ON THE STRATIFICATION OF PROJECTIVE n-SPACE BY X-RANKS, FOR A LINEARLY NORMAL ELLIPTIC CURVE $X \subset \mathbb{P}^{n}$

EDOARDO BALLICO

Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. For any $P \in \mathbb{P}^{n}$ the X-rank of P is the minimal cardinality of a set $S \subset X$ such that $P \in\langle S\rangle$. In this paper we give an almost complete description of the stratification of \mathbb{P}^{n} by the X-rank.

1. Introduction

Fix an integral and non-degenerate variety $X \subset \mathbb{P}^{n}$. For any $P \in \mathbb{P}^{n}$ the X-rank $r_{X}(P)$ of P is the minimal cardinality of a subset $S \subset X$ such that $P \in\langle S\rangle$, where \rangle denote the linear span. The X-rank is an extensively studied topic ([14], [8], [6], [13] and references therein). In the applications one mainly needs the cases in which X is either a Veronese embedding of a projective space or a Segre embedding of a multiprojective space. We feel that the general case gives a treasure of new projective geometry. Up to now only for rational normal curves there is a complete description of the stratification of \mathbb{P}^{n} by $X-\operatorname{rank}$ ([11], [14], Theorem 5.1, [6]). Here we look at the case of elliptic linearly normal curves. For any integer $t \geq 1$ let $\sigma_{t}(X)$ denote the closure in \mathbb{P}^{n} of all $(t-1)$-dimensional linear spaces spanned by t points of X. Set $\sigma_{0}(X)=\emptyset$. For any $P \in \mathbb{P}^{n}$ the
border X-rank $b_{X}(P)$ is the minimal integer $t \geq 1$ such that $P \in \sigma_{t}(X)$, i. e. the only positive integer t such that $P \in \sigma_{t}(X) \backslash \sigma_{t-1}(X)$. If (as always in this paper) X is a curve, then $\operatorname{dim}\left(\sigma_{t}(X)\right)=\min \{n, 2 t-1\}$ for all $t \geq 1$ ([1], Remark 1.6). Notice that $r_{X}(P) \geq b_{X}(P)$ and that equality holds at least on a non-empty open subset of $\sigma_{t}(X) \backslash \sigma_{t-1}(X), t:=b_{X}(P)$. Obviously $b_{X}(P)=1 \Longleftrightarrow P \in X \Longleftrightarrow$ $r_{X}(P)=1$. Hence to compute all X-ranks it is sufficient to compute the X-ranks of all points of $\mathbb{P}^{n} \backslash X$. In this paper we look at the case of the linearly normal elliptic curves.

We prove the following result.
Theorem 1.1. Fix integers $w \geq 2$ and $n \geq 2 w$. Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. Fix $P \in \mathbb{P}^{n}$ with $b_{X}(P)=w$. Then either $r_{X}(P)=w$ or $r_{X}(P)=$ $n+1-w$.

Proposition 3.2 gives the existence of non-general $P \in \mathbb{P}^{2 w-1} \backslash \sigma_{w-1}(X)$ such that $r_{X}(P)=b_{X}(P)+1=w+1$

Remark 1.2. Fix $P \in \mathbb{P}^{n}$ such that $b_{X}(P) \leq n / 2$, i. e. such that the border rank of P is not the maximal one. There is a unique zero-dimensional scheme $W \subset X$ such that $\operatorname{deg}(W) \leq b_{X}(P)$ and $P \in\langle W\rangle$ (Proposition 2.2). We have $\operatorname{deg}(W)=$ $b_{X}(P)$ and $P \notin\left\langle W^{\prime}\right\rangle$ for any $W^{\prime} \subsetneq W$. If W is reduced, then $r_{X}(P)=w$. If W is not reduced, then Theorem 1.1 says that $r_{X}(P)=n+1-w$.

Following works by A. Białynicki-Birula and A. Schinzel ([4], [5]), recently J. Jelisiejew introduced the definition of open rank for symmetric tensors, i. e. for the Veronese embeddings of projective spaces ([12]). In the general case of X-rank we may translate the definition of open rank in the following way.

Definition 1.3. Fix an integral and non-degenerate variety $X \subset \mathbb{P}^{n}$. For each $P \in \mathbb{P}^{n}$ the open X-rank or ${ }_{X}(P)$ of P is the minimal integer t such that for every proper closed subset $T \subsetneq X$ there is $S \subset X \backslash T$ with $\sharp(S) \leq t$ and $P \in\langle S\rangle$.

Obviously $o r_{X}(P) \geq r_{X}(P)$, but often the strict inequality holds (e.g., we have $\operatorname{or}_{X}(P)>1$ for all P).

For linearly normal elliptic curves we prove the following result.
Proposition 1.4. Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. Fix $P \in \mathbb{P}^{n} \backslash X$ and set $w:=b_{X}(P)$. We have $\operatorname{or}_{X}(P) \geq n+1-w$. Assume $n \geq 2 w \geq 4$. There is $O \in X$ with the following property. Fix any finite set $T \subset X$ such that $O \notin T$. Then there is $S \subset X \backslash T$ such that $P \in\langle S\rangle$.

Proposition 1.4 doesn't say if $\operatorname{or}_{X}(P)=n+1-w$. The answer is YES if $w=1$, i. e. if $P \in X$ (Lemma 2.9). The answer is YES if $w=2$ and $n>4$, while it is NO if $w=2$ and $n=4$ (Proposition 3.5). If n is odd, say $n=2 w-1$, and
P is general in $\mathbb{P}^{2 w-1}$, then $\operatorname{or}_{X}(P) \geq w+1$, i. e. $\operatorname{or}_{X}(P) \geq n+2-w$ (Remark 3.3).

The case $n=3$ for the rank is contained in [16]. For the open rank, see Proposition 3.6.

We work over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K})=0$. This assumption is essential in our proofs when $(n, w) \neq(4,2)$, mainly to quote [9], Proposition 5.8, which is a very strong non-linear version of Bertini's theorem. In the case $n=3$ we also check the positive characteristic case.

2. Preliminary lemmas

In this paper an elliptic curve is a smooth and connected projective curve with genus 1 .

Fix any non-degenerate variety $X \subset \mathbb{P}^{n}$. For any $P \in \mathbb{P}^{n}$ let $\mathcal{S}(X, P)$ denote the set of all $S \subset X$ evincing $r_{X}(P)$, i.e. the set of all $S \subset X$ such that $\sharp(S)=$ $r_{X}(P)$ and $P \in\langle S\rangle$. Notice that every $S \in \mathcal{S}(X, P)$ is linearly independent and $P \notin\left\langle S^{\prime}\right\rangle$ for any $S^{\prime} \subsetneq S$. Now assume that X is a linearly normal elliptic curve. Let $\mathcal{Z}(X, P)$ denote the set of all zero-dimensional subschemes $Z \subset X$ such that $\operatorname{deg}(Z)=b_{X}(P)$ and $P \in\langle Z\rangle$. Lemma 2.5 below gives $\mathcal{Z}(X, P) \neq \emptyset$. Fix any $Z \in \mathcal{Z}(X, P)$. Notice that Z is linearly independent (i. e. $\operatorname{dim}(\langle Z\rangle)=\operatorname{deg}(Z)-1)$ and $P \notin\left\langle Z^{\prime}\right\rangle$ for any subscheme $Z^{\prime} \subsetneq Z$.

Notation. Let $C \subset \mathbb{P}^{n}$ be a smooth, connected and non-degenerate curve. Let $\beta(C)$ be the maximal integer such that every zero-dimensional subscheme of C with degree at most $\beta(C)$ is linearly independent.

The following lemma is just a reformulation of [2], Lemma 1.
Lemma 2.1. Let $Y \subset \mathbb{P}^{r}$ be an integral variety. Fix any $P \in \mathbb{P}^{r}$ and two zerodimensional subschemes A, B of Y such that $A \neq B, P \in\langle A\rangle, P \in\langle B\rangle, P \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle B^{\prime}\right\rangle$ for any $B^{\prime} \subsetneq B$. Then $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{A \cup B}(1)\right)>0$.

Proposition 2.2. Fix an integer $k \leq\lfloor\beta(C) / 2\rfloor$ and any $P \in \sigma_{k}(C) \backslash \sigma_{k-1}(C)$. Then there exists a unique zero-dimensional scheme $Z \subset C$ such that $\operatorname{deg}(Z) \leq k$ and $P \in\langle Z\rangle$. Moreover $\operatorname{deg}(Z)=k$ and $P \notin\left\langle Z^{\prime}\right\rangle$ for all $Z^{\prime} \subsetneq Z$.

Proof. The existence part is stated in [3], Lemma 1, which in turn is just an adaptation of some parts of the beautiful paper [8] ([8], Lemma 2.1.6) or of [6], Proposition 11. For more about these schemes, see [7]. The uniqueness part is true by Lemma 2.1 and the definition of the integer $\beta(C)$.

Lemma 2.3. Let $X \subset \mathbb{P}^{n}, n \geq 2$, be a linearly normal elliptic curve.
(i) We have $\beta(X)=n$. A scheme $Z \subset X$ with $\operatorname{deg}(Z)=n+1$ is linearly independent if and only if $Z \notin\left|\mathcal{O}_{X}(1)\right|$.
(ii) Fix zero-dimensional schemes $A, B \subset X$ such that $\operatorname{deg}(A)+\operatorname{deg}(B) \leq$ $n+1$. If $\operatorname{deg}(A)+\operatorname{deg}(B)=n+1$ and $A+B \in\left|\mathcal{O}_{X}(1)\right|$, assume $A \cap B \neq \emptyset$, 1. e. assume $A \cup B \neq A+B$. Then $\langle A\rangle \cap\langle B\rangle=\langle A \cap B\rangle$.
(iii) Fix zero-dimensional schemes $A, B \subset X$ such that $A \neq \emptyset, B \neq \emptyset$, $\mathcal{O}_{X}(A+B) \cong \mathcal{O}_{X}(1)$ and $A \cap B=\emptyset$. Then $\langle A\rangle \cap\langle B\rangle$ is a single point.

Proof. Let $F \subset X$ be a zero-dimensional subscheme. Since X is linearly normal, we have $h^{1}\left(\mathcal{I}_{F}(1)\right)=0$ if and only if either $\operatorname{deg}(F)<\operatorname{deg}\left(\mathcal{O}_{X}(1)\right)=n+1$ or $\operatorname{deg}(F)=n+1$ and $F \notin\left|\mathcal{O}_{X}(1)\right|$ (use the cohomology of line bundles on an elliptic curve). Hence we get part (i). By the Grassmann's formula we also get part (ii) when either $\operatorname{deg}(A)+\operatorname{deg}(B) \leq n$ or $\operatorname{deg}(A)+\operatorname{deg}(B)=n+1$ and $A+B \notin\left|\mathcal{O}_{X}(1)\right|$. Take A, B with $A+B \in\left|\mathcal{O}_{X}(1)\right|, A \neq \emptyset$ and $B \neq \emptyset$. Calling $A \cup B$ the minimal subscheme of X containing both A and B, we have $\operatorname{deg}(A \cup B)=$ $\operatorname{deg}(A)+\operatorname{deg}(B)-\operatorname{deg}(A \cap B)$, while $\operatorname{deg}(A+B)=\operatorname{deg}(A)+\operatorname{deg}(B)$. Assume $A \cap B \neq \emptyset$, 1. e. assume $A+B \neq A \cup B$. Since $\langle A \cup B\rangle \supset(\langle A\rangle \cup\langle B\rangle)$, then $\langle A \cup B\rangle$ is the linear span of the linear spaces $\langle A\rangle$ and $\langle B\rangle$. Since $\operatorname{deg}(A \cup B) \leq n$ and $\beta(X)=n$, we have $\operatorname{dim}(\langle U\rangle)=\operatorname{deg}(U)-1$ for all $U \in\{A \cup B, A, B, A \cap B\}$. Grassmann's formula gives part (ii). It also gives part (iii), because $\operatorname{dim}(\langle A+$ $B\rangle)=\operatorname{deg}(A+B)-2$ and $\beta(X) \geq \max \{\operatorname{deg}(A), \operatorname{deg}(B)\}$.

Lemma 2.4. Let $X \subset \mathbb{P}^{n}, n \geq 2$, be a linearly normal elliptic curve. Fix $P \in \mathbb{P}^{n}$. Then either $b_{X}(P)=r_{X}(P)$ or $r_{X}(P)+b_{X}(P) \geq n+1$.

Proof. Assume $b_{X}(P)<r_{X}(P)$. Fix W evincing $b_{X}(P)$ and S evincing $r_{X}(P)$. Assume $\sharp(S)+\operatorname{deg}(W) \leq n$. Hence $S \cup W$ is linearly independent (Lemma 2.3). Therefore $h^{1}\left(\mathcal{I}_{W \cup S}(1)\right)=0$, contradicting Lemma 2.1.

Lemma 2.5. Fix integers $w>0$ and $n \geq \max \{2 w-1,2\}$. Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. Fix $P \in \mathbb{P}^{n}$ and assume the existence of a zerodimensional scheme $Z \subset X$ such that $\operatorname{deg}(Z)=w, P \in\langle Z\rangle$, while $P \notin\left\langle Z^{\prime}\right\rangle$ for all $Z^{\prime} \subsetneq Z$. Then $b_{X}(P)=w$. If $n \geq 2 w$, then $\mathcal{Z}(X, P)=\{Z\}$.

Proof. Assume $b_{X}(P)<w$ and take a scheme $B \in \mathcal{Z}(X, P)$ (Proposition 2.2). Hence $P \in\langle B\rangle$ and $\operatorname{deg}(B) \leq w-1$. Since $\operatorname{deg}(Z)+\operatorname{deg}(B) \leq n$, part (ii) of Lemma 2.3. Hence $\langle Z\rangle \cap\langle B\rangle=\langle Z \cap B\rangle$. We have $P \in\langle Z\rangle \cap\langle B\rangle$. Since $\operatorname{deg}(B)<$ w, we have $Z \cap B \subsetneq Z$. Hence $P \notin\langle Z \cap B\rangle$, a contradiction. Now assume $2 w \leq n$ and take any $W \subset X$ such that $\operatorname{deg}(W)=w$ and $P \in\langle Z\rangle$. Part (ii) of Lemma 2.3 gives $\langle Z\rangle \cap\langle W\rangle=\langle Z \cap W\rangle$. Since $P \in\langle Z\rangle \cap\langle W\rangle, P \notin\left\langle Z^{\prime}\right\rangle$ for any $Z^{\prime} \subsetneq Z$ and $\operatorname{deg}(Z)=\operatorname{deg}(W)$, we get $Z=W$.

Lemma 2.6. Fix integers $w>0, n \geq 2$. Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. Fix $P \in \mathbb{P}^{n}$ such that $b_{X}(P)=w$. Then $\operatorname{or}_{X}(P) \geq n+1-w$.

Proof. By Lemma 2.5 there is a unique degree w scheme such that $P \in\langle W\rangle$. Fix any zero-dimensional scheme $Z \subset X$ such that $P \in\langle S\rangle, \operatorname{deg}(Z)=n-w$ and $Z \nsubseteq W$. Since $\operatorname{deg}(Z)+\operatorname{deg}(W) \leq n$, part (ii) of Lemma 2.3 gives $\langle Z\rangle \cap\langle W\rangle=$ $\langle Z \cap W\rangle$. Since $Z \cap W \subsetneq W$, Lemma 2.4 applied to $Z \cap W$ gives $P \notin\langle Z\rangle$.

In characteristic zero the proof of [14], Proposition 5.1, gives the following result.

Lemma 2.7. Let $Y \subset \mathbb{P}^{n}$ be an integral and non-degenerate curve. Fix $P \in$ $\mathbb{P}^{n} \backslash Y$. In positive characteristic assume that P is not a strange point of Y. Then $\operatorname{or}_{X}(P) \leq n$.

In a few cases (e.g. when Y is a rational normal curve) the statement of Lemma 2.7 fails for some $P \in Y$.

Remark 2.8. Let $X \subset \mathbb{P}^{n}$ be a linearly normal elliptic curve. A theorem of Lluis says that a plane conic in characteristic two is the only smooth strange curve ([15]). Hence, by Lemma 2.7 or $r_{X}(P) \leq n$ for all $P \in \mathbb{P}^{n} \backslash X$.

Lemma 2.9. Let $X \subset \mathbb{P}^{n}, n \geq 2$, be a linearly normal elliptic curve. For any $P \in X$ we have $\operatorname{or}_{X}(P)=n$.

Proof. Remark 2.8 gives $\operatorname{or}_{X}(P) \leq n$. Fix any $S \subset X \backslash\{P\}$ such that $\sharp(S) \leq n-1$. Since $P \notin S$, part (ii) of Lemma 2.3 gives $P \notin\langle S\rangle$. Hence $\operatorname{or}_{X}(P) \geq n$.

3. Proof of Theorem 1.1 and related results

Proposition 3.1. Fix an integer $k \geq 1$, a linearly normal elliptic curve $C \subset \mathbb{P}^{2 k+1}$ and $P \in \mathbb{P}^{2 k+1} \backslash \sigma_{k}(C)$.
(a) Either $\sharp(\mathcal{Z}(C, P)) \leq 2$ or $\mathcal{Z}(C, P)$ is infinite. We have $Z_{1} \cap Z_{2}=\emptyset,\left\langle Z_{1}\right\rangle \cap$ $\left\langle Z_{2}\right\rangle=\{P\}$ and $\mathcal{O}_{C}\left(Z_{1}+Z_{2}\right) \cong \mathcal{O}_{C}(1)$ for any $Z_{1}, Z_{2} \in \mathcal{Z}(C, P)$ such that $Z_{1} \neq$ Z_{2}.
(b) If $\sharp(\mathcal{Z}(C, P)) \neq 2$, then either $\sharp(\mathcal{Z}(C, P))=1$ or $\mathcal{Z}(C, P)$ is infinite. In both cases $\mathcal{O}_{C}(2 Z) \cong \mathcal{O}_{C}(1)$ and $\mathcal{O}_{C}(Z) \cong \mathcal{O}_{C}\left(Z_{1}\right)$ for all $Z, Z_{1} \in \mathcal{Z}(C, P)$.
(c) If $\mathcal{Z}(C, P)$ is infinite, then its positive-dimensional part Γ is irreducible and one-dimensional. Fix a general $Z \in \Gamma$. Either Z is reduced or there is an integer $m \geq 2$ such that $Z=m S_{1}$ for a reduced $S_{1} \subset C$ such that $\sharp\left(S_{1}\right)=$ $(k+1) / m$.
(d) If P is general, then $\sharp(\mathcal{Z}(C, P))=2$.

Proof. Since no non-degenerate curve is defective ([1], Remark 1.6), we have $\sigma_{k+1}(C)=\mathbb{P}^{2 k+1}$ and $\operatorname{dim}\left(\sigma_{k}(C)\right)=2 k-1$. Hence $b_{C}(P)=k+1$. Proposition 2.2 and part (i) of Lemma 2.3 give $\mathcal{Z}(C, P) \neq \emptyset$. Fix $Z_{1}, Z_{2} \in \mathcal{Z}(C, P)$ such that $Z_{1} \neq Z_{2}$. Since $P \in\left\langle Z_{1}\right\rangle \cap\left\langle Z_{2}\right\rangle$ and $P \notin\langle E\rangle$ if $\operatorname{deg}(E) \leq k$, Lemma 2.3 gives $\mathcal{O}_{C}\left(Z_{1}+Z_{2}\right) \cong \mathcal{O}_{C}(1)$ and $Z_{1} \cap Z_{2}=\emptyset$, proving part (a).
(i) Let $J(C, \ldots, C) \subset C^{k+1} \times \mathbb{P}^{2 k+1}$ be the abstract join of $k+1$ copies of C, 1.e. the closure in $C^{k+1} \times \mathbb{P}^{2 k+1}$ of the set of all $\left(P_{1}, \ldots, P_{k+1}, P\right)$ such that $P_{i} \neq P_{j}$ for all $i \neq j$, the set $\left\{P_{1}, \ldots, P_{k+1}\right\}$ is linearly independent and $P \in\left\langle\left\{P_{1}, \ldots, P_{k+1}\right\}\right\rangle$. Since $\sigma_{k+1}(C)=\mathbb{P}^{2 k+1}$, for a general P the set $\mathcal{Z}(C, P)$ is finite and its cardinality is the degree of the generically finite surjection π : $J(C, \ldots, C) \rightarrow \mathbb{P}^{2 k+1}$ induced by the projection $C^{k+1} \times \mathbb{P}^{2 k+1} \rightarrow \mathbb{P}^{2 k+1}$. Assume the existence of schemes $Z_{1}, Z_{2}, Z_{3} \in \mathcal{Z}(C, P)$ such that $Z_{i} \neq Z_{j}$ for all $i \neq j$. Part (a) gives $Z_{i} \cap Z_{j}=\emptyset$ and $\mathcal{O}_{C}\left(Z_{i}+Z_{j}\right) \cong \mathcal{O}_{C}(1)$ for all $i \neq j$. Taking $i=1$ and $j \in\{2,3\}$ we get $\mathcal{O}_{C}\left(Z_{2}\right) \cong \mathcal{O}_{C}\left(Z_{3}\right)$. By symmetry we get $\mathcal{O}_{C}(Z) \cong \mathcal{O}_{C}\left(Z_{1}\right)$ for all $Z \in \mathcal{Z}(C, P)$. Since $\mathcal{O}_{C}\left(Z_{1}+Z_{2}\right) \cong \mathcal{O}_{C}(1)$, we also get $\mathcal{O}_{C}(2 Z) \cong \mathcal{O}_{C}(1)$ for all $Z \in \mathcal{Z}(C, P)$.
(ii) Since C is not the rational normal curve of \mathbb{P}^{3}, C is not a variety with one apparent double point in the sense of [10], 1. e. $\operatorname{deg}(\pi)>1$, 1. e. $\sharp(\mathcal{Z}(C, P)) \neq 1$ for a general $P \in \mathbb{P}^{2 k+1}$. There are only finitely many lines bundles R on X such that $R^{\otimes 2} \cong \mathcal{O}_{X}(1)$. For each of these lines bundles R we have $h^{0}(R)=k+1$ and $\operatorname{dim}(\langle Z\rangle)=k$ for each $Z \in|R|$ (Lemma 2.3). Hence a dimensional count and part (i) gives $\sharp(\mathcal{Z}(X, P))=2$ for a general $P \in \mathbb{P}^{2 k+1}$, proving part (d). Now assume $\sharp(\mathcal{Z}(C, P))=1$, say $\mathcal{Z}(X, P)=\{Z\}$. For a general $P \in \mathbb{P}^{2 k+1}$ the two elements, say $Z_{1}(P)$ and $Z_{2}(P)$, of $\mathcal{Z}(X, P)$ satisfy $\mathcal{O}_{C}\left(Z_{1}(P)+Z_{2}(P)\right) \cong \mathcal{O}_{C}(1)$. When P goes to Q we get $\mathcal{O}_{C}(2 Z) \cong \mathcal{O}_{C}(1)$ (here we are implicitly using that $\beta(X)=2 k+1 \geq k+1$ and hence that the limit of a family of degree $k+1$ subschemes of X is linearly independent). Since $\pi: J(C, \ldots, C) \rightarrow \mathbb{P}^{2 k+1}$ is a proper surjective morphism and $\mathbb{P}^{2 k+1}$ is a normal variety, each fiber of π is either infinite or with cardinality ≤ 2. Therefore either $\sharp(\mathcal{Z}(C, P)) \leq 2$ or $\mathcal{Z}(C, P)$ is infinite.
(iii) Now assume that $\mathcal{Z}(C, P)$ is infinite. Since any two different elements of $\mathcal{Z}(C, P)$ are disjoint (see step (i)), for a general $A \in C$ there is at most one element of Γ containing A. Hence $\operatorname{dim}(\Gamma)=1, \Gamma$ is irreducible and a general point of C is contained in a unique element of Γ, 1. e. the algebraic family Γ of effective divisors of C is a so-called involution ($[9], \S 5$). Since any two elements of Γ are disjoint, this involution has no base points. Let Z be a general element of Γ. Either Z is reduced or there is an integer $m \geq 2$ such that $Z=m S$ with S reduced ([9], Proposition 5.8), concluding the proof of part (c).

We may apply Lemma 2.6 at a general $P \in \mathbb{P}^{2 k+1}$, because $\mathcal{Z}(C, P)$ is finite for a general P.

Proposition 3.2. Fix an integer $k \geq 1$ and a linearly normal elliptic curve $X \subset$ $\mathbb{P}^{2 k+1}$. Then there are $Q, P \in \mathbb{P}^{2 k+1}$ such that $b_{X}(Q)=b_{X}(P)=r_{X}(Q)=k+1$ and $r_{X}(P) \geq k+2$. The set of all such points Q contains a non-empty open subset of $\mathbb{P}^{2 k+1}$, while the set of all such points P contains a non-empty algebraic subset of codimension 2 of $\mathbb{P}^{2 k+1}$.

Proof. Since $\sigma_{k+1}(X)=\mathbb{P}^{2 k+1}$, while $\operatorname{dim}\left(\sigma_{k}(X)\right)=2 k-1$ ([1], Remark 1.6), we may take as Q a general point of $\mathbb{P}^{2 k+1}$. Now we prove the existence of points $P \in \mathbb{P}^{n}$ such that $r_{X}(P)>b_{X}(P)=k+1$ and that the set of all P such that $b_{X}(P)=k+1<r_{X}(P)$ contains a codimension 2 subset of $\mathbb{P}^{2 k+1}$. Let \mathcal{U} be the set of all degree $k+1$ schemes $Z_{1} \subset X$ such that Z_{1} is not reduced and $2 Z_{1} \notin$ $\left|\mathcal{O}_{X}(1)\right|$. The set \mathcal{U} is a non-empty quasi-projective integral variety of dimension $k+1$. Fix any $Z_{1} \in \mathcal{U}$. Let $\mathcal{V}\left(Z_{1}\right)$ denote the set of all $Z_{2} \in\left|\mathcal{O}_{X}(1)\left(-Z_{1}\right)\right|$ such that Z_{2} is not reduced and $Z_{2} \cap Z_{1}=\emptyset$. The set $\mathcal{V}\left(Z_{1}\right)$ is a non-empty quasiprojective and integral variety of dimension k. For any $Z_{2} \in \mathcal{V}\left(Z_{1}\right)$ part (iii) of Lemma 2.3 gives that $\left\langle Z_{1}\right\rangle \cap\left\langle Z_{2}\right\rangle$ is a single point, Q. If $b_{X}(Q)=k+1$, then $\mathcal{Z}(X, Q)=\left\{Z_{1}, Z_{2}\right\}$, because $\mathcal{O}_{X}\left(2 Z_{1}\right) \not \not \mathcal{O}_{X}(1)$ (Part (b) of Proposition 3.1). Since neither Z_{1} nor Z_{2} is reduced, we get $r_{X}(Q)>k+1$. Varying Z_{2} for a fixed Z_{1} the set of all points Q obtained in this way covers a non-empty open subset of an irreducible hypersurface of $\left\langle Z_{1}\right\rangle$. Assume $b_{X}(Q) \leq k$ and fix $W \in \mathcal{Z}(X, Q)$. Notice that $P \notin\left\langle W^{\prime}\right\rangle$ for any $W^{\prime} \subsetneq W$. Since $\operatorname{deg}(W)+\operatorname{deg}\left(Z_{1}\right) \leq n$, Lemma 2.1, Proposition 2.2 and Lemma 2.3 give the existence of $Z^{\prime} \subsetneq Z$ such that $Q \in\left\langle Z^{\prime}\right\rangle$. Iterating the trick taking Z^{\prime} and W instead of Z_{1} and W we get $W \subseteq Z^{\prime}$ and hence $W \subset Z_{1}$. Making this construction using Z_{2} and W we get $W \subset Z_{2}$. Since $Z_{1} \cap Z_{2}=\emptyset$, we obtained a contradiction.

Remark 3.3. Fix an integer $w \geq 2$ and fix $P \in \mathbb{P}^{2 w-1} \backslash \sigma_{w-1}(X)$. Fix any $W \in \mathcal{Z}(X, P)$. Assume $\mathcal{O}_{X}(2 W) \not \not \mathcal{O}_{X}(1)$. This condition is satisfied for a general $P \in \mathbb{P}^{2 w-1}$. By part (b) of Proposition 3.1 we have $\sharp(\mathcal{Z}(X, P)) \leq 2$ and in particular $\mathcal{Z}(X, P)$ is finite. Fix a finite set $T \subset X$ containing the support of all $Z \in \mathcal{Z}(X, P)$. By the definition of the set $\mathcal{Z}(X, P)$ there is no zerodimensional scheme $Z \subset X \backslash T$ such that $P \in\langle Z\rangle$ and $\operatorname{deg}(Z)=w$. Therefore $\operatorname{or}_{X}(P) \geq w+1=n+2-w$.

Proofs of Theorem 1.1 and Proposition 1.4. Since $w \leq\lfloor(n+2) / 2\rfloor$, there are points P such that $r_{X}(P)=b_{X}(P)=w$. Fix any $W \in \sigma_{w}(X) \backslash \sigma_{w-1}(X)$. Since $n \geq 2 w$, there is a unique scheme $W \subset X$ such that $\operatorname{deg}(W)=w$ and $P \in\langle W\rangle$ (Proposition 2.2 and Lemma 2.5). If W is reduced, then $r_{X}(P)=w$. If W is not reduced, then $r_{X}(P) \geq n+1-w$. Hence to prove Theorem 1.1 and Proposition 1.4 for the point P it is sufficient to prove the existence of $O \in X$ with the following property. Fix a finite set $T \subset X$ with $O \notin T$. Then there is a
set $S \subset X \backslash T$ such that $\sharp(S) \leq n+1-w$ and $P \in\langle S\rangle$. The point O (if any) will appear at the very end of the proof.

Set $\mathcal{S}:=\left\{Z \in\left|\mathcal{O}_{X}(1)(-W)\right|: P \in\langle Z\rangle\right\}$. Since $\operatorname{deg}\left(\mathcal{O}_{X}(1)(-W)\right)=n+1-$ $w \leq n$, every element of $\left|\mathcal{O}_{X}(1)(-W)\right|$ is linearly independent. However, in the definition of the set \mathcal{S} we did not prescribe that $P \notin\left\langle Z^{\prime}\right\rangle$ for all $Z^{\prime} \subsetneq Z$. Part (i) of Lemma 2.3 and the inequality $r_{X}(P) \geq n+1-w$ give that $r_{X}(P)=n+1-w$ if and only if there is a reduced $S \in \mathcal{S}$.
(a) Fix $E \subset X \backslash T$ such that $\sharp(E)=n-2 w+1$ and $E \cap W_{\text {red }}=\emptyset$. In this step we prove the existence of an effective divisor A_{E} on X such that $\operatorname{deg}\left(A_{E}\right)=w$ and $E+A_{E} \in \mathcal{S}$. In step (b) we will also check that A_{E} is unique if $\mathcal{O}_{X}(1)(-E) \not \equiv$ $\mathcal{O}_{X}(2 W)$. Since $n \geq 2 w$, we have $E \neq \emptyset$. Since $\sharp(E)<n, E$ is linearly independent, 1.e. $\operatorname{dim}(\langle E\rangle)=n-2 w$. Let $\ell_{\langle E\rangle}: \mathbb{P}^{n} \backslash\langle E\rangle \rightarrow \mathbb{P}^{2 w-1}$ denote the linear projection from $\langle E\rangle$. Since $\sharp(E)<n+1-w$, Lemma 2.4 gives $P \notin\langle E\rangle$. Hence $\ell_{\langle E\rangle}(P)$ is a well-defined point of $\mathbb{P}^{2 w-1}$. Call $X_{E} \subset \mathbb{P}^{2 w-1}$ the closure of $\ell_{\langle E\rangle} \mid(X \backslash\langle E\rangle \cap X)$ in $\mathbb{P}^{2 w-1}$. Since X is a smooth curve, the rational map $\ell_{\langle E\rangle} \mid(X \backslash\langle E\rangle \cap X)$ extends to a surjective morphism $\psi: X \rightarrow X_{E}$. For every $Q \in X$ the divisor $E+Q$ is linearly independent, because $\operatorname{deg}(E+Q)<n$. Hence E is the scheme-theoretic intersection of X with $\langle E\rangle$. Hence $\operatorname{deg}\left(X_{E}\right) \cdot \operatorname{deg}(\psi)=$ $\operatorname{deg}(X)-\operatorname{deg}(E)=n+1-n+2 w+1=2 w$. Since X is non-degenerate, X_{E} spans $\mathbb{P}^{2 w-1}$ and in particular $\operatorname{deg}\left(X_{E}\right) \geq 2 w-1$. Since $\operatorname{deg}\left(X_{E}\right) \geq 2 w-1$ and $w \geq 2$, we get $\operatorname{deg}\left(X_{E}\right)=2 w$ and $\operatorname{deg}(\psi)=1$. Since $\operatorname{deg}(\psi)=1, X_{E}$ and X are birational. Since $\operatorname{deg}\left(X_{E}\right) \leq 2 w$ and X_{E} is non-degenerate, we have $p_{a}\left(X_{E}\right) \leq 1$. Since X_{E} is birational to X, we get that X_{E} is smooth and that it is a linearly normal elliptic curve. Since X and X_{E} are smooth curves, ψ is an isomorphism.
(b) Call $X[n-2 w+1]$ the set of all $E \subset X$ such that $\sharp(E)=n-2 w+1$, $E \cap W_{\text {red }}=\emptyset$ and $\mathcal{O}_{X}(1)(-E) \not \not \mathcal{O}_{X}(2 W)$. For any $E \in X[n-2 w+1]$ we have $\mathcal{O}_{X}\left(E+A_{E}+W\right) \cong \mathcal{O}_{C}(1)$ and $\mathcal{O}_{X}(1)(-E) \not \not \mathcal{O}_{C}(2 W)$. Therefore $A_{E} \neq W$. Since $\operatorname{deg}\left(A_{E}\right)=\operatorname{deg}(W), E \cap W=\emptyset, P \in\langle W\rangle \cap\left\langle E+A_{E}\right\rangle$ and $P \notin\left\langle W_{1}\right\rangle$ for any $W_{1} \subsetneq W$, parts (ii) and (iii) of Lemma 2.3 give $\left(E+A_{E}\right) \cap W=\emptyset$ for every $E \in X[n-2 w+1]$. Let $\Gamma \subseteq \mathcal{S}$ be any irreducible component of \mathcal{S} containing the irreducible algebraic family $\left\{E+A_{E}\right\}_{E \in X[n-2 w+1]}$. Let F be a general element of Γ. Remember that to prove $r_{X}(P)=n+1-w$ it is sufficient to find a reduced $S \in \Gamma$, while for the open rank we need S with $S \cap T=\emptyset . \Gamma$ is an irreducible algebraic family of divisors of X. We have $\operatorname{dim}(\Gamma)=n-2 w+1$. Fix any $E \in X[n-2 w+1]$ and call $\psi: X \rightarrow X_{E}$ the isomorphism constructed in step (a). Set $W^{\prime}:=\psi(W)$. Since $\operatorname{deg}(E+W)=n-w+1 \leq n$ and $\beta(X)=n$ (Lemma 2.3) the divisors E, W and $E+W$ are linearly independent. Since $E \cap W_{\text {red }}=\emptyset$, Grassmann's formula gives $\langle W\rangle \cap\langle E\rangle=\emptyset$. Hence $\operatorname{dim}\left(\left\langle W^{\prime}\right\rangle\right)=w$.

Fix any subscheme W_{1} of W with $\operatorname{deg}\left(W_{1}\right)=w-1$. Since $W_{1} \cap\langle E\rangle=\emptyset$, we have $\operatorname{dim}\left(\left\langle\psi\left(W_{1}\right)\right)=\operatorname{dim}\left(\left\langle W^{\prime}\right\rangle\right)-1\right.$. Since $P \in\langle W\rangle$, but $P \notin\left\langle W_{1}\right\rangle$, we have $\langle W\rangle=\left\langle W_{1} \cup\{P\}\right\rangle$. Hence $\ell_{\langle E\rangle}(P) \notin\left\langle\psi\left(W_{1}\right)\right\rangle$. Varying W_{1} we get $\ell_{\langle E\rangle}(P) \notin$ $\left\langle W^{\prime \prime}\right\rangle$ for every scheme $W^{\prime \prime} \subsetneq W^{\prime}$. Hence $\ell_{\langle E\rangle}(P)$ has border rank w (Lemma 2.5). Since $\mathcal{O}_{X}(2 W) \nsubseteq \mathcal{O}_{X}(1)(-E)$ for all $E \in X[n-2 w+1]$, part (b) of Proposition 3.1 with $k=w-1$ applied to the curve X_{E}, the point $\ell_{\langle E\rangle}(P)$ and the scheme $Z:=W^{\prime}$ gives that such a divisor A_{E} is unique. Hence Γ is an involution in the classical terminology ($[9], \S 5$). Assume for the moment that Γ has no fixed component. In particular $T \cap \gamma=\emptyset$ for a general $\gamma \in \Gamma$. We get that either F is reduced (and hence there is $S \subset X \backslash T$ with $\sharp(S)=n+1-w$ and $P \in\langle S\rangle$) or there is an integer $m \geq 2$ such that each connected component of F appears with multiplicity m ([9], Proposition 5.8). Since $F=E+A_{E}$ with E reduced and $\sharp(E)>\operatorname{deg}\left(A_{E}\right)$ this is obviously false. Hence we may assume that Γ has a base locus. Call D the base locus of Γ. Since E moves in $X \backslash T$, then $E \cap D=\emptyset$. Hence D is the base locus of the algebraic family $\left\{A_{E}\right\}_{E \in X[n-2 w+1]}$. For any $E \in X[n-2 w+1]$ we have $A_{E} \neq W$, because $\mathcal{O}_{X}(1)(-E) \nsubseteq \mathcal{O}_{X}(2 W)$. Since $E \cap W_{\text {red }}=\emptyset$, part (a) of Proposition 3.1 gives $A_{E} \cap W_{\text {red }}=\emptyset$. Hence $D \cap W_{\text {red }}=\emptyset$.

The irreducible algebraic family $\Gamma(-D)$ of effective divisors of X has the same dimension and it is base point free. We have $F=D+F^{\prime}$ with F^{\prime} general in $\Gamma(-D)$. Since $\Gamma(-D)$ is an involution without base points and whose general member has at least one reduced connected component (a connected component of E), its general member F^{\prime} is reduced ([9], Proposition 5.8) and contain no point of $T \cup D \cup W_{\text {red }}$. In particular $F^{\prime} \cap D=\emptyset, F^{\prime} \subset X \backslash T$ for a general F^{\prime} and $F^{\prime} \cap D=\emptyset$. Therefore to get a reduced divisor $F^{\prime}+D \in \mathcal{S}$ (and hence to prove that $\left.r_{X}(P) \leq n+1-w\right)$ it is sufficient to prove that D is reduced. We will even prove that $\operatorname{deg}(D)=1$ (if $D \neq \emptyset$).

Claim 1. We have $D \cap W=\emptyset$.
Proof of Claim 1. Since $E \cap W=\emptyset$, it is sufficient to prove that $A_{E} \cap W=\emptyset$ for all W. This is true by part (a) of Proposition 3.1, because $\ell_{\langle E\rangle}\left(A_{E}\right)$ and $\ell_{\langle E\rangle}(W)$ are different elements of $\mathcal{Z}\left(X_{E}, \ell_{\langle E\rangle}(P)\right)$.

Claim 2. If Γ has a base locus, then it has a unique base point and this base point appears in D with multiplicity one.

Proof of Claim 2. Assume that Γ has a base point, O, 1. e. that O is contained in the support of A_{E} for a general $E \in X[n-2 w+1]$. Let $\ell_{O}: \mathbb{P}^{n} \backslash\{O\} \rightarrow$ \mathbb{P}^{n-1} denote the linear projection from O. Claim 1 says that $O \notin W_{\text {red }}$. Since $\beta(X)>w$, we get $O \notin\langle W\rangle$. Hence $\ell_{O} \mid W$ is an embedding, $\operatorname{dim}\left(\ell_{O}(\langle W\rangle)\right)=$ $w-1$ and $\ell_{O}(P) \notin\left\langle W^{\prime}\right\rangle$ for any $W^{\prime} \subsetneq W$. Let X_{O} be the closure of $\ell_{O}(X \backslash\{O\})$ in \mathbb{P}^{n-1}.

As in step (a) we see that X_{O} is a linearly normal elliptic curve and that $\ell_{O} \mid(X \backslash\{O\})$ extends to an isomorphism $\psi_{O}: X \rightarrow X_{O}$. We get that $\ell_{O}(P)$ has border rank w with respect to X_{O} and that the family

$$
\left\{\psi_{O}\left(E+\left(A_{E}-\{O\}\right)\right\}_{E \in X[n-2 w+1]}\right.
$$

is an $(n-2 w+1)$-dimensional family \mathcal{F} of effective divisors on X_{O} such that $\ell_{O}(P) \in\langle J\rangle$ for all $J \in \mathcal{F}$. Therefore for a general $B \subset X_{O}$ with $\sharp(B)=n-$ $2 w$ there are infinitely many $J \in \mathcal{F}$ containing B; call \mathcal{G}_{B} any such positivedimensional family. Take the linear projection $\ell_{\langle B\rangle}: \mathbb{P}^{n-1} \backslash\langle B\rangle \rightarrow \mathbb{P}^{2 w-1}$ from $\langle B\rangle$. Let $X_{O, B}$ be the closure in $\mathbb{P}^{2 w-1}$ of $\ell_{\langle B\rangle}\left(X_{O} \backslash B\right)$ in $\mathbb{P}^{2 w-1}$. As in step (a) we see that $X_{O, B}$ is a linearly normal elliptic curve. By construction for every $J \in \mathcal{G}_{B}$ the divisor $J-B$ is effective and $\ell_{\langle B\rangle}(J-B) \in \mathcal{Z}\left(X_{O, B}, \ell_{\langle B\rangle}\left(\ell_{O}(P)\right)\right.$. By Proposition 3.1 any two divisors $J-B$ are disjoint. Taking $O+\psi_{O}^{-1}(B)$ we see that the family in the boundary of the family $\left\{E+A_{E}\right\}_{E \in X[n-2 w+1]}$ (we only took sets E containing O and we are allowed to do it, because we checked that $\left.O \notin W_{\text {red }}\right)$. Hence $D-O$ is in the base locus of \mathcal{G}_{B}. Therefore $D=\{O\}$.

If $D \neq \emptyset$, then Claim 2 gives $D=O$ for some $O \in X$. In this case O is the point appearing in the statement of Proposition 1.4 and every $S \in \mathcal{S}(X, P)$ contains O. If $D=\emptyset$, then $\operatorname{or}_{X}(P)=n+1-w$ and in Proposition 1.4 we may take as O any point of X.

Remark 3.4. Fix P, X, n, w as in Theorem 1.1 and assume $\operatorname{or}_{X}(P) \geq n+2-w$. By Proposition 1.4 there is $O \in X$ with the property that $O \in S$ for each $S \subset X$ such that $\sharp(S)=n+1-w$ and $P \in\langle S\rangle$. In the proof just given we also got that $O \notin W_{\text {red }}$ (this also follows from part (ii) of Lemma 2.3).
Proposition 3.5. Let $X \subset \mathbb{P}^{n}, n \geq 4$, be a linearly normal elliptic curve. Let $\tau(X) \subset \mathbb{P}^{n}$ be the tangential surface of X. Fix $P \in \mathbb{P}^{n}$ with $b_{X}(P)=2$.
(i) If $n \geq 5$, then $\operatorname{or}_{X}(P)=n-1$.
(ii) Assume $n=4$. We have $3 \leq \operatorname{or}_{X}(P) \leq 4$.

1. We have $\operatorname{or}_{X}(P)=3$ for a general $P \in \sigma_{2}(X) \backslash \tau(X)$, but there are $P \in$ $\sigma_{2}(X) \backslash \tau(X)$ with $\operatorname{or}_{X}(P)=4$.
2. We have $\operatorname{or}_{X}(P)=3$ for a general $P \in \tau(X)$, but there are $P \in \tau(X) \backslash X$ with $\operatorname{or}_{X}(P)=4$.
3. The set of all $P \in \tau(X)$ with $\operatorname{or}_{X}(P)=4$ has dimension 1 . The set of all $P \in \sigma_{2}(X) \backslash \tau(X)$ with or $r_{X}(P)=4$ has dimension 2.
4. The set of all $P \in \sigma_{2}(X) \backslash X$ with $\operatorname{or}_{X}(P)=4$ is contained in the union of 4 one-dimensional families of lines of \mathbb{P}^{4}, the vertices of the rank 3 quadric hypersurfaces containing X.

Proof. For any $Q \in \mathbb{P}^{n}$ let $\ell_{Q}: \mathbb{P}^{n} \backslash\{Q\} \rightarrow \mathbb{P}^{n-1}$ denote the linear projection from Q. Remark 2.8 gives $\operatorname{or}_{X}(P) \leq n$. Lemma 2.6 gives $\operatorname{or}_{X}(P) \geq n-1$. Let $W \subset X$ be the degree two scheme such that $P \in\langle W\rangle$. Fix a finite set $T \subset X$.
(a) Assume $n=4$. Set $Y:=\ell_{P}(X)$. The curve Y is non-degenerate and in particular it is not a line. Since $P \notin X$, we have $5=\operatorname{deg}(X)=\operatorname{deg}\left(\ell_{P} \mid X\right) \cdot \ell_{P}(X)$. Hence $\operatorname{deg}\left(\ell_{P} \mid X\right)=1, \operatorname{deg}(Y)=5$ and $\ell_{P} \mid X: X \rightarrow Y$ is the normalization map of Y. The curve Y is singular (it has at least a cusp if $P \in \tau(X)$ and at least one non-unibranch point if $P \in \sigma_{2}(X) \backslash \tau(X)$). An easy upper bound for the arithmetic genus of any degree 5 space curve gives $p_{a}(Y) \leq 2$. Hence $p_{a}(Y)=2$. Since $2 \cdot \operatorname{deg}(Y)>2 p_{a}(Y)-2$, Riemann-Roch gives $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(2)\right)>0$. Since $\operatorname{deg}(Y)>4$ and Y is non-degenerate, Y is not contained in two different quadric surfaces. Let M be the only quadric surface containing Y. Since Y is irreducible and non-degenerate, then M is irreducible.
(a1) First assume that the quadric surface M is smooth. Label the rulings of M so that $Y \in\left|\mathcal{O}_{M}(2,3)\right|$. For a general line $L \in\left|\mathcal{O}_{M}(1,0)\right|$ the set $L \cap Y$ is formed by 3 smooth points, none of them belonging to $\ell_{P}(T)$. Taking the inverse images in X of these 3 points we get $\operatorname{or}_{X}(P) \leq 3$.
(a2) Now assume that M is a quadric cone with vertex o. The linear projection from o maps Y onto a smooth conic. Since Y is birational to X, this map cannot be birational. Hence if M is a cone with vertex o, then o must be a smooth point of Y. Let $O \in X$ be the only point of X such that $\ell_{P}(O)=o$. We have $O \notin W_{\text {red }}$, because o is a smooth point of Y. Fix any $S \subset X \backslash\{O\}$ such that $\sharp(S)=3, S \cap W_{\text {red }}=\emptyset$ and $P \in\langle S\rangle$. Since $\beta(X)=4, P \in\langle W\rangle$ and $S \cap W_{\text {red }}=\emptyset$, part (ii) of Lemma 2.3 gives $\sharp\left(\ell_{P}(S)\right)=3$. The set $\ell_{P}(S)$ is contained in the line $\ell_{P}(\langle S\rangle \backslash\{P\})$. Since every 3-secant line of Y is contained in M and every line of M contains o, we get $O \in\langle\{S, P\}\rangle$. We have $\langle\{S, P\}\rangle=\langle S\rangle$. Since $\beta(X)=4$ and $O \in\langle S\rangle$, we have $O \in S$, contradicting our assumption $S \subset X \backslash\{O\}$. Taking as T any finite subset of X containing O we get $\operatorname{or}_{X}(P) \geq 4$.
(a3) Now we analyze for which (X, P) we have $\operatorname{or}_{X}(P)=4$, 1. e. when the quadric M appearing in step (a) is singular. Let X be any elliptic curve. Fix any $\mathcal{L} \in \operatorname{Pic}^{5}(X)$ and use it to embed X into \mathbb{P}^{4} as a linearly normal elliptic curve, writing $X \subset \mathbb{P}^{4}$ and $\mathcal{L}=\mathcal{O}_{X}(1)$. If $X \subset N$ with N a rank 3 quadric cone with vertex a line L (we will then project from some $P \in L$ to get a quadric cone $M \subset \mathbb{P}^{3}$ as in step (a2)), then the linear projection from L maps generically two to one X onto a conic and in particular L must cut quasi-transversally X and at exactly one point, U. We reverse this observation to produce any such rank 3 hyperquadric containing X. Fix any $U \in X$ and write $\mathcal{O}_{X}(1)(-U)=R^{\otimes 2}$ for some $R \in \operatorname{Pic}^{2}(X)$ (in characteristic $\neq 2$ there are exactly 4 line bundles R; in characteristic 2 there are $2 R$'s if X is not supersingular and one R if X is supersingular).

Use U to get an embedding j_{U} of $H^{0}\left(R^{\otimes 2}\right)$ into $H^{0}\left(\mathcal{O}_{X}(1)\right)$ as a hyperplane. Riemann-Roch gives $h^{0}(R)=2$ and $h^{0}\left(R^{\otimes 2}\right)=2$. Since $S^{2}\left(H^{0}(R)\right)$ has dimension 3, the multiplication map $H^{0}(R) \otimes H^{0}(R) \rightarrow H^{0}\left(R^{\otimes 2}\right)$ has a onedimensional kernel. Taking a basis of $h^{0}\left(R^{\otimes 2}\right)$ we see that this kernel corresponds to the vertex of a rank 3 quadric cone of \mathbb{P}^{3} containing the embedding of X by the linear system $\left|R^{\otimes 2}\right|$ and, using j_{U}, a quadric cone of \mathbb{P}^{4} containing X and with as its vertex a line through U. All rank 3 quadric cones of \mathbb{P}^{4} containing X appears in this way (the line bundle R is the line bundle inducing the generically two to one morphism $\phi: X \rightarrow D$ with D a conic). Therefore they are parametrized by 4 (or 2 or 1 in characteristic 2) one-dimensional families; fix any $P^{\prime} \in \sigma_{2}(X) \backslash X$; taking the linear projection from P^{\prime} we see that two different rank 3 quadric cones cannot have vertices containing P^{\prime}. Fix a rank 3 quadric cone with associated vertex L and associated degree two map ϕ. We only need to see which $P \in \sigma_{2}(X) \backslash X$ is contained in $(L \backslash\{U\})$ for some U and some R. We fix U and R and hence we fix L. Since $L \cap X=\{U\}$ scheme-theoretically (R^{2} has no base points) L is neither a secant line nor a tangent line. Fix $O \in X \backslash\{U\}$. We have $L \cap\langle 2 O\rangle \neq \emptyset$ if and only if ϕ ramifies at O (in characteristic $\neq 2$ there are 4 such points; in characteristic 2 there are 2 such points if X is not supersingular and a unique such point if X is supersingular). Fix $O_{1}, O_{2} \in X \backslash\{U\}$ such that $O_{1} \neq O_{2}$. We have $L \cap\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \neq \emptyset$ if and only if $\phi\left(O_{1}\right)=\phi\left(O_{2}\right)$ and hence there is a 1-dimensional family of such secant lines. Since $L \cap X=\{U\}$ scheme-theoretically, each non-empty intersection $L \cap\langle 2 O\rangle$ and $L \cap\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle$ is a single point.
(b) Assume $n=5$. Assume $\operatorname{or}_{X}(P) \geq 5=n$. We take the set-up of the proof of Theorem 1.4 and Proposition 1.4. Let $\mathcal{S}(X, P)^{\prime}$ be the set of all $S \subset X$ such that $\sharp(S)=4, P \in\langle S\rangle$ and $S \nsupseteq W$. We claim that the proof of Theorem 1.1 gives the existence of a two-dimensional family Λ of elements of $\mathcal{Z}(X, P)$ such that $M \nsupseteq W$ for every $M \in \Lambda$ (even if W is reduced); indeed, since $n \geq 2 w$, we have $E \neq \emptyset$ and hence for a general $E \in X$ we have $\mathcal{O}_{X}(1)(-E) \neq \mathcal{O}_{X}(W)$, 1. e. $A_{E} \neq W$. We also proved that $\operatorname{dim}\left(\mathcal{S}(X, P)^{\prime}\right) \geq 1$ (the family \mathcal{G}_{B}). Recall that D is reduced (Claim 2 of the quoted proof). Since D is reduced a general $E+A_{E}$ is reduced. Therefore $\operatorname{dim}\left(\Lambda \cap \mathcal{S}(X, P)^{\prime}\right) \geq 2$. By Remark 3.4 there is $O \in X \backslash W_{\text {red }}$ such that $O \in S$ for all $S \in \Lambda \cap \mathcal{S}(X, P)^{\prime}$. Part (ii) of Lemma 2.3 gives $S \cap W_{\text {red }}=\emptyset$ for all $S \in \mathcal{S}(X, P)^{\prime}$. Since $\beta(X)=5>4$ and $P \in\langle Z\rangle$ for some scheme $Z \subset X$ with $\operatorname{deg}(Z)=2$, the line $\langle\{O, P\}\rangle$ meets X quasi-transversally and only at O, 1. e. $\langle\{O, P\}\rangle \cap X=\{O\}$ (scheme-theoretic intersection). Let $\ell: \mathbb{P}^{5} \backslash\langle\{O, P\}\rangle \rightarrow \mathbb{P}^{3}$ denote the linear projection from the line $\langle\{O, P\}\rangle$. Let Y be the closure of $\ell(X \backslash\{O\})$ in \mathbb{P}^{3}.

Since X is non-degenerate, Y is non-degenerate. Since X is smooth and $\langle\{O, P\}\rangle \cap X=\{O\}$ as schemes, ℓ induces a morphism $\psi: X \rightarrow Y$ with $5=$ $\operatorname{deg}(X)-1=\operatorname{deg}(\psi) \cdot \operatorname{deg}(Y)$. Hence $\operatorname{deg}(Y)=5$ and ψ is the normalization map. The curve Y is singular (it has at least a cusp if P is in the tangential variety $\tau(X)$ of X, while it has at least one singular non-unibranch point if $P \in$ $\left.\sigma_{2}(X) \backslash \tau(X)\right)$. Since $\operatorname{deg}(Y)=5>4, Y$ is contained in at most one quadric surface. Since X is the normalization of Y and Y is singular, we have $p_{a}(Y) \geq 2$. The bound for the arithmetic genus of any degree 5 space curve gives $p_{a}(Y)=$ 2 and hence $\operatorname{deg}(Y)>2 p_{a}(Y)-2$. Riemann-Roch gives $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(2)\right)>1$. Therefore Y is contained in a unique quadric surface M. Since $p_{a}(Y)=2$, we also see that ψ is an isomorphism outside $W_{\text {red }}$ and hence it is injective, with the only exception of identifying the two points of W if W is reduced. Fix any $S \in \Lambda \cap \mathcal{S}(X, P)^{\prime}$ and write $S=S^{\prime} \sqcup\{O\}$ with $\sharp\left(S^{\prime}\right)=3$. Since $r_{X}(P)>3$, we have $P \notin\left\langle S^{\prime}\right\rangle$ and hence $\langle\{O, P\}\rangle \cap\left\langle S^{\prime}\right\rangle$ is a single point, P_{S}. Therefore $L_{S}:=$ $\ell\left(\left\langle S^{\prime}\right\rangle \backslash\left\{P_{S}\right\}\right)$ is a line containing $\ell\left(S^{\prime}\right)$. By Bezout's theorem every line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}(L \cap Y) \geq 3$ is contained in the quadric surface M. Since $\operatorname{deg}(Y)=5$, we have $\operatorname{deg}(L \cap Y) \leq 5$ for each line $L \subset \mathbb{P}^{3}$. Since $\psi_{\mid X \backslash W_{\text {red }}}$ is injective, we get $L_{S} \neq L_{S_{1}}$ for general $S, S_{1} \in \Lambda \cap \mathcal{S}(X, P)^{\prime}$ and hence that M contains a twodimensional family of lines, contradicting the irreducibility of M.
(c) Assume $n>5$ and that the Proposition 3.5 is true for lower dimensional projective spaces. Fix $Q \in X \backslash T$. Let $C \subset \mathbb{P}^{n-1}$ be the closure of $\ell_{Q}(X \backslash\{Q\})$ in \mathbb{P}^{n-1}. Since X is smooth at Q, the morphism $\ell_{\mid X \backslash\{Q\}}$ extends to a morphism $\psi: X \rightarrow C$. Since X is smooth at Q, we have $\operatorname{deg}(\psi) \cdot \operatorname{deg}(C)=\operatorname{deg}(X)-1=n$. Since C is non-degenerate, we have $\operatorname{deg}(C) \geq n-1$. Therefore $\operatorname{deg}(\psi)=1$ and $\operatorname{deg}(C)=n$. Since ψ is birational, we have $p_{a}(C) \geq 1$. An easy upper bound for the arithmetic genus of any degree n non-degenerate curve in \mathbb{P}^{n-1} gives $p_{a}(C) \leq 1$. Hence C is a linearly normal elliptic curve and ψ is an isomorphism. Since $b_{X}(P)=2$, we have $P \neq Q$ and hence $\ell_{Q}(P)$ is defined. We have $\psi(Q)=$ $\ell_{Q}(\langle 2 Q\rangle \backslash\{Q\})$. Set $T_{1}:=\psi(T)$. Since $Q \notin T$, we have $T_{1}=\ell_{Q}(T)$. Set $T_{2}:=$ $T_{1} \cup\{\psi(Q)\}$. By the inductive assumption there is $S \subset C \backslash T_{2}$ such that $\ell_{Q}(P) \in$ $\langle S\rangle$ and $\sharp(S) \leq n-2$. Set $B:=\psi^{-1}(S) \cup\{Q\}$. Since $\psi(Q) \notin B, B$ is a reduced divisor of X. We have $P \in\langle B\rangle, \sharp(B) \leq n-1$ and $B \subset X \backslash T$.

Proposition 3.6. Let $X \subset \mathbb{P}^{3}$ be a linearly normal elliptic curve. Then $2 \leq$ $\operatorname{or}_{X}(P) \leq 3$ for all $P \in \mathbb{P}^{3}$. In characteristic $\neq 2$ there are exactly 4 points of \mathbb{P}^{3} with or $r_{X}(P)=2$. In characteristic two there are exactly 2 (case X not supersingular) or exactly 1 (case X supersingular) points of \mathbb{P}^{3} with or $r_{X}(P)=2$.
Proof. If $P \in X$, then use Lemma 2.9. Assume $P \notin X$. Lemma 2.7 gives $\operatorname{or}_{X}(P) \leq 3$. Let Γ be the set of all $P \in \mathbb{P}^{3} \backslash X$ such that there are infinitely many lines L with $\operatorname{deg}(L \cap X)=2$ and $P \in L$. If $P \notin \Gamma$, then $\operatorname{or}_{X}(P)>2$, because the set of all $S \subset X$ with $\sharp(S) \leq 2$ and $P \in\langle S\rangle$ is finite. If $P \in \Gamma$, then
$\operatorname{or}_{X}(P)=2$, because P is not a strange point of X (Remark 2.8) and for any finite set $T \subset X$ there is a line L though P containing two different points of $X \backslash T$. The curve X is a complete intersection of two quadrics. Therefore there is no line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}(L \cap X) \geq 3$. Therefore the linear projection from P shows that Γ is the set of all vertices of all quadric cones containing X. Every quadric cone containing X has a unique vertex, because X is irreducible. There is a bijection between these quadric cones (hence the elements of Γ) and the set of all line bundles R on X with $R^{\otimes 2} \cong \mathcal{O}_{X}(1)$. In characteristic $\neq 2$ there are exactly 4 such R 's. In characteristic two there are 2 such R if X is not supersingular and 1 such R if R is supersingular.

Acknowledgment

The author would like to thank the Referee for suggestions and remarks which improved the present work.

REFERENCES

[1] B. Ådlandsvik, Joins and higher secant varieties, Math. Scand. 62 (1987), 213222.
[2] E. Ballico - A. Bernardi, On the stratification of the fourth secant variety of Veronese variety via symmetric rank, Adv. Pure Appl. Math. 4 (2) (2013), 215250. DOI: 10.1515/apam-2013-0015.
[3] E. Ballico - A. Bernardi, Minimal decomposition of binary forms with respect to tangential projections, J. Algebra Appl. 12 (6) (2013), 1350010.
[4] A. Białynicki-Birula - A. Schinzel, Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math. 112 (2) (2008), 201-233.
[5] A. Białynicki-Birula - A. Schinzel, Corrigendum to "Representatons of multivariate polynomials by sums of univariate polynomials in linear forms", Colloq. Math. 125 (1) (2011), 139.
[6] A. Bernardi - A. Gimigliano - M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic. Comput. 46 (2011), 34-55.
[7] W. Buczyńska - J. Buczyński, Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geometry 23 (2014) 63-90. S 1056-3911(2013)00595-0
[8] J. Buczyński - A. Ginensky - J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. 88 (2) (2013), 1-24.
[9] L. Chiantini - C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 454 (1) (2002), 151-178.
[10] C. Ciliberto - M. Mella - F. Russo, Varieties with one apparent double point, J. Algebraic Geom. 13 (3) (2004), 475-512.
[11] G. Comas - M. Seiguer, On the rank of a binary form, Found. Comput. Math. 11 (1) (2011), 65-78. DOI: 10.1007/s10208-010-9077-x.
[12] J. Jelisiejew, An upper bound for the Waring rank of a form, Arch. Math. (Basel) 102 (4) (2014), 329-336.
[13] J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics 128, Amer. Math. Soc., Providence, 2012.
[14] J. M. Landsberg - Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (3) (2010), 339-366.
[15] E. Lluis, Variedades algebraicas con ciertas condiciones en sus tangents, Bol. Soc. Mat. Mexicana 7 (1962), 47-56.
[16] R. Piene, Cuspidal projections of space curves, Math. Ann. 256 (1) (1981), 95119.

EDOARDO BALLICO
Department of Mathematics
University of Trento
e-mail: edoardo.ballico@unitn.it

