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ON THE STRATIFICATION OF PROJECTIVE n-SPACE
BY X-RANKS, FOR A LINEARLY NORMAL

ELLIPTIC CURVE X ⊂ Pn

EDOARDO BALLICO

Let X ⊂ Pn be a linearly normal elliptic curve. For any P ∈ Pn the
X-rank of P is the minimal cardinality of a set S⊂ X such that P ∈ 〈S〉. In
this paper we give an almost complete description of the stratification of
Pn by the X-rank.

1. Introduction

Fix an integral and non-degenerate variety X ⊂ Pn. For any P ∈ Pn the X-rank
rX(P) of P is the minimal cardinality of a subset S⊂ X such that P ∈ 〈S〉, where
〈 〉 denote the linear span. The X-rank is an extensively studied topic ([14], [8],
[6], [13] and references therein). In the applications one mainly needs the cases
in which X is either a Veronese embedding of a projective space or a Segre
embedding of a multiprojective space. We feel that the general case gives a
treasure of new projective geometry. Up to now only for rational normal curves
there is a complete description of the stratification of Pn by X-rank ([11], [14],
Theorem 5.1, [6]). Here we look at the case of elliptic linearly normal curves.
For any integer t ≥ 1 let σt(X) denote the closure in Pn of all (t−1)-dimensional
linear spaces spanned by t points of X . Set σ0(X) = /0. For any P ∈ Pn the
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border X-rank bX(P) is the minimal integer t ≥ 1 such that P ∈ σt(X), i. e. the
only positive integer t such that P∈ σt(X)\σt−1(X). If (as always in this paper)
X is a curve, then dim(σt(X)) = min{n,2t−1} for all t ≥ 1 ([1], Remark 1.6).
Notice that rX(P)≥ bX(P) and that equality holds at least on a non-empty open
subset of σt(X) \σt−1(X), t := bX(P). Obviously bX(P) = 1⇐⇒ P ∈ X ⇐⇒
rX(P) = 1. Hence to compute all X-ranks it is sufficient to compute the X-ranks
of all points of Pn \X . In this paper we look at the case of the linearly normal
elliptic curves.

We prove the following result.

Theorem 1.1. Fix integers w≥ 2 and n≥ 2w. Let X ⊂ Pn be a linearly normal
elliptic curve. Fix P ∈ Pn with bX(P) = w. Then either rX(P) = w or rX(P) =
n+1−w.

Proposition 3.2 gives the existence of non-general P∈P2w−1\σw−1(X) such
that rX(P) = bX(P)+1 = w+1

Remark 1.2. Fix P ∈ Pn such that bX(P)≤ n/2, i. e. such that the border rank
of P is not the maximal one. There is a unique zero-dimensional scheme W ⊂ X
such that deg(W ) ≤ bX(P) and P ∈ 〈W 〉 (Proposition 2.2). We have deg(W ) =
bX(P) and P /∈ 〈W ′〉 for any W ′ (W . If W is reduced, then rX(P) = w. If W is
not reduced, then Theorem 1.1 says that rX(P) = n+1−w.

Following works by A. Białynicki-Birula and A. Schinzel ([4], [5]), recently
J. Jelisiejew introduced the definition of open rank for symmetric tensors, i. e.
for the Veronese embeddings of projective spaces ([12]). In the general case of
X-rank we may translate the definition of open rank in the following way.

Definition 1.3. Fix an integral and non-degenerate variety X ⊂ Pn. For each
P ∈ Pn the open X-rank orX(P) of P is the minimal integer t such that for every
proper closed subset T ( X there is S⊂ X \T with ](S)≤ t and P ∈ 〈S〉.

Obviously orX(P) ≥ rX(P), but often the strict inequality holds (e.g., we
have orX(P)> 1 for all P).

For linearly normal elliptic curves we prove the following result.

Proposition 1.4. Let X ⊂ Pn be a linearly normal elliptic curve. Fix P ∈ Pn \X
and set w := bX(P). We have orX(P) ≥ n+ 1−w. Assume n ≥ 2w ≥ 4. There
is O ∈ X with the following property. Fix any finite set T ⊂ X such that O /∈ T .
Then there is S⊂ X \T such that P ∈ 〈S〉.

Proposition 1.4 doesn’t say if orX(P) = n+ 1−w. The answer is YES if
w = 1, i. e. if P ∈ X (Lemma 2.9). The answer is YES if w = 2 and n > 4, while
it is NO if w = 2 and n = 4 (Proposition 3.5). If n is odd, say n = 2w− 1, and
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P is general in P2w−1, then orX(P) ≥ w+ 1, i. e. orX(P) ≥ n+ 2−w (Remark
3.3).

The case n = 3 for the rank is contained in [16]. For the open rank, see
Proposition 3.6.

We work over an algebraically closed field K such that char(K) = 0. This
assumption is essential in our proofs when (n,w) 6= (4,2), mainly to quote [9],
Proposition 5.8, which is a very strong non-linear version of Bertini’s theorem.
In the case n = 3 we also check the positive characteristic case.

2. Preliminary lemmas

In this paper an elliptic curve is a smooth and connected projective curve with
genus 1.

Fix any non-degenerate variety X ⊂ Pn. For any P ∈ Pn let S(X ,P) denote
the set of all S ⊂ X evincing rX(P), i. e. the set of all S ⊂ X such that ](S) =
rX(P) and P ∈ 〈S〉. Notice that every S ∈ S(X ,P) is linearly independent and
P /∈ 〈S′〉 for any S′ ( S. Now assume that X is a linearly normal elliptic curve.
Let Z(X ,P) denote the set of all zero-dimensional subschemes Z ⊂ X such that
deg(Z) = bX(P) and P ∈ 〈Z〉. Lemma 2.5 below gives Z(X ,P) 6= /0. Fix any
Z ∈Z(X ,P). Notice that Z is linearly independent (i. e. dim(〈Z〉) = deg(Z)−1)
and P /∈ 〈Z′〉 for any subscheme Z′ ( Z.

Notation. Let C ⊂ Pn be a smooth, connected and non-degenerate curve. Let
β (C) be the maximal integer such that every zero-dimensional subscheme of C
with degree at most β (C) is linearly independent.

The following lemma is just a reformulation of [2], Lemma 1.

Lemma 2.1. Let Y ⊂ Pr be an integral variety. Fix any P ∈ Pr and two zero-
dimensional subschemes A, B of Y such that A 6= B, P ∈ 〈A〉, P ∈ 〈B〉, P /∈ 〈A′〉
for any A′ ( A and P /∈ 〈B′〉 for any B′ ( B. Then h1(Pr,IA∪B(1))> 0.

Proposition 2.2. Fix an integer k ≤ bβ (C)/2c and any P ∈ σk(C) \σk−1(C).
Then there exists a unique zero-dimensional scheme Z ⊂C such that deg(Z)≤ k
and P ∈ 〈Z〉. Moreover deg(Z) = k and P /∈ 〈Z′〉 for all Z′ ( Z.

Proof. The existence part is stated in [3], Lemma 1, which in turn is just an
adaptation of some parts of the beautiful paper [8] ([8], Lemma 2.1.6) or of [6],
Proposition 11. For more about these schemes, see [7]. The uniqueness part is
true by Lemma 2.1 and the definition of the integer β (C).

Lemma 2.3. Let X ⊂ Pn, n≥ 2, be a linearly normal elliptic curve.
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(i) We have β (X) = n. A scheme Z ⊂ X with deg(Z) = n+ 1 is linearly
independent if and only if Z /∈ |OX(1)|.

(ii) Fix zero-dimensional schemes A,B⊂ X such that deg(A)+deg(B)≤
n+1. If deg(A)+deg(B) = n+1 and A+B ∈ |OX(1)|, assume A∩B 6= /0, 1. e.
assume A∪B 6= A+B. Then 〈A〉∩ 〈B〉= 〈A∩B〉.

(iii) Fix zero-dimensional schemes A,B ⊂ X such that A 6= /0, B 6= /0,
OX(A+B)∼=OX(1) and A∩B = /0. Then 〈A〉∩ 〈B〉 is a single point.

Proof. Let F ⊂X be a zero-dimensional subscheme. Since X is linearly normal,
we have h1(IF(1)) = 0 if and only if either deg(F) < deg(OX(1)) = n+ 1 or
deg(F) = n+ 1 and F /∈ |OX(1)| (use the cohomology of line bundles on an
elliptic curve). Hence we get part (i). By the Grassmann’s formula we also
get part (ii) when either deg(A)+ deg(B) ≤ n or deg(A)+ deg(B) = n+ 1 and
A+B /∈ |OX(1)|. Take A,B with A+B∈ |OX(1)|, A 6= /0 and B 6= /0. Calling A∪B
the minimal subscheme of X containing both A and B, we have deg(A∪B) =
deg(A)+ deg(B)− deg(A∩B), while deg(A+B) = deg(A)+ deg(B). Assume
A∩B 6= /0, 1. e. assume A+B 6= A∪B. Since 〈A∪B〉 ⊃ (〈A〉∪〈B〉), then 〈A∪B〉
is the linear span of the linear spaces 〈A〉 and 〈B〉. Since deg(A∪B) ≤ n and
β (X) = n, we have dim(〈U〉) = deg(U)− 1 for all U ∈ {A∪B,A,B,A∩B}.
Grassmann’s formula gives part (ii). It also gives part (iii), because dim(〈A+
B〉) = deg(A+B)−2 and β (X)≥max{deg(A),deg(B)}.

Lemma 2.4. Let X ⊂ Pn, n≥ 2, be a linearly normal elliptic curve. Fix P ∈ Pn.
Then either bX(P) = rX(P) or rX(P)+bX(P)≥ n+1.

Proof. Assume bX(P) < rX(P). Fix W evincing bX(P) and S evincing rX(P).
Assume ](S)+deg(W )≤ n. Hence S∪W is linearly independent (Lemma 2.3).
Therefore h1(IW∪S(1)) = 0, contradicting Lemma 2.1.

Lemma 2.5. Fix integers w > 0 and n ≥ max{2w− 1,2}. Let X ⊂ Pn be a
linearly normal elliptic curve. Fix P ∈ Pn and assume the existence of a zero-
dimensional scheme Z ⊂ X such that deg(Z) = w, P ∈ 〈Z〉, while P /∈ 〈Z′〉 for
all Z′ ( Z. Then bX(P) = w. If n≥ 2w, then Z(X ,P) = {Z}.

Proof. Assume bX(P) < w and take a scheme B ∈ Z(X ,P) (Proposition 2.2).
Hence P ∈ 〈B〉 and deg(B) ≤ w− 1. Since deg(Z) + deg(B) ≤ n, part (ii) of
Lemma 2.3. Hence 〈Z〉∩〈B〉= 〈Z∩B〉. We have P∈ 〈Z〉∩〈B〉. Since deg(B)<
w, we have Z∩B( Z. Hence P /∈ 〈Z∩B〉, a contradiction. Now assume 2w≤ n
and take any W ⊂ X such that deg(W ) = w and P ∈ 〈Z〉. Part (ii) of Lemma 2.3
gives 〈Z〉∩ 〈W 〉 = 〈Z ∩W 〉. Since P ∈ 〈Z〉∩ 〈W 〉, P /∈ 〈Z′〉 for any Z′ ( Z and
deg(Z) = deg(W ), we get Z =W .
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Lemma 2.6. Fix integers w > 0, n≥ 2. Let X ⊂ Pn be a linearly normal elliptic
curve. Fix P ∈ Pn such that bX(P) = w. Then orX(P)≥ n+1−w.

Proof. By Lemma 2.5 there is a unique degree w scheme such that P ∈ 〈W 〉.
Fix any zero-dimensional scheme Z ⊂ X such that P ∈ 〈S〉, deg(Z) = n−w and
Z *W . Since deg(Z)+deg(W )≤ n, part (ii) of Lemma 2.3 gives 〈Z〉∩ 〈W 〉=
〈Z∩W 〉. Since Z∩W (W , Lemma 2.4 applied to Z∩W gives P /∈ 〈Z〉.

In characteristic zero the proof of [14], Proposition 5.1, gives the following
result.

Lemma 2.7. Let Y ⊂ Pn be an integral and non-degenerate curve. Fix P ∈
Pn \Y . In positive characteristic assume that P is not a strange point of Y . Then
orX(P)≤ n.

In a few cases (e.g. when Y is a rational normal curve) the statement of
Lemma 2.7 fails for some P ∈ Y .

Remark 2.8. Let X ⊂ Pn be a linearly normal elliptic curve. A theorem of
Lluis says that a plane conic in characteristic two is the only smooth strange
curve ([15]). Hence, by Lemma 2.7 orX(P)≤ n for all P ∈ Pn \X .

Lemma 2.9. Let X ⊂ Pn, n ≥ 2, be a linearly normal elliptic curve. For any
P ∈ X we have orX(P) = n.

Proof. Remark 2.8 gives orX(P)≤ n. Fix any S⊂X \{P} such that ](S)≤ n−1.
Since P /∈ S, part (ii) of Lemma 2.3 gives P /∈ 〈S〉. Hence orX(P)≥ n.

3. Proof of Theorem 1.1 and related results

Proposition 3.1. Fix an integer k≥ 1, a linearly normal elliptic curve C⊂P2k+1

and P ∈ P2k+1 \σk(C).
(a) Either ](Z(C,P))≤ 2 or Z(C,P) is infinite. We have Z1∩Z2 = /0, 〈Z1〉∩

〈Z2〉= {P} and OC(Z1 +Z2)∼=OC(1) for any Z1,Z2 ∈ Z(C,P) such that Z1 6=
Z2.

(b) If ](Z(C,P)) 6= 2, then either ](Z(C,P)) = 1 or Z(C,P) is infinite. In
both cases OC(2Z)∼=OC(1) and OC(Z)∼=OC(Z1) for all Z,Z1 ∈ Z(C,P).

(c) If Z(C,P) is infinite, then its positive-dimensional part Γ is irreducible
and one-dimensional. Fix a general Z ∈ Γ. Either Z is reduced or there is
an integer m ≥ 2 such that Z = mS1 for a reduced S1 ⊂ C such that ](S1) =
(k+1)/m.

(d) If P is general, then ](Z(C,P)) = 2.
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Proof. Since no non-degenerate curve is defective ([1], Remark 1.6), we have
σk+1(C) = P2k+1 and dim(σk(C)) = 2k−1. Hence bC(P) = k+1. Proposition
2.2 and part (i) of Lemma 2.3 give Z(C,P) 6= /0. Fix Z1,Z2 ∈ Z(C,P) such that
Z1 6= Z2. Since P ∈ 〈Z1〉 ∩ 〈Z2〉 and P /∈ 〈E〉 if deg(E) ≤ k, Lemma 2.3 gives
OC(Z1 +Z2)∼=OC(1) and Z1∩Z2 = /0, proving part (a).

(i) Let J(C, . . . ,C) ⊂ Ck+1×P2k+1 be the abstract join of k + 1 copies of
C, 1. e. the closure in Ck+1 × P2k+1 of the set of all (P1, . . . ,Pk+1,P) such
that Pi 6= Pj for all i 6= j, the set {P1, . . . ,Pk+1} is linearly independent and
P ∈ 〈{P1, . . . ,Pk+1}〉. Since σk+1(C) = P2k+1, for a general P the set Z(C,P)
is finite and its cardinality is the degree of the generically finite surjection π :
J(C, . . . ,C)→ P2k+1 induced by the projection Ck+1×P2k+1→ P2k+1. Assume
the existence of schemes Z1,Z2,Z3 ∈Z(C,P) such that Zi 6= Z j for all i 6= j. Part
(a) gives Zi ∩Z j = /0 and OC(Zi +Z j) ∼= OC(1) for all i 6= j. Taking i = 1 and
j ∈ {2,3} we getOC(Z2)∼=OC(Z3). By symmetry we getOC(Z)∼=OC(Z1) for
all Z ∈ Z(C,P). Since OC(Z1 +Z2)∼=OC(1), we also get OC(2Z)∼=OC(1) for
all Z ∈ Z(C,P).

(ii) Since C is not the rational normal curve of P3, C is not a variety with one
apparent double point in the sense of [10], 1. e. deg(π)> 1, 1. e. ](Z(C,P)) 6= 1
for a general P ∈ P2k+1. There are only finitely many lines bundles R on X such
that R⊗2 ∼=OX(1). For each of these lines bundles R we have h0(R) = k+1 and
dim(〈Z〉) = k for each Z ∈ |R| (Lemma 2.3). Hence a dimensional count and
part (i) gives ](Z(X ,P)) = 2 for a general P ∈ P2k+1, proving part (d). Now
assume ](Z(C,P)) = 1, say Z(X ,P) = {Z}. For a general P ∈ P2k+1 the two
elements, say Z1(P) and Z2(P), ofZ(X ,P) satisfyOC(Z1(P)+Z2(P))∼=OC(1).
When P goes to Q we get OC(2Z) ∼= OC(1) (here we are implicitly using that
β (X) = 2k + 1 ≥ k + 1 and hence that the limit of a family of degree k + 1
subschemes of X is linearly independent). Since π : J(C, . . . ,C)→ P2k+1 is
a proper surjective morphism and P2k+1 is a normal variety, each fiber of π

is either infinite or with cardinality ≤ 2. Therefore either ](Z(C,P)) ≤ 2 or
Z(C,P) is infinite.

(iii) Now assume that Z(C,P) is infinite. Since any two different elements
of Z(C,P) are disjoint (see step (i)), for a general A ∈ C there is at most one
element of Γ containing A. Hence dim(Γ) = 1, Γ is irreducible and a general
point of C is contained in a unique element of Γ, 1. e. the algebraic family Γ of
effective divisors of C is a so-called involution ([9], §5). Since any two elements
of Γ are disjoint, this involution has no base points. Let Z be a general element
of Γ. Either Z is reduced or there is an integer m ≥ 2 such that Z = mS with S
reduced ([9], Proposition 5.8), concluding the proof of part (c).

We may apply Lemma 2.6 at a general P ∈ P2k+1, because Z(C,P) is finite
for a general P.
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Proposition 3.2. Fix an integer k ≥ 1 and a linearly normal elliptic curve X ⊂
P2k+1. Then there are Q,P ∈ P2k+1 such that bX(Q) = bX(P) = rX(Q) = k+1
and rX(P)≥ k+2. The set of all such points Q contains a non-empty open subset
of P2k+1, while the set of all such points P contains a non-empty algebraic subset
of codimension 2 of P2k+1.

Proof. Since σk+1(X) = P2k+1, while dim(σk(X)) = 2k− 1 ([1], Remark 1.6),
we may take as Q a general point of P2k+1. Now we prove the existence of
points P ∈ Pn such that rX(P)> bX(P) = k+1 and that the set of all P such that
bX(P) = k+1 < rX(P) contains a codimension 2 subset of P2k+1. Let U be the
set of all degree k+ 1 schemes Z1 ⊂ X such that Z1 is not reduced and 2Z1 /∈
|OX(1)|. The set U is a non-empty quasi-projective integral variety of dimension
k+1. Fix any Z1 ∈ U . Let V(Z1) denote the set of all Z2 ∈ |OX(1)(−Z1)| such
that Z2 is not reduced and Z2 ∩ Z1 = /0. The set V(Z1) is a non-empty quasi-
projective and integral variety of dimension k. For any Z2 ∈ V(Z1) part (iii) of
Lemma 2.3 gives that 〈Z1〉 ∩ 〈Z2〉 is a single point, Q. If bX(Q) = k+ 1, then
Z(X ,Q) = {Z1,Z2}, because OX(2Z1) � OX(1) (Part (b) of Proposition 3.1).
Since neither Z1 nor Z2 is reduced, we get rX(Q)> k+1. Varying Z2 for a fixed
Z1 the set of all points Q obtained in this way covers a non-empty open subset of
an irreducible hypersurface of 〈Z1〉. Assume bX(Q) ≤ k and fix W ∈ Z(X ,Q).
Notice that P /∈ 〈W ′〉 for any W ′(W . Since deg(W )+deg(Z1)≤ n, Lemma 2.1,
Proposition 2.2 and Lemma 2.3 give the existence of Z′ ( Z such that Q ∈ 〈Z′〉.
Iterating the trick taking Z′ and W instead of Z1 and W we get W ⊆ Z′ and
hence W ⊂ Z1. Making this construction using Z2 and W we get W ⊂ Z2. Since
Z1∩Z2 = /0, we obtained a contradiction.

Remark 3.3. Fix an integer w ≥ 2 and fix P ∈ P2w−1 \ σw−1(X). Fix any
W ∈ Z(X ,P). Assume OX(2W ) � OX(1). This condition is satisfied for a
general P ∈ P2w−1. By part (b) of Proposition 3.1 we have ](Z(X ,P)) ≤ 2
and in particular Z(X ,P) is finite. Fix a finite set T ⊂ X containing the sup-
port of all Z ∈ Z(X ,P). By the definition of the set Z(X ,P) there is no zero-
dimensional scheme Z ⊂ X\T such that P ∈ 〈Z〉 and deg(Z) = w. Therefore
orX(P)≥ w+1 = n+2−w.

Proofs of Theorem 1.1 and Proposition 1.4. Since w ≤ b(n+ 2)/2c, there
are points P such that rX(P) = bX(P) = w. Fix any W ∈ σw(X) \ σw−1(X).
Since n ≥ 2w, there is a unique scheme W ⊂ X such that deg(W ) = w and
P ∈ 〈W 〉 (Proposition 2.2 and Lemma 2.5). If W is reduced, then rX(P) = w.
If W is not reduced, then rX(P) ≥ n+1−w. Hence to prove Theorem 1.1 and
Proposition 1.4 for the point P it is sufficient to prove the existence of O ∈ X
with the following property. Fix a finite set T ⊂ X with O /∈ T . Then there is a
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set S ⊂ X \T such that ](S)≤ n+1−w and P ∈ 〈S〉. The point O (if any) will
appear at the very end of the proof.

Set S := {Z ∈ |OX(1)(−W )| : P ∈ 〈Z〉}. Since deg(OX(1)(−W )) = n+1−
w≤ n, every element of |OX(1)(−W )| is linearly independent. However, in the
definition of the set S we did not prescribe that P /∈ 〈Z′〉 for all Z′ ( Z. Part (i)
of Lemma 2.3 and the inequality rX(P)≥ n+1−w give that rX(P) = n+1−w
if and only if there is a reduced S ∈ S.

(a) Fix E ⊂ X \T such that ](E) = n−2w+1 and E∩Wred = /0. In this step
we prove the existence of an effective divisor AE on X such that deg(AE) = w
and E+AE ∈S. In step (b) we will also check that AE is unique ifOX(1)(−E)�
OX(2W ). Since n ≥ 2w, we have E 6= /0. Since ](E) < n, E is linearly in-
dependent, 1. e. dim(〈E〉) = n− 2w. Let `〈E〉 : Pn \ 〈E〉 → P2w−1 denote the
linear projection from 〈E〉. Since ](E)< n+1−w, Lemma 2.4 gives P /∈ 〈E〉.
Hence `〈E〉(P) is a well-defined point of P2w−1. Call XE ⊂ P2w−1 the closure
of `〈E〉|(X \ 〈E〉 ∩X) in P2w−1. Since X is a smooth curve, the rational map
`〈E〉|(X \ 〈E〉 ∩ X) extends to a surjective morphism ψ : X → XE . For every
Q∈X the divisor E+Q is linearly independent, because deg(E+Q)< n. Hence
E is the scheme-theoretic intersection of X with 〈E〉. Hence deg(XE) ·deg(ψ) =
deg(X)− deg(E) = n+ 1− n+ 2w+ 1 = 2w. Since X is non-degenerate, XE

spans P2w−1 and in particular deg(XE) ≥ 2w− 1. Since deg(XE) ≥ 2w− 1 and
w≥ 2, we get deg(XE) = 2w and deg(ψ) = 1. Since deg(ψ) = 1, XE and X are
birational. Since deg(XE)≤ 2w and XE is non-degenerate, we have pa(XE)≤ 1.
Since XE is birational to X , we get that XE is smooth and that it is a linearly
normal elliptic curve. Since X and XE are smooth curves, ψ is an isomorphism.

(b) Call X [n− 2w+ 1] the set of all E ⊂ X such that ](E) = n− 2w+ 1,
E ∩Wred = /0 and OX(1)(−E)�OX(2W ). For any E ∈ X [n−2w+1] we have
OX(E +AE +W ) ∼= OC(1) and OX(1)(−E) � OC(2W ). Therefore AE 6= W .
Since deg(AE) = deg(W ), E ∩W = /0, P ∈ 〈W 〉 ∩ 〈E +AE〉 and P /∈ 〈W1〉 for
any W1 (W , parts (ii) and (iii) of Lemma 2.3 give (E +AE)∩W = /0 for every
E ∈ X [n−2w+1]. Let Γ⊆S be any irreducible component of S containing the
irreducible algebraic family {E +AE}E∈X [n−2w+1]. Let F be a general element
of Γ. Remember that to prove rX(P) = n+1−w it is sufficient to find a reduced
S ∈ Γ, while for the open rank we need S with S∩T = /0. Γ is an irreducible
algebraic family of divisors of X . We have dim(Γ) = n− 2w + 1. Fix any
E ∈ X [n−2w+1] and call ψ : X→ XE the isomorphism constructed in step (a).
Set W ′ := ψ(W ). Since deg(E +W ) = n−w+ 1 ≤ n and β (X) = n (Lemma
2.3) the divisors E, W and E +W are linearly independent. Since E ∩Wred = /0,
Grassmann’s formula gives 〈W 〉∩ 〈E〉= /0. Hence dim(〈W ′〉) = w.
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Fix any subscheme W1 of W with deg(W1) = w− 1. Since W1 ∩ 〈E〉 = /0,
we have dim(〈ψ(W1)) = dim(〈W ′〉)−1. Since P ∈ 〈W 〉, but P /∈ 〈W1〉, we have
〈W 〉 = 〈W1 ∪{P}〉. Hence `〈E〉(P) /∈ 〈ψ(W1)〉. Varying W1 we get `〈E〉(P) /∈
〈W ′′〉 for every scheme W ′′ (W ′. Hence `〈E〉(P) has border rank w (Lemma
2.5). SinceOX(2W )�OX(1)(−E) for all E ∈ X [n−2w+1], part (b) of Propo-
sition 3.1 with k = w− 1 applied to the curve XE , the point `〈E〉(P) and the
scheme Z := W ′ gives that such a divisor AE is unique. Hence Γ is an involu-
tion in the classical terminology ([9], §5). Assume for the moment that Γ has
no fixed component. In particular T ∩ γ = /0 for a general γ ∈ Γ. We get that
either F is reduced (and hence there is S ⊂ X \ T with ](S) = n+ 1−w and
P ∈ 〈S〉) or there is an integer m ≥ 2 such that each connected component of
F appears with multiplicity m ([9], Proposition 5.8). Since F = E +AE with E
reduced and ](E)> deg(AE) this is obviously false. Hence we may assume that
Γ has a base locus. Call D the base locus of Γ. Since E moves in X \T , then
E ∩D = /0. Hence D is the base locus of the algebraic family {AE}E∈X [n−2w+1].
For any E ∈ X [n−2w+1] we have AE 6=W , because OX(1)(−E)�OX(2W ).
Since E ∩Wred = /0, part (a) of Proposition 3.1 gives AE ∩Wred = /0. Hence
D∩Wred = /0.

The irreducible algebraic family Γ(−D) of effective divisors of X has the
same dimension and it is base point free. We have F = D+F ′ with F ′ general
in Γ(−D). Since Γ(−D) is an involution without base points and whose general
member has at least one reduced connected component (a connected component
of E), its general member F ′ is reduced ([9], Proposition 5.8) and contain no
point of T ∪D∪Wred . In particular F ′∩D = /0, F ′ ⊂ X \T for a general F ′ and
F ′∩D = /0. Therefore to get a reduced divisor F ′+D ∈ S (and hence to prove
that rX(P)≤ n+1−w) it is sufficient to prove that D is reduced. We will even
prove that deg(D) = 1 (if D 6= /0).

Claim 1. We have D∩W = /0.
Proof of Claim 1. Since E∩W = /0, it is sufficient to prove that AE∩W = /0

for all W . This is true by part (a) of Proposition 3.1, because `〈E〉(AE) and
`〈E〉(W ) are different elements of Z(XE , `〈E〉(P)).

Claim 2. If Γ has a base locus, then it has a unique base point and this
base point appears in D with multiplicity one.

Proof of Claim 2. Assume that Γ has a base point, O, 1. e. that O is con-
tained in the support of AE for a general E ∈ X [n−2w+1]. Let `O : Pn \{O}→
Pn−1 denote the linear projection from O. Claim 1 says that O /∈Wred . Since
β (X) > w, we get O /∈ 〈W 〉. Hence `O|W is an embedding, dim(`O(〈W 〉)) =
w−1 and `O(P) /∈ 〈W ′〉 for any W ′ (W . Let XO be the closure of `O(X \{O})
in Pn−1.



28 EDOARDO BALLICO

As in step (a) we see that XO is a linearly normal elliptic curve and that
`O|(X \ {O}) extends to an isomorphism ψO : X → XO. We get that `O(P) has
border rank w with respect to XO and that the family

{ψO(E +(AE −{O})}E∈X [n−2w+1]

is an (n− 2w+ 1)-dimensional family F of effective divisors on XO such that
`O(P) ∈ 〈J〉 for all J ∈ F . Therefore for a general B ⊂ XO with ](B) = n−
2w there are infinitely many J ∈ F containing B; call GB any such positive-
dimensional family. Take the linear projection `〈B〉 : Pn−1 \ 〈B〉 → P2w−1 from
〈B〉. Let XO,B be the closure in P2w−1 of `〈B〉(XO \B) in P2w−1. As in step (a)
we see that XO,B is a linearly normal elliptic curve. By construction for every
J ∈ GB the divisor J−B is effective and `〈B〉(J−B) ∈ Z(XO,B, `〈B〉(`O(P)). By
Proposition 3.1 any two divisors J−B are disjoint. Taking O+ψ

−1
O (B) we see

that the family in the boundary of the family {E +AE}E∈X [n−2w+1] (we only
took sets E containing O and we are allowed to do it, because we checked that
O /∈Wred). Hence D−O is in the base locus of GB. Therefore D = {O}.

If D 6= /0, then Claim 2 gives D = O for some O ∈ X . In this case O is
the point appearing in the statement of Proposition 1.4 and every S ∈ S(X ,P)
contains O. If D = /0, then orX(P) = n+ 1−w and in Proposition 1.4 we may
take as O any point of X .

Remark 3.4. Fix P,X ,n,w as in Theorem 1.1 and assume orX(P)≥ n+2−w.
By Proposition 1.4 there is O ∈ X with the property that O ∈ S for each S ⊂ X
such that ](S) = n+1−w and P ∈ 〈S〉. In the proof just given we also got that
O /∈Wred (this also follows from part (ii) of Lemma 2.3).

Proposition 3.5. Let X ⊂ Pn, n ≥ 4, be a linearly normal elliptic curve. Let
τ(X)⊂ Pn be the tangential surface of X. Fix P ∈ Pn with bX(P) = 2.

(i) If n≥ 5, then orX(P) = n−1.
(ii) Assume n = 4. We have 3≤ orX(P)≤ 4.

1. We have orX(P) = 3 for a general P ∈ σ2(X) \ τ(X), but there are P ∈
σ2(X)\ τ(X) with orX(P) = 4.

2. We have orX(P) = 3 for a general P ∈ τ(X), but there are P ∈ τ(X) \X
with orX(P) = 4.

3. The set of all P ∈ τ(X) with orX(P) = 4 has dimension 1. The set of all
P ∈ σ2(X)\ τ(X) with orX(P) = 4 has dimension 2.

4. The set of all P∈ σ2(X)\X with orX(P) = 4 is contained in the union of 4
one-dimensional families of lines of P4, the vertices of the rank 3 quadric
hypersurfaces containing X.
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Proof. For any Q ∈ Pn let `Q : Pn \ {Q} → Pn−1 denote the linear projection
from Q. Remark 2.8 gives orX(P) ≤ n. Lemma 2.6 gives orX(P) ≥ n− 1. Let
W ⊂ X be the degree two scheme such that P ∈ 〈W 〉. Fix a finite set T ⊂ X .

(a) Assume n = 4. Set Y := `P(X). The curve Y is non-degenerate and in
particular it is not a line. Since P /∈ X , we have 5 = deg(X) = deg(`P|X) ·`P(X).
Hence deg(`P|X) = 1, deg(Y ) = 5 and `P|X : X → Y is the normalization map
of Y . The curve Y is singular (it has at least a cusp if P ∈ τ(X) and at least
one non-unibranch point if P ∈ σ2(X) \ τ(X)). An easy upper bound for the
arithmetic genus of any degree 5 space curve gives pa(Y )≤ 2. Hence pa(Y ) = 2.
Since 2 · deg(Y ) > 2pa(Y )− 2, Riemann-Roch gives h0(P3,IY (2)) > 0. Since
deg(Y )> 4 and Y is non-degenerate, Y is not contained in two different quadric
surfaces. Let M be the only quadric surface containing Y . Since Y is irreducible
and non-degenerate, then M is irreducible.

(a1) First assume that the quadric surface M is smooth. Label the rulings
of M so that Y ∈ |OM(2,3)|. For a general line L ∈ |OM(1,0)| the set L∩Y
is formed by 3 smooth points, none of them belonging to `P(T ). Taking the
inverse images in X of these 3 points we get orX(P)≤ 3.

(a2) Now assume that M is a quadric cone with vertex o. The linear pro-
jection from o maps Y onto a smooth conic. Since Y is birational to X , this
map cannot be birational. Hence if M is a cone with vertex o, then o must be a
smooth point of Y . Let O ∈ X be the only point of X such that `P(O) = o. We
have O /∈Wred , because o is a smooth point of Y . Fix any S⊂ X \{O} such that
](S) = 3, S∩Wred = /0 and P ∈ 〈S〉. Since β (X) = 4, P ∈ 〈W 〉 and S∩Wred = /0,
part (ii) of Lemma 2.3 gives ](`P(S)) = 3. The set `P(S) is contained in the line
`P(〈S〉 \ {P}). Since every 3-secant line of Y is contained in M and every line
of M contains o, we get O ∈ 〈{S,P}〉. We have 〈{S,P}〉= 〈S〉. Since β (X) = 4
and O ∈ 〈S〉, we have O ∈ S, contradicting our assumption S⊂ X \{O}. Taking
as T any finite subset of X containing O we get orX(P)≥ 4.

(a3) Now we analyze for which (X ,P) we have orX(P) = 4, 1. e. when the
quadric M appearing in step (a) is singular. Let X be any elliptic curve. Fix
any L ∈ Pic5(X) and use it to embed X into P4 as a linearly normal elliptic
curve, writing X ⊂ P4 and L =OX(1). If X ⊂ N with N a rank 3 quadric cone
with vertex a line L (we will then project from some P ∈ L to get a quadric
cone M ⊂ P3 as in step (a2)), then the linear projection from L maps generically
two to one X onto a conic and in particular L must cut quasi-transversally X
and at exactly one point, U . We reverse this observation to produce any such
rank 3 hyperquadric containing X . Fix any U ∈ X and writeOX(1)(−U) = R⊗2

for some R ∈ Pic2(X) (in characteristic 6= 2 there are exactly 4 line bundles R;
in characteristic 2 there are 2 R’s if X is not supersingular and one R if X is
supersingular).
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Use U to get an embedding jU of H0(R⊗2) into H0(OX(1)) as a hyper-
plane. Riemann-Roch gives h0(R) = 2 and h0(R⊗2) = 2. Since S2(H0(R)) has
dimension 3, the multiplication map H0(R)⊗H0(R)→ H0(R⊗2) has a one-
dimensional kernel. Taking a basis of h0(R⊗2) we see that this kernel corre-
sponds to the vertex of a rank 3 quadric cone of P3 containing the embedding
of X by the linear system |R⊗2| and, using jU , a quadric cone of P4 containing
X and with as its vertex a line through U . All rank 3 quadric cones of P4 con-
taining X appears in this way (the line bundle R is the line bundle inducing the
generically two to one morphism φ : X→D with D a conic). Therefore they are
parametrized by 4 (or 2 or 1 in characteristic 2) one-dimensional families; fix
any P′ ∈ σ2(X)\X ; taking the linear projection from P′ we see that two different
rank 3 quadric cones cannot have vertices containing P′. Fix a rank 3 quadric
cone with associated vertex L and associated degree two map φ . We only need
to see which P ∈ σ2(X) \X is contained in (L \ {U}) for some U and some R.
We fix U and R and hence we fix L. Since L∩X = {U} scheme-theoretically (R2

has no base points) L is neither a secant line nor a tangent line. Fix O∈ X \{U}.
We have L∩〈2O〉 6= /0 if and only if φ ramifies at O (in characteristic 6= 2 there
are 4 such points; in characteristic 2 there are 2 such points if X is not supersin-
gular and a unique such point if X is supersingular). Fix O1,O2 ∈ X \{U} such
that O1 6= O2. We have L∩ 〈{O1,O2}〉 6= /0 if and only if φ(O1) = φ(O2) and
hence there is a 1-dimensional family of such secant lines. Since L∩X = {U}
scheme-theoretically, each non-empty intersection L∩〈2O〉 and L∩〈{O1,O2}〉
is a single point.

(b) Assume n = 5. Assume orX(P) ≥ 5 = n. We take the set-up of the
proof of Theorem 1.4 and Proposition 1.4. Let S(X ,P)′ be the set of all S ⊂ X
such that ](S) = 4, P ∈ 〈S〉 and S +W . We claim that the proof of Theorem
1.1 gives the existence of a two-dimensional family Λ of elements of Z(X ,P)
such that M +W for every M ∈ Λ (even if W is reduced); indeed, since n≥ 2w,
we have E 6= /0 and hence for a general E ∈ X we have OX(1)(−E) 6=OX(W ),
1. e. AE 6= W . We also proved that dim(S(X ,P)′) ≥ 1 (the family GB). Recall
that D is reduced (Claim 2 of the quoted proof). Since D is reduced a general
E +AE is reduced. Therefore dim(Λ∩S(X ,P)′) ≥ 2. By Remark 3.4 there is
O ∈ X \Wred such that O ∈ S for all S ∈ Λ∩S(X ,P)′. Part (ii) of Lemma 2.3
gives S∩Wred = /0 for all S∈S(X ,P)′. Since β (X) = 5> 4 and P∈ 〈Z〉 for some
scheme Z ⊂ X with deg(Z) = 2, the line 〈{O,P}〉 meets X quasi-transversally
and only at O, 1. e. 〈{O,P}〉 ∩X = {O} (scheme-theoretic intersection). Let
` : P5 \ 〈{O,P}〉 → P3 denote the linear projection from the line 〈{O,P}〉. Let
Y be the closure of `(X \{O}) in P3.
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Since X is non-degenerate, Y is non-degenerate. Since X is smooth and
〈{O,P}〉 ∩X = {O} as schemes, ` induces a morphism ψ : X → Y with 5 =
deg(X)− 1 = deg(ψ) · deg(Y ). Hence deg(Y ) = 5 and ψ is the normalization
map. The curve Y is singular (it has at least a cusp if P is in the tangential
variety τ(X) of X , while it has at least one singular non-unibranch point if P ∈
σ2(X) \ τ(X)). Since deg(Y ) = 5 > 4, Y is contained in at most one quadric
surface. Since X is the normalization of Y and Y is singular, we have pa(Y )≥ 2.
The bound for the arithmetic genus of any degree 5 space curve gives pa(Y ) =
2 and hence deg(Y ) > 2pa(Y )− 2. Riemann-Roch gives h0(P3,IY (2)) > 1.
Therefore Y is contained in a unique quadric surface M. Since pa(Y ) = 2, we
also see that ψ is an isomorphism outside Wred and hence it is injective, with
the only exception of identifying the two points of W if W is reduced. Fix any
S ∈ Λ∩S(X ,P)′ and write S = S′ t{O} with ](S′) = 3. Since rX(P) > 3, we
have P /∈ 〈S′〉 and hence 〈{O,P}〉∩ 〈S′〉 is a single point, PS. Therefore LS :=
`(〈S′〉 \{PS}) is a line containing `(S′). By Bezout’s theorem every line L⊂ P3

with deg(L∩Y ) ≥ 3 is contained in the quadric surface M. Since deg(Y ) = 5,
we have deg(L∩Y ) ≤ 5 for each line L ⊂ P3. Since ψ|X\Wred is injective, we
get LS 6= LS1 for general S,S1 ∈ Λ∩S(X ,P)′ and hence that M contains a two-
dimensional family of lines, contradicting the irreducibility of M.

(c) Assume n > 5 and that the Proposition 3.5 is true for lower dimensional
projective spaces. Fix Q ∈ X \T . Let C ⊂ Pn−1 be the closure of `Q(X \{Q})
in Pn−1. Since X is smooth at Q, the morphism `|X\{Q} extends to a morphism
ψ : X→C. Since X is smooth at Q, we have deg(ψ) ·deg(C) = deg(X)−1 = n.
Since C is non-degenerate, we have deg(C)≥ n−1. Therefore deg(ψ) = 1 and
deg(C) = n. Since ψ is birational, we have pa(C) ≥ 1. An easy upper bound
for the arithmetic genus of any degree n non-degenerate curve in Pn−1 gives
pa(C)≤ 1. Hence C is a linearly normal elliptic curve and ψ is an isomorphism.
Since bX(P) = 2, we have P 6= Q and hence `Q(P) is defined. We have ψ(Q) =
`Q(〈2Q〉 \ {Q}). Set T1 := ψ(T ). Since Q /∈ T , we have T1 = `Q(T ). Set T2 :=
T1∪{ψ(Q)}. By the inductive assumption there is S⊂C \T2 such that `Q(P) ∈
〈S〉 and ](S) ≤ n−2. Set B := ψ−1(S)∪{Q}. Since ψ(Q) /∈ B, B is a reduced
divisor of X . We have P ∈ 〈B〉, ](B)≤ n−1 and B⊂ X \T .

Proposition 3.6. Let X ⊂ P3 be a linearly normal elliptic curve. Then 2 ≤
orX(P) ≤ 3 for all P ∈ P3. In characteristic 6= 2 there are exactly 4 points
of P3 with orX(P) = 2. In characteristic two there are exactly 2 (case X not
supersingular) or exactly 1 (case X supersingular) points of P3 with orX(P) = 2.

Proof. If P ∈ X , then use Lemma 2.9. Assume P /∈ X . Lemma 2.7 gives
orX(P) ≤ 3. Let Γ be the set of all P ∈ P3 \X such that there are infinitely
many lines L with deg(L∩X) = 2 and P ∈ L. If P /∈ Γ, then orX(P) > 2, be-
cause the set of all S ⊂ X with ](S) ≤ 2 and P ∈ 〈S〉 is finite. If P ∈ Γ, then
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orX(P) = 2, because P is not a strange point of X (Remark 2.8) and for any fi-
nite set T ⊂ X there is a line L though P containing two different points of X \T .
The curve X is a complete intersection of two quadrics. Therefore there is no
line L⊂ P3 with deg(L∩X)≥ 3. Therefore the linear projection from P shows
that Γ is the set of all vertices of all quadric cones containing X . Every quadric
cone containing X has a unique vertex, because X is irreducible. There is a bi-
jection between these quadric cones (hence the elements of Γ) and the set of all
line bundles R on X with R⊗2 ∼= OX(1). In characteristic 6= 2 there are exactly
4 such R’s. In characteristic two there are 2 such R if X is not supersingular and
1 such R if R is supersingular.

Acknowledgment

The author would like to thank the Referee for suggestions and remarks which
improved the present work.

REFERENCES
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