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ON THE STRATIFICATION OF PROJECTIVE n-SPACE
BY X-RANKS, FOR A LINEARLY NORMAL
ELLIPTIC CURVE X C P

EDOARDO BALLICO

Let X C P” be a linearly normal elliptic curve. For any P € P" the
X-rank of P is the minimal cardinality of a set S C X such that P € (S). In
this paper we give an almost complete description of the stratification of
P" by the X-rank.

1. Introduction

Fix an integral and non-degenerate variety X C [P". For any P € P" the X-rank
rx (P) of P is the minimal cardinality of a subset S C X such that P € (S), where
() denote the linear span. The X-rank is an extensively studied topic ([14], [8],
[6], [13] and references therein). In the applications one mainly needs the cases
in which X is either a Veronese embedding of a projective space or a Segre
embedding of a multiprojective space. We feel that the general case gives a
treasure of new projective geometry. Up to now only for rational normal curves
there is a complete description of the stratification of P" by X-rank ([11], [14],
Theorem 5.1, [6]). Here we look at the case of elliptic linearly normal curves.
For any integer t > 1 let o;(X) denote the closure in P" of all (¢ — 1)-dimensional
linear spaces spanned by ¢ points of X. Set 6yp(X) = 0. For any P € P" the
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border X-rank bx (P) is the minimal integer 7 > 1 such that P € 6;(X), i.e. the
only positive integer 7 such that P € ¢;(X) \ 6,1 (X). If (as always in this paper)
X is a curve, then dim(o; (X)) = min{n,2r — 1} for all # > 1 ([1], Remark 1.6).
Notice that rx (P) > bx (P) and that equality holds at least on a non-empty open
subset of 6;(X) \ 6;—1(X), t := bx(P). Obviously bx(P) =1 <= P X <—
rx(P) = 1. Hence to compute all X-ranks it is sufficient to compute the X-ranks
of all points of P\ X. In this paper we look at the case of the linearly normal
elliptic curves.
We prove the following result.

Theorem 1.1. Fix integers w > 2 and n > 2w. Let X C P" be a linearly normal
elliptic curve. Fix P € P" with bx(P) = w. Then either rx(P) =w or rx(P) =
n+1—w.

Proposition 3.2 gives the existence of non-general P € P>*~!\ ,,_{(X) such
that ry(P) =bx(P)+1=w+1

Remark 1.2. Fix P € P" such that bx (P) < n/2, i.e. such that the border rank
of P is not the maximal one. There is a unique zero-dimensional scheme W C X
such that deg(W) < bx(P) and P € (W) (Proposition 2.2). We have deg(W) =
bx(P) and P ¢ (W') for any W' C W. If W is reduced, then rx(P) = w. If W is
not reduced, then Theorem 1.1 says that ry (P) =n+1—w.

Following works by A. Bialynicki-Birula and A. Schinzel ([4], [5]), recently
J. Jelisiejew introduced the definition of open rank for symmetric tensors, i.e.
for the Veronese embeddings of projective spaces ([12]). In the general case of
X-rank we may translate the definition of open rank in the following way.

Definition 1.3. Fix an integral and non-degenerate variety X C P". For each
P € P" the open X -rank orx (P) of P is the minimal integer # such that for every
proper closed subset 7 C X there is S C X \ T with #(S) <z and P € (S).

Obviously orx(P) > rx(P), but often the strict inequality holds (e.g., we
have orx(P) > 1 for all P).
For linearly normal elliptic curves we prove the following result.

Proposition 1.4. Let X C P" be a linearly normal elliptic curve. Fix P € P"\ X
and set w := bx(P). We have orx(P) > n+1—w. Assume n > 2w > 4. There
is O € X with the following property. Fix any finite set T C X such that O ¢ T.
Then there is S C X \ T such that P € (S).

Proposition 1.4 doesn’t say if orx(P) = n+ 1 —w. The answer is YES if
w=1,1i.e.if P € X (Lemma 2.9). The answer is YES if w =2 and n > 4, while
it is NO if w =2 and n = 4 (Proposition 3.5). If n is odd, say n = 2w — 1, and
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P is general in P?"~!, then orx(P) > w+1,i.e. orx(P) > n+2—w (Remark
3.3).

The case n = 3 for the rank is contained in [16]. For the open rank, see
Proposition 3.6.

We work over an algebraically closed field K such that char(K) = 0. This
assumption is essential in our proofs when (n,w) # (4,2), mainly to quote [9],
Proposition 5.8, which is a very strong non-linear version of Bertini’s theorem.
In the case n = 3 we also check the positive characteristic case.

2. Preliminary lemmas

In this paper an elliptic curve is a smooth and connected projective curve with
genus 1.

Fix any non-degenerate variety X C P". For any P € P" let S(X, P) denote
the set of all § C X evincing rx(P), i.e. the set of all § C X such that §(S) =
rx(P) and P € (S). Notice that every S € S(X,P) is linearly independent and
P ¢ (') for any S’ C S. Now assume that X is a linearly normal elliptic curve.
Let Z(X,P) denote the set of all zero-dimensional subschemes Z C X such that
deg(Z) = bx(P) and P € (Z). Lemma 2.5 below gives Z(X,P) # 0. Fix any
Z € Z(X,P). Notice that Z is linearly independent (i. e. dim((Z)) = deg(Z) — 1)
and P ¢ (Z') for any subscheme Z' C Z.

Notation. Let C C P" be a smooth, connected and non-degenerate curve. Let
B(C) be the maximal integer such that every zero-dimensional subscheme of C
with degree at most (C) is linearly independent.

The following lemma is just a reformulation of [2], Lemma 1.

Lemma 2.1. Let Y C P" be an integral variety. Fix any P € P" and two zero-
dimensional subschemes A, B of Y such that A # B, P € (A), P € (B), P ¢ (A")
forany A’ C A and P & (B') for any B' C B. Then h!(P",Z4,5(1)) > 0.

Proposition 2.2. Fix an integer k < |B(C)/2]| and any P € oy (C) \ cx_1(C).
Then there exists a unique zero-dimensional scheme Z C C such that deg(Z) <k
and P € (Z). Moreover deg(Z) =k and P ¢ (Z') forall Z' C Z.

Proof. The existence part is stated in [3], Lemma 1, which in turn is just an
adaptation of some parts of the beautiful paper [8] ([8], Lemma 2.1.6) or of [6],
Proposition 11. For more about these schemes, see [7]. The uniqueness part is
true by Lemma 2.1 and the definition of the integer 3(C). O

Lemma 2.3. Let X C P", n > 2, be a linearly normal elliptic curve.



22 EDOARDO BALLICO

(i) We have B(X) = n. A scheme Z C X with deg(Z) = n+1 is linearly
independent if and only if Z ¢ |Ox (1)|.

(ii) Fix zero-dimensional schemes A,B C X such that deg(A) +deg(B) <
n+1. Ifdeg(A)+deg(B) =n+1and A+ B € |Ox(1)|, assume ANB#0, 1.e.
assume AUB # A+ B. Then (A) N (B) = (ANB).

(iii) Fix zero-dimensional schemes A,B C X such that A #+ 0, B # 0,
Ox(A+B) = Ox(1) and ANB = 0. Then (A) N (B) is a single point.

Proof. Let F C X be a zero-dimensional subscheme. Since X is linearly normal,
we have h!'(Zr(1)) = 0 if and only if either deg(F) < deg(Ox(1)) =n+1 or
deg(F) =n+1and F ¢ |Ox(1)| (use the cohomology of line bundles on an
elliptic curve). Hence we get part (i). By the Grassmann’s formula we also
get part (ii) when either deg(A) + deg(B) < n or deg(A) +deg(B) =n+ 1 and
A+B¢|Ox(1)|. Take A,BwithA+B € |Ox(1)|, A # 0 and B # 0. CallingAUB
the minimal subscheme of X containing both A and B, we have deg(AUB) =
deg(A) + deg(B) — deg(A N B), while deg(A + B) = deg(A) + deg(B). Assume
ANB#0, 1.e. assume A+ B #AUB. Since (AUB) D ((A) U(B)), then (AUB)
is the linear span of the linear spaces (A) and (B). Since deg(AUB) < n and
B(X) = n, we have dim((U)) = deg(U) — 1 for all U € {AUB,A,B,ANB}.
Grassmann’s formula gives part (ii). It also gives part (iii), because dim((A +
B)) = deg(A+B) —2 and f3(X) > max{deg(A),deg(B)}. O

Lemma 2.4. Let X C P", n > 2, be a linearly normal elliptic curve. Fix P € P".
Then either by (P) = rx(P) or rx(P)+bx(P) > n+1.

Proof. Assume by (P) < rx(P). Fix W evincing by (P) and S evincing rx (P).
Assume £(S) +deg(W) < n. Hence SUW is linearly independent (Lemma 2.3).
Therefore h' (Zyys(1)) = 0, contradicting Lemma 2.1. O

Lemma 2.5. Fix integers w > 0 and n > max{2w — 1,2}. Let X C P" be a
linearly normal elliptic curve. Fix P € P" and assume the existence of a zero-
dimensional scheme Z C X such that deg(Z) = w, P € (Z), while P ¢ (Z') for
allZ' C Z. Then bx(P) =w. If n > 2w, then Z(X,P) ={Z}.

Proof. Assume by (P) < w and take a scheme B € Z(X,P) (Proposition 2.2).
Hence P € (B) and deg(B) < w— 1. Since deg(Z) + deg(B) < n, part (ii) of
Lemma 2.3. Hence (Z) N (B) = (ZNB). We have P € (Z) N (B). Since deg(B) <
w, we have ZNB C Z. Hence P ¢ (ZNB), a contradiction. Now assume 2w < n
and take any W C X such that deg(W) = w and P € (Z). Part (ii) of Lemma 2.3
gives (Z) N (W) = (ZNW). Since P € (Z)N(W), P ¢ (Z') for any Z' C Z and
deg(Z) =deg(W), we getZ=W. O
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Lemma 2.6. Fix integersw >0, n > 2. Let X C P" be a linearly normal elliptic
curve. Fix P € P" such that bx(P) =w. Then orx(P) >n+1—w.

Proof. By Lemma 2.5 there is a unique degree w scheme such that P € (W).
Fix any zero-dimensional scheme Z C X such that P € (S), deg(Z) =n—w and
Z ¢ W. Since deg(Z) +deg(W) < n, part (ii) of Lemma 2.3 gives (Z) N (W) =
(ZNW). Since ZNW C W, Lemma 2.4 applied to ZNW gives P ¢ (Z). O

In characteristic zero the proof of [14], Proposition 5.1, gives the following
result.

Lemma 2.7. Let Y C P" be an integral and non-degenerate curve. Fix P €
P"\ Y. In positive characteristic assume that P is not a strange point of Y. Then
orx(P) <n.

In a few cases (e.g. when Y is a rational normal curve) the statement of
Lemma 2.7 fails for some P € Y.

Remark 2.8. Let X C P" be a linearly normal elliptic curve. A theorem of
Lluis says that a plane conic in characteristic two is the only smooth strange
curve ([15]). Hence, by Lemma 2.7 orx(P) < n for all P € P"\ X.

Lemma 2.9. Let X C P", n > 2, be a linearly normal elliptic curve. For any
P € X we have orx(P) = n.

Proof. Remark 2.8 gives orx(P) <n. Fixany S C X \ {P} such that(S) <n—1.
Since P ¢ S, part (ii) of Lemma 2.3 gives P ¢ (S). Hence orx(P) > n. O

3. Proof of Theorem 1.1 and related results

Proposition 3.1. Fix an integer k > 1, a linearly normal elliptic curve C C P21
and P € P*1\ 6;(C).

(a) Either §(Z(C,P)) <2 or Z(C,P) is infinite. We have Z,NZ, =0, (Z;)N
(Z2) ={P} and Oc(Z) +Z») = Oc(1) for any Z,,Z, € Z(C,P) such that Z, #
7.

(b) If 4(Z(C,P)) # 2, then either 4(Z(C,P)) = 1 or Z(C,P) is infinite. In
both cases Oc(2Z) = Oc(1) and Oc(Z) = Oc¢(Z,) for all Z,Z, € Z(C,P).

(c) If Z(C,P) is infinite, then its positive-dimensional part U is irreducible
and one-dimensional. Fix a general Z € I'. Either Z is reduced or there is
an integer m > 2 such that Z = mS) for a reduced Sy C C such that §(S;) =
(k+1)/m.

(d) If P is general, then §(Z(C,P)) = 2.
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Proof. Since no non-degenerate curve is defective ([1], Remark 1.6), we have
0411(C) = P*+1 and dim(oy(C)) = 2k — 1. Hence bc(P) = k + 1. Proposition
2.2 and part (i) of Lemma 2.3 give Z(C,P) # 0. Fix Z,,Z, € Z(C, P) such that
Zy # 7. Since P € (Z1)N(Z,) and P ¢ (E) if deg(E) < k, Lemma 2.3 gives
Oc(Z1+7Z;) =2 Oc¢(1) and Z; NZ; = 0, proving part (a).

@) Let J(C,...,C) C C**1 x P?+! be the abstract join of k + 1 copies of
C, l.e. the closure in C¥*! x P?+1 of the set of all (P,...,P1,P) such
that P, # P; for all i # j, the set {Pj,..., Py} is linearly independent and
Pc ({P,...,Py1}). Since oy, 1(C) = P**!, for a general P the set Z(C,P)
is finite and its cardinality is the degree of the generically finite surjection 7 :
J(C,...,C) — P?**! induced by the projection Ck*! x P?+1 5 P2+1 - Agsume
the existence of schemes Z;,2,,73 € Z(C, P) such that Z; # Z; for all i # j. Part
(a) gives ZiNZ; =0 and Oc(Z; +Z;j) = O¢(1) for all i # j. Taking i = 1 and
J€{2,3} we get Oc(Z2) = Oc¢(Z3). By symmetry we get Oc(Z) = O¢(Z;) for
all Z € Z(C,P). Since Oc(Z1 +2Z,) = Oc(1), we also get Oc(2Z) = Oc¢(1) for
all Z € Z(C,P).

(i) Since C is not the rational normal curve of P3, C is not a variety with one
apparent double point in the sense of [10], 1. e. deg(m) > 1, 1.e. §(Z(C,P)) # 1
for a general P € P?**1. There are only finitely many lines bundles R on X such
that R®2 =2 Ox(1). For each of these lines bundles R we have h°(R) = k+ 1 and
dim((Z)) = k for each Z € |R| (Lemma 2.3). Hence a dimensional count and
part (i) gives #(Z(X,P)) = 2 for a general P € P>**!, proving part (d). Now
assume #(Z(C,P)) = 1, say Z(X,P) = {Z}. For a general P € P**! the two
elements, say Z; (P) and Z,(P), of Z(X, P) satisfy O¢(Z,(P)+Z,(P)) = O¢(1).
When P goes to Q we get Oc(2Z) = O¢(1) (here we are implicitly using that
B(X) =2k+ 1> k+1 and hence that the limit of a family of degree k + 1
subschemes of X is linearly independent). Since 7 : J(C,...,C) — P**+! ig
a proper surjective morphism and P?**! is a normal variety, each fiber of 7
is either infinite or with cardinality < 2. Therefore either (Z(C,P)) < 2 or
Z(C, P) is infinite.

(iii) Now assume that Z(C, P) is infinite. Since any two different elements
of Z(C,P) are disjoint (see step (i)), for a general A € C there is at most one
element of I" containing A. Hence dim(I") = 1, T is irreducible and a general
point of C is contained in a unique element of I', 1. e. the algebraic family I" of
effective divisors of C is a so-called involution ([9], §5). Since any two elements
of I" are disjoint, this involution has no base points. Let Z be a general element
of I'. Either Z is reduced or there is an integer m > 2 such that Z = mS with §
reduced ([9], Proposition 5.8), concluding the proof of part (c). L]

We may apply Lemma 2.6 at a general P € P**!, because Z(C, P) is finite
for a general P.



X-RANKS 25

Proposition 3.2. Fix an integer k > 1 and a linearly normal elliptic curve X C
P2#+1. Then there are Q,P € P**! such that bx (Q) = bx(P) = rx(Q) = k+ 1
and rx (P) > k+2. The set of all such points Q contains a non-empty open subset
of P2**1 while the set of all such points P contains a non-empty algebraic subset
of codimension 2 of P*+1,

Proof. Since oy, 1(X) = P**! while dim(oy (X)) = 2k — 1 ([1], Remark 1.6),
we may take as Q a general point of P?*!. Now we prove the existence of
points P € P" such that ry (P) > bx(P) = k+ 1 and that the set of all P such that
bx(P) = k+1 < rx(P) contains a codimension 2 subset of P?**!, Let I/ be the
set of all degree k+ 1 schemes Z; C X such that Z; is not reduced and 2Z; ¢
|Ox(1)|. The set is a non-empty quasi-projective integral variety of dimension
k+ 1. Fix any Z; € U. Let V(Z;) denote the set of all Z, € |Ox(1)(—Z;)]| such
that Z, is not reduced and Z, NZ; = 0. The set V(Z;) is a non-empty quasi-
projective and integral variety of dimension k. For any Z, € V(Z,) part (iii) of
Lemma 2.3 gives that (Z;) N (Z,) is a single point, Q. If bx(Q) = k+ 1, then
Z(X,0) ={Z,,Z,}, because Ox(2Z;) 2 Ox(1) (Part (b) of Proposition 3.1).
Since neither Z; nor Z; is reduced, we get rx(Q) > k+ 1. Varying Z, for a fixed
Z the set of all points Q obtained in this way covers a non-empty open subset of
an irreducible hypersurface of (Z;). Assume bx(Q) < k and fix W € Z(X, Q).
Notice that P ¢ (W’) for any W/ C W. Since deg(W) +deg(Z,) <n, Lemma 2.1,
Proposition 2.2 and Lemma 2.3 give the existence of Z' C Z such that Q € (Z').
Iterating the trick taking Z’ and W instead of Z; and W we get W C Z' and
hence W C Z;. Making this construction using Z, and W we get W C Z,. Since
Z1NZy =0, we obtained a contradiction. ]

Remark 3.3. Fix an integer w > 2 and fix P € P?*~!\ 6,,_1(X). Fix any
W e Z(X,P). Assume Ox(2W) 2 Ox(1). This condition is satisfied for a
general P € P2"~!. By part (b) of Proposition 3.1 we have #(Z(X,P)) <2
and in particular Z(X,P) is finite. Fix a finite set T C X containing the sup-
port of all Z € Z(X,P). By the definition of the set Z(X,P) there is no zero-
dimensional scheme Z C X\T such that P € (Z) and deg(Z) = w. Therefore
orx(P)>w+1=n+2—w.

Proofs of Theorem 1.1 and Proposition 1.4. Since w < |(n+2)/2], there
are points P such that ry(P) = bx(P) = w. Fix any W € ¢,,(X) \ 0,,—1(X).
Since n > 2w, there is a unique scheme W C X such that deg(W) = w and
P € (W) (Proposition 2.2 and Lemma 2.5). If W is reduced, then rx(P) = w.
If W is not reduced, then rx(P) > n+1—w. Hence to prove Theorem 1.1 and
Proposition 1.4 for the point P it is sufficient to prove the existence of O € X
with the following property. Fix a finite set 7 C X with O ¢ T. Then there is a



26 EDOARDO BALLICO

set S C X \ T such that §(S) <n+1—wand P € (S). The point O (if any) will
appear at the very end of the proof.

Set S :={Z e |Ox(1)(—W)|: P (Z)}. Since deg(Ox(1)(—W)) =n+1—
w < n, every element of |Ox(1)(—W)]| is linearly independent. However, in the
definition of the set S we did not prescribe that P ¢ (Z') for all Z’' C Z. Part (i)
of Lemma 2.3 and the inequality rx(P) >n+1—wgive that ry(P) =n+1—w
if and only if there is a reduced S € S.

(a) Fix E C X\ T such that §(E) =n—2w+ 1 and ENW,.z = 0. In this step
we prove the existence of an effective divisor A on X such that deg(Ag) =w
and E+Ag € S. In step (b) we will also check that Ag is unique if Ox (1)(—E) 2
Ox(2W). Since n > 2w, we have E # 0. Since §(E) < n, E is linearly in-
dependent, 1.e. dim((E)) =n—2w. Let £ : P"\ (E) — P?~! denote the
linear projection from (E). Since §(E) < n+1—w, Lemma 2.4 gives P ¢ (E).
Hence /() (P) is a well-defined point of P**~!. Call Xz C P?*! the closure
of £iy|(X '\ (E) NX) in P2»=1. Since X is a smooth curve, the rational map
Lipy|(X\ (E) NX) extends to a surjective morphism y : X — Xg. For every
Q € X the divisor E + Q is linearly independent, because deg(E + Q) < n. Hence
E is the scheme-theoretic intersection of X with (E). Hence deg(Xg) -deg(y) =
deg(X) —deg(E) =n+1—n+2w+1=2w. Since X is non-degenerate, Xg
spans P?*~! and in particular deg(Xg) > 2w — 1. Since deg(Xg) > 2w — 1 and
w > 2, we get deg(Xg) = 2w and deg(y) = 1. Since deg(y) = 1, Xg and X are
birational. Since deg(Xg) < 2w and X is non-degenerate, we have p,(Xg) < 1.
Since X is birational to X, we get that Xg is smooth and that it is a linearly
normal elliptic curve. Since X and Xy are smooth curves, ¥ is an isomorphism.

(b) Call X[n— 2w+ 1] the set of all E C X such that §(E) =n—2w+ 1,
ENW,q =0 and Ox(1)(—E) 2 Ox(2W). For any E € X[n— 2w+ 1] we have
Ox(E+Ag+W) = Oc(1) and Ox(1)(—E) 2 Oc(2W). Therefore Ag # W.
Since deg(Ag) = deg(W), ENW =0, P € (W)yN(E +Ag) and P ¢ (W) for
any W; C W, parts (ii) and (iii) of Lemma 2.3 give (E +Ag) "W = 0 for every
E € X[n—2w+1]. LetI' C S be any irreducible component of S containing the
irreducible algebraic family {E +Ag} EcXn—2w+1)- Let F' be a general element
of I'. Remember that to prove rx (P) = n+ 1 —w it is sufficient to find a reduced
S € I', while for the open rank we need S with SN7T = @. I' is an irreducible
algebraic family of divisors of X. We have dim(I') = n— 2w+ 1. Fix any
E € X[n—2w+1] and call y : X — Xg the isomorphism constructed in step (a).
Set W := y(W). Since deg(E+W)=n—w+1<nand B(X) =n (Lemma
2.3) the divisors E, W and E 4+ W are linearly independent. Since E NW,.; =0,
Grassmann’s formula gives (W) N (E) = 0. Hence dim((W')) = w.
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Fix any subscheme W; of W with deg(W;) =w — 1. Since Wy N (E) = 0,
we have dim({y(W;)) =dim((W’)) — 1. Since P € (W), but P ¢ (W), we have
(W) = (W U{P}). Hence £\ (P) & (y(W1)). Varying W) we get £ (P) ¢
(W") for every scheme W” C W’. Hence /g (P) has border rank w (Lemma
2.5). Since Ox (2W) 2£ Ox(1)(—E) for all E € X[n — 2w+ 1], part (b) of Propo-
sition 3.1 with k = w — 1 applied to the curve Xg, the point /gy (P) and the
scheme Z := W’ gives that such a divisor Ag is unique. Hence I is an involu-
tion in the classical terminology ([9], §5). Assume for the moment that I" has
no fixed component. In particular 7 N7y = 0 for a general y € I'. We get that
either F is reduced (and hence there is S C X \ T with §(S) =n+1—w and
P € (S)) or there is an integer m > 2 such that each connected component of
F appears with multiplicity m ([9], Proposition 5.8). Since F' = E + Ag with E
reduced and §(E) > deg(Ag) this is obviously false. Hence we may assume that
I" has a base locus. Call D the base locus of I'. Since £ moves in X \ 7, then
END = 0. Hence D is the base locus of the algebraic family {Ag } pex[n—2w+1]-
For any E € X[n—2w+ 1] we have Ag # W, because Ox (1)(—E) 2 Ox(2W).
Since E N W,z = @, part (a) of Proposition 3.1 gives Ag N W,,; = 0. Hence
DNW,.g =0.

The irreducible algebraic family I'(—D) of effective divisors of X has the
same dimension and it is base point free. We have F = D + F’ with F’ general
in'(—D). Since I'(—D) is an involution without base points and whose general
member has at least one reduced connected component (a connected component
of E), its general member F’ is reduced ([9], Proposition 5.8) and contain no
point of 7UDUW,,. In particular F'ND =0, F' C X\ T for a general F’ and
F'ND = 0. Therefore to get a reduced divisor F' + D € S (and hence to prove
that ry (P) < n+ 1 —w) it is sufficient to prove that D is reduced. We will even
prove that deg(D) = 1 (if D # 0).

Claim 1. We have DNW = 0.

Proof of Claim 1. Since ENW =0, it is sufficient to prove that A "W =0
for all W. This is true by part (a) of Proposition 3.1, because /(g (Ag) and
£ gy(W) are different elements of Z(Xg, g (P)).

Claim 2. If T has a base locus, then it has a unique base point and this
base point appears in D with multiplicity one.

Proof of Claim 2. Assume that I" has a base point, O, 1.e. that O is con-
tained in the support of Ag for a general E € X[n—2w+1]. Let o : P"\ {0} —
P"~! denote the linear projection from O. Claim 1 says that O ¢ W,,;. Since
B(X) > w, we get O ¢ (W). Hence {p|W is an embedding, dim(¢p((W))) =
w—1and £o(P) ¢ (W) for any W C W. Let Xo be the closure of /(X \ {O})
inP" 1.
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As in step (a) we see that Xy is a linearly normal elliptic curve and that
Lo|(X\ {O}) extends to an isomorphism Yy : X — Xp. We get that £o(P) has
border rank w with respect to X, and that the family

{Wo(E+ (Ag —{O}) beexn—2w+1]

is an (n — 2w + 1)-dimensional family F of effective divisors on X such that
lo(P) € (J) for all J € F. Therefore for a general B C Xp with §(B) =n—
2w there are infinitely many J € F containing B; call Gp any such positive-
dimensional family. Take the linear projection {5 : P"~'\ (B) — P?~! from
(B). Let Xo p be the closure in P2~ of £,5,(Xo \ B) in P*~'. As in step (a)
we see that Xp p is a linearly normal elliptic curve. By construction for every
J € Gp the divisor J — B is effective and £ (J — B) € Z(Xo 5,¢ 5 (¢o(P)). By
Proposition 3.1 any two divisors J — B are disjoint. Taking O + v, ! (B) we see
that the family in the boundary of the family {E + Ag}gex(n—2w+1) (We only
took sets £ containing O and we are allowed to do it, because we checked that
O ¢ W,.q). Hence D — O is in the base locus of Gg. Therefore D = {O}.

If D # 0, then Claim 2 gives D = O for some O € X. In this case O is
the point appearing in the statement of Proposition 1.4 and every S € S(X,P)
contains O. If D = 0, then orx(P) =n+ 1 —w and in Proposition 1.4 we may
take as O any point of X. O

Remark 3.4. Fix P,X,n,w as in Theorem 1.1 and assume orx(P) > n+2 —w.
By Proposition 1.4 there is O € X with the property that O € S for each § C X
such that §(S) =n+1—w and P € (S). In the proof just given we also got that
O ¢ W, (this also follows from part (ii) of Lemma 2.3).

Proposition 3.5. Let X C P", n > 4, be a linearly normal elliptic curve. Let
T(X) C P" be the tangential surface of X. Fix P € P" with bx (P) = 2.

(i) If n > 5, then orx(P) =n— 1.

(ii) Assume n = 4. We have 3 < orx(P) < 4.

1. We have orx(P) =3 for a general P € 6»(X) \ ©(X), but there are P €
02(X)\ ©(X) with orx(P) = 4.

2. We have orx(P) = 3 for a general P € ©(X), but there are P € T(X)\ X
with orx (P) = 4.

3. The set of all P € ©(X) with orx(P) = 4 has dimension 1. The set of all
P € 0»(X)\ ©(X) with orx (P) = 4 has dimension 2.

4. The set of all P € 62(X )\ X with orx (P) = 4 is contained in the union of 4
one-dimensional families of lines of P*, the vertices of the rank 3 quadric
hypersurfaces containing X.
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Proof. For any Q € P" let £p : P"\ {Q} — P"~! denote the linear projection
from Q. Remark 2.8 gives ory(P) < n. Lemma 2.6 gives ory(P) > n— 1. Let
W C X be the degree two scheme such that P € (W). Fix a finite set T C X.

(a) Assume n =4. Set Y := (p(X). The curve Y is non-degenerate and in
particular it is not a line. Since P ¢ X, we have 5 = deg(X) = deg({p|X) - p(X).
Hence deg(¢p|X) =1, deg(Y) =5 and ¢p|X : X — Y is the normalization map
of Y. The curve Y is singular (it has at least a cusp if P € 7(X) and at least
one non-unibranch point if P € 6,(X) \ 7(X)). An easy upper bound for the
arithmetic genus of any degree 5 space curve gives p,(Y) < 2. Hence p,(Y) =2.
Since 2-deg(Y) > 2p,(Y) — 2, Riemann-Roch gives h°(IP3, Zy(2)) > 0. Since
deg(Y) > 4 and Y is non-degenerate, Y is not contained in two different quadric
surfaces. Let M be the only quadric surface containing Y. Since Y is irreducible
and non-degenerate, then M is irreducible.

(al) First assume that the quadric surface M is smooth. Label the rulings
of M so that Y € |Ouy(2,3)|. For a general line L € |Oy(1,0)] the set LNY
is formed by 3 smooth points, none of them belonging to ¢p(7T). Taking the
inverse images in X of these 3 points we get ory (P) < 3.

(a2) Now assume that M is a quadric cone with vertex o. The linear pro-
jection from o maps Y onto a smooth conic. Since Y is birational to X, this
map cannot be birational. Hence if M is a cone with vertex o, then o must be a
smooth point of Y. Let O € X be the only point of X such that /p(0) = 0. We
have O ¢ W,.4, because o is a smooth point of Y. Fix any S C X \ {O} such that
£8(S) =3, SNW,eq =0 and P € (S). Since B(X) =4, P (W) and SNW,.q =0,
part (ii) of Lemma 2.3 gives #(¢p(S)) = 3. The set £p(S) is contained in the line
Cp((S)\ {P}). Since every 3-secant line of Y is contained in M and every line
of M contains o, we get O € ({S,P}). We have ({S,P}) = (S). Since f(X) =4
and O € (S), we have O € S, contradicting our assumption S C X \ {O}. Taking
as T any finite subset of X containing O we get orx (P) > 4.

(a3) Now we analyze for which (X, P) we have orx(P) =4, 1.e. when the
quadric M appearing in step (a) is singular. Let X be any elliptic curve. Fix
any L € Pic’ (X) and use it to embed X into P* as a linearly normal elliptic
curve, writing X C P* and £ = Ox(1). If X C N with N a rank 3 quadric cone
with vertex a line L (we will then project from some P € L to get a quadric
cone M C IP? as in step (a2)), then the linear projection from L maps generically
two to one X onto a conic and in particular L must cut quasi-transversally X
and at exactly one point, U. We reverse this observation to produce any such
rank 3 hyperquadric containing X. Fix any U € X and write Ox (1)(—U) = R®?
for some R € Pic?(X) (in characteristic # 2 there are exactly 4 line bundles R;
in characteristic 2 there are 2 R’s if X is not supersingular and one R if X is
supersingular).
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Use U to get an embedding jy of H(R®?) into H°(Ox (1)) as a hyper-
plane. Riemann-Roch gives #°(R) = 2 and h°(R®?) = 2. Since S?(H°(R)) has
dimension 3, the multiplication map H°(R) ® H°(R) — H°(R*?) has a one-
dimensional kernel. Taking a basis of 1°(R®?) we see that this kernel corre-
sponds to the vertex of a rank 3 quadric cone of P* containing the embedding
of X by the linear system |R®?| and, using jy, a quadric cone of P* containing
X and with as its vertex a line through U. All rank 3 quadric cones of P* con-
taining X appears in this way (the line bundle R is the line bundle inducing the
generically two to one morphism ¢ : X — D with D a conic). Therefore they are
parametrized by 4 (or 2 or 1 in characteristic 2) one-dimensional families; fix
any P’ € 6,(X)\ X; taking the linear projection from P’ we see that two different
rank 3 quadric cones cannot have vertices containing P’. Fix a rank 3 quadric
cone with associated vertex L and associated degree two map ¢. We only need
to see which P € 0»(X) \ X is contained in (L\ {U}) for some U and some R.
We fix U and R and hence we fix L. Since LNX = {U} scheme-theoretically (R
has no base points) L is neither a secant line nor a tangent line. Fix O € X\ {U }.
We have LN (20) # 0 if and only if ¢ ramifies at O (in characteristic # 2 there
are 4 such points; in characteristic 2 there are 2 such points if X is not supersin-
gular and a unique such point if X is supersingular). Fix 01,0, € X \ {U} such
that O; # O,. We have LN ({01,0,}) # 0 if and only if ¢(0;) = ¢(0,) and
hence there is a 1-dimensional family of such secant lines. Since LNX = {U}
scheme-theoretically, each non-empty intersection LN (20) and LN ({01,0,})
is a single point.

(b) Assume n = 5. Assume orx(P) > 5 = n. We take the set-up of the
proof of Theorem 1.4 and Proposition 1.4. Let S(X,P) be the set of all S C X
such that §(S) =4, P € (S) and S 2 W. We claim that the proof of Theorem
1.1 gives the existence of a two-dimensional family A of elements of Z(X,P)
such that M 2 W for every M € A (even if W is reduced); indeed, since n > 2w,
we have E # 0 and hence for a general E € X we have Ox(1)(—E) # Ox(W),
l.e. Ag # W. We also proved that dim(S(X,P)’) > 1 (the family Gp). Recall
that D is reduced (Claim 2 of the quoted proof). Since D is reduced a general
E + Ag is reduced. Therefore dim(ANS(X,P)’) > 2. By Remark 3.4 there is
O € X \ W,y such that O € S for all S € ANS(X,P)’. Part (ii) of Lemma 2.3
gives SNW,.q =0 forall S € S(X,P)’. Since B(X) =5 >4 and P € (Z) for some
scheme Z C X with deg(Z) = 2, the line ({O,P}) meets X quasi-transversally
and only at O, l.e. ({0,P})NX = {0} (scheme-theoretic intersection). Let
¢:P3\ ({0,P}) — P denote the linear projection from the line ({0, P}). Let
Y be the closure of £(X \ {O}) in P°.
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Since X is non-degenerate, Y is non-degenerate. Since X is smooth and
({0,P})NX = {0} as schemes, ¢ induces a morphism y : X — Y with 5 =
deg(X) — 1 =deg(y)-deg(Y). Hence deg(Y) =5 and y is the normalization
map. The curve Y is singular (it has at least a cusp if P is in the tangential
variety 7(X) of X, while it has at least one singular non-unibranch point if P €
02(X)\ 7(X)). Since deg(Y) =5 > 4, Y is contained in at most one quadric
surface. Since X is the normalization of Y and Y is singular, we have p,(Y) > 2.
The bound for the arithmetic genus of any degree 5 space curve gives p,(Y) =
2 and hence deg(Y) > 2p,(Y) —2. Riemann-Roch gives h°(P3,Zy(2)) > 1.
Therefore Y is contained in a unique quadric surface M. Since p,(Y) =2, we
also see that y is an isomorphism outside W,.; and hence it is injective, with
the only exception of identifying the two points of W if W is reduced. Fix any
S e ANS(X,P) and write S = 8" LU {0} with §(S') = 3. Since rx(P) > 3, we
have P ¢ (S’) and hence ({O,P}) N (') is a single point, Ps. Therefore Ly :=
£({(S"y\ {Ps}) is a line containing £(S’). By Bezout’s theorem every line L C P3
with deg(LNY) > 3 is contained in the quadric surface M. Since deg(Y) =5,
we have deg(LNY) < 5 for each line L C P?. Since Yjx\w,, is injective, we
get Ly # Lg, for general S,S; € ANS(X,P) and hence that M contains a two-
dimensional family of lines, contradicting the irreducibility of M.

(c) Assume n > 5 and that the Proposition 3.5 is true for lower dimensional
projective spaces. Fix Q € X\ T . Let C C P"~! be the closure of £o(X \ {Q})
in P"~!. Since X is smooth at Q, the morphism ?x\ (g} extends to a morphism
Yy : X — C. Since X is smooth at Q, we have deg(y)-deg(C) =deg(X)—1 =n.
Since C is non-degenerate, we have deg(C) > n— 1. Therefore deg(y) = 1 and
deg(C) = n. Since y is birational, we have p,(C) > 1. An easy upper bound
for the arithmetic genus of any degree n non-degenerate curve in P"~! gives
pa(C) < 1. Hence C is a linearly normal elliptic curve and y is an isomorphism.
Since by (P) = 2, we have P # Q and hence {(P) is defined. We have y(Q) =
Lo((20)\{Q}). Set T} := y(T). Since Q ¢ T, we have T} = lo(T). Set T» :=
Ty U{y(Q)}. By the inductive assumption there is S C C'\ T» such that £y (P) €
(S) and #(S) < n—2. Set B:= y~1(S)U{Q}. Since y(Q) ¢ B, B is a reduced
divisor of X. We have P € (B), #(B) <n—1land BC X \T. O

Proposition 3.6. Let X C P? be a linearly normal elliptic curve. Then 2 <
orx(P) < 3 for all P € P3. In characteristic # 2 there are exactly 4 points
of P3 with orx(P) = 2. In characteristic two there are exactly 2 (case X not
supersingular) or exactly 1 (case X supersingular) points of P> with orx (P) = 2.

Proof. If P € X, then use Lemma 2.9. Assume P ¢ X. Lemma 2.7 gives
orx(P) < 3. Let T be the set of all P € P?>\ X such that there are infinitely
many lines L with deg(LNX) =2 and P € L. If P ¢ T, then orx(P) > 2, be-
cause the set of all § C X with §(S) <2 and P € (S) is finite. If P € I, then
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orx(P) = 2, because P is not a strange point of X (Remark 2.8) and for any fi-
nite set 7 C X there is a line L though P containing two different points of X \ T.
The curve X is a complete intersection of two quadrics. Therefore there is no
line L C P? with deg(LNX) > 3. Therefore the linear projection from P shows
that I" is the set of all vertices of all quadric cones containing X. Every quadric
cone containing X has a unique vertex, because X is irreducible. There is a bi-
jection between these quadric cones (hence the elements of I') and the set of all
line bundles R on X with R®? 2 Ox(1). In characteristic # 2 there are exactly
4 such R’s. In characteristic two there are 2 such R if X is not supersingular and
1 such R if R is supersingular. O
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