,yn))+D(gzn,F(zn−1,wn−1,xn−1,yn−1))
2 ,

D(gwn−1,F(wn,xn,yn,zn))+D(gwn,F(wn−1,xn−1,yn−1,zn−1))
2





≤
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≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


 .

Thus

d(gxn,gxn+1)

≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


 .

Similarly

d(gyn,gyn+1)

≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


 ,

d(gzn,gzn+1)

≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


 ,

d(gwn,gwn+1)

≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


 .

Combining them, we get

max
{

d(gxn,gxn+1),d(gyn,gyn+1),
d(gzn,gzn+1),d(gwn,gwn+1)

}

≤ ϕ

max


d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn+1)

2 ,
d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2 , d(gwn−1,gwn+1)

2


≤
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≤ ϕ

max



d(gxn−1,gxn),d(gxn,gxn+1),d(gyn−1,gyn),
d(gyn,gyn+1),d(gzn−1,gzn),d(gzn,gzn+1),

d(gwn−1,gwn),d(gwn,gwn+1),
d(gxn−1,gxn)+d(gxn,gxn+1)

2 , d(gyn−1,gyn)+d(gyn,gyn+1)
2 ,

d(gzn−1,gzn)+d(gzn,gzn+1)
2 , d(gwn−1,gwn)+d(gwn,gwn+1)

2




≤ ϕ

max


d(gxn−1,gxn),d(gyn−1,gyn),d(gzn−1,gzn),

d(gwn−1,gwn),d(gxn,gxn+1),d(gyn,gyn+1),
d(gzn,gzn+1),d(gwn,gwn+1)


 .

Thus

max
{

d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
(2)

≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gwn−1, gwn), d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)


 .

If we suppose that

max


d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gwn−1, gwn), d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)


= max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
.

Then, by (2) and by the fact that ϕ(t)< t for all t > 0, we have

max
{

d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
≤ ϕ

[
max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}]
< max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
,

which is a contradiction. Thus we must have

max


d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gwn−1, gwn), d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)


= max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}
.
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Hence by (2), we have for all n ∈ N,

max
{

d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
≤ ϕ

n
[

max
{

d(gx0, gx1), d(gy0, gy1),
d(gz0, gz1), d(gw0, gw1)

}]
.

Thus

max
{

d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
≤ ϕ

n(δ ), (3)

where

δ = max
{

d(gx0, gx1), d(gy0, gy1),
d(gz0, gz1), d(gw0, gw1)

}
.

Without loss of generality, one can assume that max{d(gx0, gx1), d(gy0, gy1),
d(gz0, gz1), d(gw0, gw1)} 6= 0. In fact, if this is not true, then gx0 = gx1 ∈ F(x0,
y0, z0, w0), gy0 = gy1 ∈ F(y0, z0, w0, x0), gz0 = gz1 ∈ F(z0, w0, x0, y0) and
gw0 = gw1 ∈F(w0, x0, y0, z0), that is, (x0, y0, z0, w0) is a quadruple coincidence
point of F and g. Thus, for m, n ∈ N with m > n, we have by (3) that

d(gxn, gxm+n)

≤ d(gxn, gxn+1)+d(gxn+1, gxn+2)+ ...+d(gxn+m−1, gxm+n)

≤max
{

d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
+max

{
d(gxn+1, gxn+2), d(gyn+1, gyn+2),
d(gzn+1, gzn+2), d(gwn+1, gwn+2)

}
+ ...+max

{
d(gxn+m−1, gxn+m), d(gyn+m−1, gyn+m),
d(gzn+m−1, gzn+m), d(gwn+m−1, gwn+m)

}
≤ ϕ

n(δ )+ϕ
n+1(δ )+ ...+ϕ

n+m−1(δ )

≤
n+m−1

∑
i=n

ϕ
i(δ ),

which implies, by (iiϕ), that {gxn} is a Cauchy sequence in g(X). Similarly we
obtain that {gyn}, {gzn} and {gwn} are Cauchy sequences in g(X). Since g(X)
is complete, therefore there exist x, y, z, w ∈ X such that

lim
n→∞

gxn = gx, lim
n→∞

gyn = gy, lim
n→∞

gzn = gz and lim
n→∞

gwn = gw. (4)



QUADRUPLE GENERALIZED NONLINEAR CONTRACTION 165

Now, since gxn+1 ∈ F(xn, yn, zn, wn), gyn+1 ∈ F(yn, zn, wn, xn), gzn+1 ∈ F(zn,
wn, xn, yn) and gwn+1 ∈ F(wn, xn, yn, zn), therefore

D(gxn+1, F(x, y, z, w))≤ H(F(xn, yn, zn, wn), F(x, y, z, w)),

D(gyn+1, F(y, z, w, x)) ≤ H(F(yn, zn, wn, xn), F(y, z, w, x)),

D(gzn+1, F(z, w, x, y)) ≤ H(F(zn, wn, xn, yn), F(z, w, x, y)),

D(gwn+1, F(w, x, y, z)) ≤ H(F(wn, xn, yn, zn), F(w, x, y, z)),

by using condition (1), we get

D(gxn+1, F(x, y, z, w))≤ ϕ[∆n],

D(gyn+1, F(y, z, w, x)) ≤ ϕ[∆n],

D(gzn+1, F(z, w, x, y)) ≤ ϕ[∆n],

D(gwn+1, F(w, x, y, z)) ≤ ϕ[∆n].

Thus

max


D(gxn+1, F(x, y, z, w)),
D (gyn+1, F(y, z, w, x)),
D(gzn+1, F(z, w, x, y)),
D(gwn+1, F(w, x, y, z))

≤ ϕ[∆n], (5)

where

∆n = max



d(gxn,gx),d(gxn,gxn+1),D(gx,F(x,y,z,w)),
d(gyn,gy),d(gyn,gyn+1),D(gy,F(y,z,w,x)),
d(gzn,gz),d(gzn,gzn+1),D(gz,F(z,w,x,y)),

d(gwn,gw),d(gwn,gwn+1),D(gw,F(w,x,y,z)),
D(gxn,F(x,y,z,w))+d(gx,gxn+1)

2 ,
D(gyn,F(y,z,w,x))+d(gy,gyn+1)

2 ,
D(gzn,F(z,w,x,y))+d(gz,gzn+1)

2 ,
D(gwn,F(w,x,y,z))+d(gw,gwn+1)

2


.

Now, by (4), there exists n0 ∈ N such that for all n > n0,

∆n = max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

 .
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Combining this with (5), we get for all n > n0,

max


D(gxn+1, F(x, y, z, w)),
D(gyn+1, F(y, z, w, x)),
D(gzn+1, F(z, w, x, y)),
D(gwn+1, F(w, x, y, z))

 (6)

≤ ϕ

max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))


 .

Now, we claim that

max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

= 0. (7)

If this is not true, then

max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

> 0.

Then, by (6) and by the fact that ϕ(t)< t for all t > 0, we get

max


D(gxn+1, F(x, y, z, w)),
D(gyn+1, F(y, z, w, x)),
D(gzn+1, F(z, w, x, y)),
D(gwn+1, F(w, x, y, z))

< max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

 .

Letting n→ ∞ in the above inequality, by using (4), we obtain

max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

< max


D(gx, F(x, y, z, w)),
D(gy, F(y, z, w, x)),
D(gz, F(z, w, x, y)),
D(gw, F(w, x, y, z))

 ,

which is a contradiction. So (7) holds. Thus, it follows that

gx ∈ F(x, y, z, w), gy ∈ F(y, z, w, x),

gz ∈ F(z, w, x, y), gw ∈ F(w, x, y, z),
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that is, (x, y, z, w) is a quadruple coincidence point of F and g. Hence C{F, g}
is non-empty.

Suppose now that (a) holds. Assume that for some (x, y, z, w) ∈C{F, g},

lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz = r and lim
n→∞

gnw = s, (8)

where p, q, r, s ∈ X . Since g is continuous at p, q, r and s. We have, by (8), that
p, q, r and s are fixed points of g, that is,

gp = p, gq = q, gr = r and gs = s. (9)

As F and g are w-compatible, so, for all n≥ 1,

gnx ∈ F(gn−1x, gn−1y, gn−1z, gn−1w),

gny ∈ F(gn−1y, gn−1z, gn−1w, gn−1x),

gnz ∈ F(gn−1z, gn−1w, gn−1x, gn−1y), (10)

gnw ∈ F(gn−1w, gn−1x, gn−1y, gn−1z).

Now, by using (10), we obtain

D(gnx,F(p,q,r,s))≤ H(F(gn−1x,gn−1y,gn−1z,gn−1w),F(p,q,r,s)),

D(gny,F(q,r,s, p))≤ H(F(gn−1y,gn−1z,gn−1w,gn−1x),F(q,r,s, p)),

D(gnz,F(r,s, p,q))≤ H(F(gn−1z,gn−1w,gn−1x,gn−1y),F(r,s, p,q)),

D(gnw,F(s, p,q,r))≤ H(F(gn−1w,gn−1x,gn−1y,gn−1z),F(s, p,q,r)),

which, by (1), implies that

D(gnx, F(p, q, r, s))≤ ϕ[∇n],

D(gny, F(q, r, s, p))≤ ϕ[∇n],

D(gnz, F(r, s, p, q))≤ ϕ[∇n], (11)

D(gnw, F(s, p, q, r))≤ ϕ[∇n],

where

∇n = max


d(gnx,gp),D(gp,F(p,q,r,s)), D(gnx,F(p,q,r,s))+d(gp,gnx)

2
d(gny,gq),D(gq,F(q,r,s, p)), D(gny,F(q,r,s,p))+d(gq,gny)

2
d(gnz,gr),D(gr,F(r,s, p,q)), D(gnz,F(r,s,p,q))+d(gr,gnz)

2
d(gnw,gs),D(gs,F(s, p,q,r)), D(gnw,F(s,p,q,r))+d(gs,gnw)

2

 .

By (8) and (9), there exists n0 ∈ N such that for all n > n0,

∇n = max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

 .
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Combining this with (11), we get for all n > n0,

max


D(gnx, F(p, q, r, s)),
D(gny, F(q, r, s, p)),
D(gnz, F(r, s, p, q)),
D(gnw, F(s, p, q, r))

 (12)

≤ ϕ

max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))


 .

Now, we claim that

max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

= 0. (13)

If this is not true, then

max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

> 0.

Then, by (12) and by the fact that ϕ(t)< t for all t > 0, we get for all n > n0,

max


D(gnx, F(p, q, r, s)),
D(gny, F(q, r, s, p)),
D(gnz, F(r, s, p, q)),
D(gnw, F(s, p, q, r))

< max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

 .

On taking limit as n→ ∞ in the above inequality, by using (8) and (9), we get

max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

< max


D(gp, F(p, q, r, s)),
D(gq, F(q, r, s, p)),
D(gr, F(r, s, p, q)),
D(gs, F(s, p, q, r))

 ,

which is a contradiction. So (13) holds. Thus, it follows that

gp ∈ F(p, q, r, s), gq ∈ F(q, r, s, p), (14)

gr ∈ F(r, s, p, q), gs ∈ F(s, p, q, r).
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Thus, by (9) and (14), we have

p = gp ∈ F(p, q, r, s), q = gq ∈ F(q, r, s, p),

r = gr ∈ F(r, s, p, q), s = gs ∈ F(s, p, q, r),

that is, (p, q, r, s) is a common quadruple fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y, z, w) ∈C{F, g},

g is F-weakly commuting, that is, g2x ∈ F(gx, gy, gz, gw), g2y ∈ F(gy, gz, gw,
gx), g2z ∈ F(gz, gw, gx, gy), g2w ∈ F(gw, gx, gy, gz) and g2x = gx, g2y = gy,
g2z = gz, g2w = gw. Thus gx = g2x ∈ F(gx, gy, gz, gw), gy = g2y ∈ F(gy, gz,
gw, gx), gz = g2z ∈ F(gz, gw, gx, gy) and gw = g2w ∈ F(gw, gx, gy, gz), that is,
(gx, gy, gz, gw) is a common quadruple fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y, z, w) ∈ C{F, g}
and for some p, q, r, s ∈ X ,

lim
n→∞

gn p = x, lim
n→∞

gnq = y, lim
n→∞

gnr = z and lim
n→∞

gns = w. (15)

Since g is continuous at x, y, z and w. Therefore, by (15), we get that x, y, z and
w are fixed points of g, that is,

gx = x, gy = y, gz = z and gw = w. (16)

Since (x, y, z, w) ∈C{F, g}. Therefore, by (16), we get

x = gx ∈ F(x, y, z, w), y = gy ∈ F(y, z, w, x),

z = gz ∈ F(z, w, x, y), w = gw ∈ F(w, x, y, z),

that is, (x, y, z, w) is a common quadruple fixed point of F and g.
Finally, suppose that (d) holds. Let g(C{F, g}) = {(x, x, x, x)}. Then {x}=

{gx}= F(x, x, x, x). Hence (x, x, x, x) is quadruple fixed point of F and g.

Example 2.2. Suppose that X = [0, 1], equipped with the metric d : X ×X →
[0, +∞) defined by d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X . Let
F : X4→CB(X) be defined as

F(x, y, z, w) =

{
{0}, for x, y, z, w = 1,[

0, x2+y2+z2+w2

8

]
, for x, y, z, w ∈ [0, 1),

and g : X → X be defined as

g(x) = x2, for all x ∈ X .
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Define ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =
{ t

2 , for t 6= 1
3
4 , for t = 1.

Now, for all x, y, z, w, p, q, r, s ∈ X with x, y, z, w, p, q, r, s ∈ [0, 1), we have
Case (a) If x2 + y2 + z2 +w2 = p2 +q2 + r2 + s2, then

H(F(x, y, z, w), F(p, q, r, s))

=
p2 +q2 + r2 + s2

8

≤ 1
8

max{x2, p2}+ 1
8

max{y2, q2}+ 1
8

max{z2, r2}+ 1
8

max{w2, s2}

≤ 1
8

d(gx, gp)+
1
8

d(gy, gq)+
1
8

d(gz, gr)+
1
8

d(gw, gs)

≤ 1
2

max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2



≤ ϕ


max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2




.

Case (b) If x2 + y2 + z2 +w2 6= p2 + q2 + r2 + s2 with x2 + y2 + z2 +w2 <
p2 +q2 + r2 + s2, then

H(F(x, y, z, w), F(p, q, r, s))

=
p2 +q2 + r2 + s2

8

≤ 1
8

max{x2, p2}+ 1
8

max{y2, q2}+ 1
8

max{z2, r2}+ 1
8

max{w2, s2}

≤ 1
8

d(gx, gp)+
1
8

d(gy, gq)+
1
8

d(gz, gr)+
1
8

d(gw, gs)≤
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≤ 1
2

max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2



≤ ϕ


max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2




.

Similarly, we obtain the same result for p2 + q2 + r2 + s2 < x2 + y2 + z2 +w2.
Thus the contractive condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X with
x, y, z, w, p, q, r, s ∈ [0, 1). Again, for all x, y, z, w, p, q, r, s ∈ X with x, y, z,
w ∈ [0, 1) and p, q, r, s = 1, we have

H(F(x, y, z, w), F(p, q, r, s))

=
x2 + y2 + z2 +w2

8

≤ 1
8

max{x2, p2}+ 1
8

max{y2, q2}+ 1
8

max{z2, r2}+ 1
8

max{w2, s2}

≤ 1
8

d(gx, gp)+
1
8

d(gy, gq)+
1
8

d(gz, gr)+
1
8

d(gw, gs)

≤ 1
2

max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2


≤
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≤ ϕ


max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2




.

Thus the contractive condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X with
x, y, z, w ∈ [0, 1) and p, q, r, s = 1. Similarly, we can see that the contractive
condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X with x, y, z, w, p, q, r,
s= 1. Hence, the hybrid pair {F, g} satisfies the contractive condition (1), for all
x, y, z, w, p, q, r, s ∈ X . In addition, all the other conditions of Theorem 2.1 are
satisfied and z = (0, 0, 0, 0) is a common quadruple fixed point of hybrid pair
{F, g}. The function F : X4→CB(X) involved in this example is not continuous
at the point (1, 1, 1, 1) ∈ X4.

Remark 2.3. We improve, extend and generalize the result of Ding et al. [23]
in the following sense:

(i) We prove quadruple coincidence and common quadruple fixed point the-
orem while Ding et al. [23] proved coupled coincidence and common coupled
fixed point theorems.

(ii) We prove our result in the settings of hybrid pair of mappings.

(iii) To prove our result we consider non complete metric space and the
space is also not partially ordered.

(iv) The mapping F : X4→CB(X) is discontinuous and not satisfying mixed
g-monotone property.

(v) The function ϕ : [0, +∞)→ [0, +∞) involved in our theorem and exam-
ple is discontinuous.

(vi) Our proof is simple and different from the other results in the existing
literature.

If we put g = I (I is the identity mapping) in Theorem 2.1, then we have the
following result:

Corollary 2.4. Let (X , d) be a complete metric space, F : X4 → CB(X) be a
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mapping. Suppose that there exists ϕ ∈Φ such that

H(F(x, y, z, w), F(p, q, r, s))

≤ ϕ


max



d(x, p), D(x, F(x, y, z, w)), D(p, F(p, q, r, s)),
d(y, q), D(y, F(y, z, w, x)), D(q, F(q, r, s, p)),
d(z, r), D(z, F(z, w, x, y)), D(r, F(r, s, p, q)),

d(w, s), D(w, F(w, x, y, z)), D(s, F(s, p, q, r)),
D(x, F(p, q, r, s))+D(p, F(x, y, z, w))

2 ,
D(y, F(q, r, s, p))+D(q, F(y, z, w, x))

2 ,
D(z, F(r, s, p, q))+D(r, F(z, w, x, y))

2 ,
D(w, F(s, p, q, r))+D(s, F(w, x, y, z))

2




,

for all x, y, z, w, p, q, r, s ∈ X . Then F has a quadruple fixed point.

If we put ϕ(t) = kt where 0 < k < 1 in Theorem 2.1, then we have the
following result:

Corollary 2.5. Let (X , d) be a metric space. Assume F : X4 → CB(X) and
g : X → X be two mappings satisfying

H(F(x, y, z, w), F(p, q, r, s))

≤ k max



d(gx, gp), D(gx, F(x, y, z, w)), D(gp, F(p, q, r, s)),
d(gy, gq), D(gy, F(y, z, w, x)), D(gq, F(q, r, s, p)),
d(gz, gr), D(gz, F(z, w, x, y)), D(gr, F(r, s, p, q)),

d(gw, gs), D(gw, F(w, x, y, z)), D(gs, F(s, p, q, r)),
D(gx, F(p, q, r, s))+D(gp, F(x, y, z, w))

2 ,
D(gy, F(q, r, s, p))+D(gq, F(y, z, w, x))

2 ,
D(gz, F(r, s, p, q))+D(gr, F(z, w, x, y))

2 ,
D(gw, F(s, p, q, r))+D(gs, F(w, x, y, z))

2


,

for all x, y, z, w, p, q, r, s ∈ X , where 0 < k < 1. Furthermore assume that
F(X4)⊆ g(X) and g(X) is a complete subset of X . Then F and g have a quadru-
ple coincidence point. Moreover, F and g have a common quadruple fixed point,
if one of the following conditions holds:

(a) F and g are w-compatible.

lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz = r, lim
n→∞

gnw = s

for some (x, y, z, w) ∈C{F, g} and for some p, q, r, s ∈ X and g is continuous
at p, q, r and s.

(b) g is F-weakly commuting for some (x, y, z, w) ∈C{F, g} and gx, gy, gz
and gw are fixed points of g, that is, g2x = gx, g2y = gy, g2z = gz and g2w = gw.
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(c) g is continuous at x, y, z and w.

lim
n→∞

gn p = x, lim
n→∞

gnq = y, lim
n→∞

gnr = z, lim
n→∞

gns = w

for some (x, y, z, w) ∈C{F, g} and for some p, q, r, s ∈ X .
(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put g = I (I is the identity mapping) in Corollary 2.5, then we have the
following result:

Corollary 2.6. Let (X , d) be a complete metric space, F : X4 → CB(X) be a
mapping satisfying

H(F(x, y, z, w), F(p, q, r, s))

≤ k max



d(x, p), D(x, F(x, y, z, w)), D(p, F(p, q, r, s)),
d(y, q), D(y, F(y, z, w, x)), D(q, F(q, r, s, p)),
d(z, r), D(z, F(z, w, x, y)), D(r, F(r, s, p, q)),

d(w, s), D(w, F(w, x, y, z)), D(s, F(s, p, q, r)),
D(x, F(p, q, r, s))+D(p, F(x, y, z, w))

2 ,
D(y, F(q, r, s, p))+D(q, F(y, z, w, x))

2 ,
D(z, F(r, s, p, q))+D(r, F(z, w, x, y))

2 ,
D(w, F(s, p, q, r))+D(s, F(w, x, y, z))

2


,

for all x, y, z, w, p, q, r, s ∈ X , where 0 < k < 1. Then F has a quadruple fixed
point.
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