DISTANCE TWO LABELING ON SPECIAL
 FAMILY OF GRAPHS

MUTHALI MURUGAN

An $L(2,1)$-labeling of a graph G is an assignment f from the vertex set $V(G)$ to the set of non-negative integers such that $|f(x)-f(y)| \geq 2$ if x and y are adjacent and $|f(x)-f(y)| \geq 1$ if x and y are at distance 2, for all x and y in $V(G)$. A k-L(2,1)-labeling is an $L(2,1)$-labeling $f: V(G) \rightarrow$ $\{0, \ldots, k\}$, and we are interested to find the minimum k among all possible assignments. This invariant, the minimum k, is known as the $L(2,1)$ labeling number or λ-number and is denoted by $\lambda(G)$. In this paper, we determine the λ-number for the coronas $P_{m} \circ P_{n}, P_{m} \circ C_{n}, P_{m} \circ K_{1, n}$ and $P_{m} \circ W_{n}$ and find an upper bound of the λ-number for the corona $G_{1} \circ G_{2}$ where G_{1} and G_{2} are any two graphs such that G_{2} has an injective $L(2,1)$ labeling and also we prove that the bound is attainable when G_{1} and G_{2} are complete. Also we present an upper bound of the λ-number for the corona $G_{1} \circ G_{2}$ where G_{1} and G_{2} are any two graphs.

1. Introduction

The unprecedented growth of wireless communication made the study of assigning proper radio frequencies to these communication networks more popular. The interference by unconstrained transmitters will interrupt the communication. In the channel assignment problem, we assign a channel (non-negative integer) to each television or radio transmitters located at various places so that

Entrato in redazione: 30 maggio 2014
Keywords: Distance two labeling, $L(2,1)$-labeling, channel assignment, corona, $\boldsymbol{\lambda}$-number.
we do not have any interference in the communication. The original notion of distance two labeling can be seen in the context of frequency assignment, where 'close' transmitters must receive different frequencies and 'very close' transmitters must receive frequencies that are at least two frequencies apart so that they can avoid interference. Due to its practical importance, the distance two labeling problem has been widely studied. Distance two labeling is also known as $L(2,1)$-labeling. An $L(2,1)$-labeling of a graph G is an assignment f from the vertex set $V(G)$ to the set of non-negative integers such that $|f(x)-f(y)| \geq 2$ if x and y are adjacent and $|f(x)-f(y)| \geq 1$ if x and y are at distance 2 , for all x and y in $V(G)$. A $k-L(2,1)$-labeling is an $L(2,1)$-labeling $f: V(G) \rightarrow\{0, \ldots, k\}$, and we are interested to find the minimum k among all possible assignments. This invariant, the minimum k, is known as the $L(2,1)$-labeling number or λ-number and is denoted by $\lambda(G)$. The generalization of this concept is as below.

For positive integers k, d_{1}, d_{2}, a $k-L\left(d_{1}, d_{2}\right)$-labeling of a graph G is a function $f: V(G) \rightarrow\{0,1,2, \ldots, k\}$ such that $|f(u)-f(v)| \geq d_{i}$ whenever the distance between u and v in $G, d_{G}(u, v)=i$, for $i=1,2$. The $L\left(d_{1}, d_{2}\right)$-number of $G, \lambda_{d_{1}, d_{2}}(G)$, is the smallest k such that there exists a $k-L\left(d_{1}, d_{2}\right)$-labeling of G.

2. Some Existing Results

Distance two labeling or $L(2,1)$-labeling has received the attention of many researchers and here we present some important existing results.

- In [1] Griggs and Yeh have discussed $L(2,1)$-labeling for path, cycle, tree and cube. They have derived results for the graphs of diameter 2 . They have shown that the $\lambda(T)$ for trees with maximum degree $\Delta \geq 1$ is either $\Delta+1$ or $\Delta+2$.
- Chang and Kuo [2] provided an algorithm to obtain $\lambda(T)$.
- Vaidya and Bantava [3] have discussed $L(2,1)$-labeling of cacti.
- Vaidya et.al. [4] have discussed $L(2,1)$-labeling in the context of some graph operations.
- Yeh [5] have discussed the $L(2,1)$-labeling on various class of graphs like trees, cycles, chordal graphs, Cartesian products of graphs etc.,
- Griggs and Yeh [1] proved that if a graph G contains three vertices of degree Δ such that one of them is adjacent to the other two, then $\lambda(G) \geq$ $\Delta+2$, where Δ is the maximum degree of G.
- Griggs and Yeh [1] posed a conjecture that $\lambda(G) \leq \Delta^{2}$ for any graph with $\Delta \geq 2$, where Δ is the maximum degree of G, and they proved that $\lambda(G) \leq$ $\Delta^{2}+2 \Delta$ at the same time.
- Chang and Kuo [6] proved that $\lambda(G) \leq \Delta^{2}+\Delta$, for any graph with $\Delta \geq 2$, where Δ is the maximum degree of G.
- Kral and Skrekovski [7] proved that $\lambda(G) \leq \Delta^{2}+\Delta-1$, for any graph with $\Delta \geq 2$, where Δ is the maximum degree of G.
- Goncalves [8] proved that $\lambda(G) \leq \Delta^{2}+\Delta-2$, for any graph with $\Delta \geq 2$, where Δ is the maximum degree of G.

In spite of all the efforts the conjecture posed by Griggs and Yeh is still open. Also many results on trees are available and strict bounds of λ are found for trees. So in this paper, we concentrate on graphs with cycles.

3. Results

In this section, we determine the λ-number for the coronas $P_{m} \circ P_{n}, P_{m} \circ C_{n}, P_{m} \circ$ $K_{1, n}$ and $P_{m} \circ W_{n}$ and find an upper bound of the λ-number for the corona $G_{1} \circ G_{2}$ where G_{1} and G_{2} are any two graphs such that G_{2} has an injective $L(2,1)$ labeling and the bound is attainable when G_{1} and G_{2} are complete. Also we present an upper bound of the λ-number for the corona $G_{1} \circ G_{2}$ where G_{1} and G_{2} are any two graphs.

Definition 3.1. Let G_{1} and G_{2} be two graphs with $V\left(G_{1}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}$ and $V\left(G_{2}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. The corona $G_{1} \circ G_{2}$ is the graph with

$$
V\left(G_{1} \circ G_{2}\right)=V\left(G_{1}\right) \cup\left\{v_{i, j}: 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}
$$

and

$$
E\left(G_{1} \circ G_{2}\right)=E\left(G_{1}\right) \cup\left\{v_{i, j_{1}} v_{i, j_{2}}: v_{j_{1}} v_{j_{2}} \in E\left(G_{2}\right)\right\}_{i=0}^{m-1} \cup\left\{u_{i} v_{i, j}: 0 \leq j \leq n-1\right\}_{i=0}^{m-1}
$$

Definition 3.2. An injective $L(2,1)$-labeling is called an $L^{\prime}(2,1)$-labeling.
A k - $L^{\prime}(2,1)$-labeling is an $L^{\prime}(2,1)$-labeling $f: V(G) \rightarrow\{0, \ldots, k\}$, and we are interested to find the minimum k among all possible assignments. This invariant, the minimum k, is known as the $L^{\prime}(2,1)$-labeling number or λ^{\prime}-number and is denoted by $\lambda^{\prime}(G)$.

Definition 3.3. Let f be a labeling of a graph G. The number of occurrence of a label less one is called the multiplicity of the label in f and the sum of the multiplicity of labels of f is called the multiplicity of f.

Theorem 3.4. For the corona $P_{m} \circ P_{n}, m, n \geq 5, \lambda\left(P_{m} \circ P_{n}\right)=n+4=\Delta+2$.

Proof. Consider the corona $P_{m} \circ P_{n}, m, n \geq 5$. Let $V\left(P_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}$ and $V\left(P_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. Define $f: V\left(P_{m} \circ P_{n}\right) \rightarrow N \cup\{0\}$ such that

$$
f\left(u_{i}\right)=2(i \bmod 3), \quad 0 \leq i \leq m-1
$$

Suppose $i \equiv 0,1(\bmod 3)$, define

$$
f\left(v_{i, j}\right)=\left\{\begin{array}{lll}
5 & \text { if } & j=0 \\
f\left(v_{i, j-2}\right)+1 & \text { if } & j \geq 1 \text { and } j \text { is even } \\
f\left(v_{i, j-1}\right)+\left\lceil\frac{n}{2}\right\rceil & \text { if } \quad j \geq 1 \text { and } j \text { is odd }
\end{array}\right.
$$

Suppose $i \equiv 2(\bmod 3)$, define

$$
f\left(v_{i, j}\right)= \begin{cases}1 & \text { if } \quad j=0 \\ 6 & \text { if } \quad j=1 \\ f\left(v_{i, j-2}\right)+1 & \text { if } \quad j \geq 2 \text { and } j \text { is odd } \\ f\left(v_{i, j-1}\right)+\left\lfloor\frac{n}{2}\right\rfloor & \text { if } \quad j \geq 2 \text { and } j \text { is even }\end{cases}
$$

Now we prove that f is a distance two labeling. When $d\left(u_{i}, u_{j}\right)$ is 1 or 2 , we have $\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|$ is 2 or 4 . When $d\left(v_{i, j}, v_{i, k}\right)=1$, we have $\left|f\left(v_{i, j}\right)-f\left(v_{i, k}\right)\right|=\left\lceil\frac{n}{2}\right\rceil$ or $\left\lceil\frac{n}{2}\right\rceil-1$ or $\left\lfloor\frac{n}{2}\right\rfloor-1$ or 5 . When $d\left(v_{i, j}, v_{i, k}\right)=2$, we have $\left|f\left(v_{i, j}\right)-f\left(v_{i, k}\right)\right|=1$ or $\left\lfloor\frac{n}{2}\right\rfloor+5$. When $d\left(u_{i}, v_{i, j}\right)=1$, clearly $\left|f\left(u_{i}\right)-f\left(v_{i, j}\right)\right| \geq 2$. When $d\left(u_{i}, v_{\alpha, j}\right)=$ $2, i \neq \alpha$, clearly $\left|f\left(u_{i}\right)-f\left(v_{\alpha, j}\right)\right| \geq 1$, since no label of u_{i} occur as a label on $v_{\alpha, j}$. Thus, for any two vertices of a_{i}, b_{j} of $P_{m} \circ P_{n},\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 2$ when $d\left(a_{i}, b_{j}\right)=1$ and $\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 1$ when $d\left(a_{i}, b_{j}\right)=2$. Hence f is a distance two labeling.

When n is even and $i \equiv 0,1(\bmod 3)$, the maximum label occurs on $v_{i, n-1}$ by construction of f and

$$
\begin{aligned}
f\left(v_{i, n-1}\right) & =f\left(v_{i, n-2}\right)+\left\lceil\frac{n}{2}\right\rceil \\
& =f\left(v_{i, 0}\right)+\frac{n-2}{2}+\left\lceil\frac{n}{2}\right\rceil \\
& =5+\frac{n-2}{2}+\frac{n}{2} \\
& =n+4 \\
& =n+2+2 \\
& =\Delta+2
\end{aligned}
$$

When n is even and $i \equiv 2(\bmod 3)$, the maximum label occurs on $v_{i, n-2}$ by construction of f and

$$
\begin{aligned}
f\left(v_{i, n-2}\right) & =f\left(v_{i, n-3}\right)+\left\lceil\frac{n}{2}\right\rceil \\
& =f\left(v_{i, 1}\right)+\frac{n-4}{2}+\left\lceil\frac{n}{2}\right\rceil \\
& =6+\frac{n-4}{2}+\frac{n}{2} \\
& =n+4 \\
& =n+2+2 \\
& =\Delta+2
\end{aligned}
$$

When n is odd and $i \equiv 0,1(\bmod 3)$, the maximum label occurs on $v_{i, n-2}$ by construction of f and

$$
\begin{aligned}
f\left(v_{i, n-2}\right) & =f\left(v_{i, n-3}\right)+\left\lceil\frac{n}{2}\right\rceil \\
& =f\left(v_{i, 0}\right)+\frac{n-3}{2}+\frac{n+1}{2} \\
& =5+n-1 \\
& =n+4 \\
& =n+2+2 \\
& =\Delta+2
\end{aligned}
$$

When n is odd and $i \equiv 2(\bmod 3)$, the maximum label occurs on $v_{i, n-1}$ by construction of f and

$$
\begin{aligned}
f\left(v_{i, n-1}\right) & =f\left(v_{i, n-2}\right)+\left\lfloor\frac{n}{2}\right\rfloor \\
& =f\left(v_{i, 1}\right)+\frac{n-3}{2}+\frac{n-1}{2} \\
& =6+n-2 \\
& =n+4 \\
& =n+2+2 \\
& =\Delta+2
\end{aligned}
$$

Therefore $\lambda\left(P_{m} \circ P_{n}\right) \leq n+4=\Delta+2$. Since $P_{m} \circ P_{n}$ contains three vertices of degree $\Delta=n+2$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ P_{n}\right) \geq n+4=\Delta+2$. Hence $\lambda\left(P_{m} \circ P_{n}\right)=n+4=\Delta+2$.

Theorem 3.5. For the corona $P_{m} \circ C_{n}, m \geq 5, n \geq 6, \lambda\left(P_{m} \circ C_{n}\right)=n+4=\Delta+2$.

Proof. Consider the corona $P_{m} \circ C_{n}, m \geq 5, n \geq 6$. Let

$$
V\left(P_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}
$$

Define $f: V\left(P_{m} \circ C_{n}\right) \rightarrow N \cup\{0\}$ such that

$$
f\left(u_{i}\right)=n+4-2(i \bmod 3), \quad 0 \leq i \leq m-1
$$

Case $1 n$ is even.

Name the first $\frac{n}{2}$ vertices of C_{n} as $v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}$ and the remaining vertices as $w_{1}, w_{2}, \ldots, w_{\frac{n}{2}}$. Define f to the vertices of C_{n} which are adjacent to u_{i}, for $i \equiv 0,1(\bmod 3)$ such that

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-2, \text { for } i=1,2,3, \ldots, \frac{n}{2} \quad \text { and } \\
& f\left(w_{i}\right)=2 i-1, \text { for } i=1,2,3, \ldots, \frac{n}{2}
\end{aligned}
$$

Define f to the vertices of C_{n} which are adjacent to u_{i}, for $i \equiv 2(\bmod 3)$ such that

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-2, \text { for } i=1,2,3, \ldots, \frac{n}{2} \text { and } \\
& f\left(w_{i}\right)=2 i-1, \text { for } i=1,2,3, \ldots, \frac{n}{2}-1 \\
& f\left(w_{i}\right)=n+3, \text { for } i=\frac{n}{2}
\end{aligned}
$$

Now we prove that this f is a distance two labeling.
Since u_{i} s are labeled with $n+4, n+2, n$ consecutively and repeatedly we have,

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=2 \text { or } 4
$$

when $d\left(u_{i}, u_{j}\right)=1$ and $d\left(u_{i}, u_{j}\right)=2$.
For the vertices a_{i}, b_{j} of C_{n} such that $d\left(a_{i}, b_{j}\right)=1$, we have

$$
\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right|=2 \text { or } n-3 \text { or } n-1, \text { or } 6, \text { or } n+3
$$

Since no vertex label repeats on C_{n}, we have

$$
\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 1
$$

when $d\left(a_{i}, b_{j}\right)=2$.
Among the vertices of C_{n} which are adjacent to $u_{i}, i \equiv 0,1(\bmod 3)$, the highest label is $n-1$; among the vertices of C_{n} which are adjacent to u_{i},
$i \equiv 2(\bmod 3)$, the highest label is $n+3$ and since no label of u_{i} occur as a label in the other C_{n}, we have, $\left|f\left(u_{i}\right)-f\left(c_{j}\right)\right| \geq 2$, when $d\left(u_{i}, c_{j}\right)=1$ and $\left|f\left(u_{i}\right)-f\left(c_{j}\right)\right| \geq 1$, when $d\left(u_{i}, c_{j}\right)=2$ where c_{j} is a vertex of C_{n}.
Hence for any two vertices s_{i}, t_{j} of $P_{m} \circ C_{n},\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 2$, when $d\left(s_{i}, t_{j}\right)=1$ and $\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 1$, when $d\left(s_{i}, t_{j}\right)=2$. Hence f is a distance two labeling.
Since $n+4$ is the maximum label we have used, $\lambda\left(P_{m} \circ C_{n}\right) \leq n+4$. Since $P_{m} \circ C_{n}$ contains three vertices of degree $\Delta=n+2$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ C_{n}\right) \geq \Delta+2=n+4$. Hence $\lambda\left(P_{m} \circ C_{n}\right)=n+4=\Delta+2$.

Case $2 n$ is odd.

Name the first $\frac{n+1}{2}$ vertices of C_{n} as $v_{1}, v_{2}, \ldots, v_{\frac{n+1}{2}}$ and the remaining vertices as $w_{1}, w_{2}, \ldots, w_{\frac{n-1}{2}}$. Define f to the vertices of C_{n} which are adjacent to u_{i}, for $i \equiv 0,1(\bmod 3)$ such that

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-2, \text { for } i=1,2,3, \ldots, \frac{n+1}{2} \text { and } \\
& f\left(w_{i}\right)=2 i-1, \text { for } i=1,2,3, \ldots, \frac{n-1}{2}
\end{aligned}
$$

Define f to the vertices of C_{n} which are adjacent to u_{i}, for $i \equiv 2(\bmod 3)$ such that

$$
\begin{aligned}
f\left(v_{i}\right) & =2 i-2, \text { for } i=1,2,3, \ldots, \frac{n+1}{2}-1 \\
f\left(v_{\frac{n+1}{2}}\right) & =n+3 \\
f\left(w_{i}\right) & =2 i-1, \text { for } i=1,2,3, \ldots, \frac{n-1}{2}
\end{aligned}
$$

Now we prove that this f is a distance two labeling.
Since u_{i} s are labeled with $n+4, n+2, n$ consecutively and repeatedly we have,

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=2 \text { or } 4
$$

when $d\left(u_{i}, u_{j}\right)=1$ and $d\left(u_{i}, u_{j}\right)=2$.
For the vertices a_{i}, b_{j} of C_{n} such that $d\left(a_{i}, b_{j}\right)=1$, we have

$$
\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right|=2 \text { or } n-2, \text { or } 6, \text { or } n+2 .
$$

Since no vertex label repeat on C_{n}, we have

$$
\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 1
$$

when $d\left(a_{i}, b_{j}\right)=2$.
Among the vertices of C_{n} which are adjacent to $u_{i}, i \equiv 0,1(\bmod 3)$, the highest label is $n-1$; among the vertices of C_{n} which are adjacent to u_{i}, $i \equiv 2(\bmod 3)$, the highest label is $n+3$ and since no label of u_{i} occur as a label in the other C_{n}, we have, $\left|f\left(u_{i}\right)-f\left(c_{j}\right)\right| \geq 2$, when $d\left(u_{i}, c_{j}\right)=1$ and $\left|f\left(u_{i}\right)-f\left(c_{j}\right)\right| \geq 1$, when $d\left(u_{i}, c_{j}\right)=2$ where c_{j} is a vertex of C_{n}.
Hence for any two vertices s_{i}, t_{j} of $P_{m} \circ C_{n},\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 2$, when $d\left(s_{i}, t_{j}\right)=1$ and $\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 1$, when $d\left(s_{i}, t_{j}\right)=2$. Hence f is a distance two labeling.
Since $n+4$ is the maximum label we have used, $\lambda\left(P_{m} \circ C_{n}\right) \leq n+4$. Since $P_{m} \circ C_{n}$ contains three vertices of degree $\Delta=n+2$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ C_{n}\right) \geq \Delta+2=n+4$. Hence $\lambda\left(P_{m} \circ C_{n}\right)=n+4=\Delta+2$.

Hence the theorem.
Theorem 3.6. For the corona $P_{m} \circ K_{1, n}, m \geq 5, n \geq 3, \lambda\left(P_{m} \circ K_{1, n}\right)=n+5=$ $\Delta+2$.

Proof. Consider the corona $P_{m} \circ K_{1, n}, m \geq 5, n \geq 3$. Let

$$
V\left(P_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\} \text { and } V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}
$$

where v_{0} is the central vertex of $K_{1, n}$. Define $f: V\left(P_{m} \circ K_{1, n}\right) \rightarrow N \cup\{0\}$ such that

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
n+5 & \text { if } & i \bmod 4=0 \\
n+3 & \text { if } & i \bmod 4=1 \\
1 & \text { if } \quad i \bmod 4=2 \\
4 & \text { if } \quad i \bmod 4=3
\end{array}\right.
$$

Define f to the vertices of $K_{1, n}$ which are adjacent to u_{i}, for $i \equiv 0(\bmod 4)$ such that

$$
\begin{aligned}
f(w) & =0 \\
f\left(v_{1}\right) & =2 \\
f\left(v_{2}\right) & =3 \\
f\left(v_{i}\right) & =i+2, \quad i=3,4, \ldots, n
\end{aligned}
$$

Define f to the vertices of $K_{1, n}$ which are adjacent to u_{i}, for $i \equiv 1(\bmod 4)$ such that

$$
\begin{aligned}
& f(w)=0 \\
& f\left(v_{i}\right)=i+1, \quad i=1,2, \ldots, n
\end{aligned}
$$

Define f to the vertices of $K_{1, n}$ which are adjacent to u_{i}, for $i \equiv 2(\bmod 4)$ such that

$$
\begin{aligned}
f(w) & =3 \\
f\left(v_{i}\right) & =4+i \quad i=1,2, \ldots, n-2 \\
f\left(v_{n-1}\right) & =n+4 \\
f\left(v_{n}\right) & =n+5 .
\end{aligned}
$$

Define f to the vertices of $K_{1, n}$ which are adjacent to u_{i}, for $i \equiv 3(\bmod 4)$ such that

$$
\begin{aligned}
f(w) & =0 \\
f\left(v_{1}\right) & =2 \\
f\left(v_{i}\right) & =4+i, \quad i=2,3, \ldots, n
\end{aligned}
$$

Now we prove that f is a distance two labeling.
Since u_{i} s are labeled with $n+5, n+3,1,4$ consecutively and repeatedly we have,

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=2 \text { or } 3, \text { or } n+1, \text { or } n+2
$$

when $d\left(u_{i}, u_{j}\right)=1$;

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=n+4 \text { or } n-1
$$

when $d\left(u_{i}, u_{j}\right)=2$.
By construction of f,

$$
\begin{aligned}
& \left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 2 \quad \text { when } d\left(v_{i}, v_{j}\right)=1 \text { and } \\
& \left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 1 \quad \text { when } d\left(v_{i}, v_{j}\right)=2
\end{aligned}
$$

Since no label of u_{i} occur as a label in the corresponding $K_{1, n}$, each u_{i} keeps a minimum label difference 2 with respect to the corresponding $K_{1, n}$ and each u_{i} occur in other $K_{1, n}$ at a distance 3, we have for any two vertices a_{i}, b_{j} of $P_{m} \circ K_{1, n},\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 2$, when $d\left(a_{i}, b_{j}\right)=1$ and $\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \geq 1$, when $d\left(a_{i}, b_{j}\right)=2$. Hence f is a distance two labeling.

Since $n+5$ is the maximum label we have used, $\lambda\left(P_{m} \circ K_{1, n}\right) \leq n+5$. Since $P_{m} \circ K_{1, n}$ contains three vertices of degree $\Delta=n+3$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ K_{1, n}\right) \geq \Delta+2=n+5$. Hence $\lambda\left(P_{m} \circ\right.$ $\left.K_{1, n}\right)=n+5=\Delta+2$.

Theorem 3.7. For the corona $P_{m} \circ W_{n}, m \geq 5, n \geq 6, \lambda\left(P_{m} \circ W_{n}\right)=n+4=\Delta+2$.

Proof. Consider the corona $P_{m} \circ W_{n}, m \geq 5, n \geq 6$. Let

$$
V\left(P_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}
$$

Define $f: V\left(P_{m} \circ W_{n}\right) \rightarrow N \cup\{0\}$ such that

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \bmod 3=0 \\
2 & \text { if } & i \bmod 3=1 \\
n+3 & \text { if } & i \bmod 3=2
\end{array}\right.
$$

Case $1 n$ is even.
Define f to the vertices of W_{n} which are adjacent to u_{i}, for $i \equiv 0,1(\bmod 3)$ as follows:
Let the central vertex be v_{0} and the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{n-1}$,

$$
\begin{aligned}
f\left(v_{0}\right) & =n+4 \\
f\left(v_{1}\right) & =4 \\
f\left(v_{2}\right) & =\frac{n+6}{2}+1 \\
f\left(v_{i}\right) & =f\left(v_{1}\right)+\frac{i-1}{2}, \text { if } i \text { is odd and } i=3,5, \ldots, n-1 \\
f\left(v_{i}\right) & =f\left(v_{2}\right)+\frac{i-2}{2}, \text { if } i \text { is even and } i=4,6, \ldots, n-2
\end{aligned}
$$

Define f to the vertices of W_{n} which are adjacent to u_{i}, for $i \equiv 2(\bmod 3)$ as follows:
Let the central vertex be v_{0} and the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}$, and $w_{1}, w_{2}, \ldots, w_{\frac{n}{2}-1}$.

$$
\begin{aligned}
f\left(v_{0}\right) & =1 \\
f\left(v_{i}\right) & =2 i+1 \text { if } i=1,2, \ldots, \frac{n}{2} \\
f\left(w_{i}\right) & =2 i+2 \text { if } i=1,2, \ldots, \frac{n}{2}-1
\end{aligned}
$$

Now we prove that this f is a distance two labeling.
Since u_{i} s are labeled with $0,2, n+3$ consecutively and repeatedly we have,

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=2 \text { or } n+1 \text { or } n+3
$$

when $d\left(u_{i}, u_{j}\right)=1$ and $d\left(u_{i}, u_{j}\right)=2$. By construction of f, for $v_{i}, v_{j} \in$ $W_{n},\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 2$ when $d\left(v_{i}, v_{j}\right)=1$ and $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 1$ when $d\left(v_{i}, v_{j}\right)=2$.

Since no label of u_{i} s occur as a label in the corresponding W_{n}, each u_{i} maintains a minimum label difference 2 with respect to the corresponding W_{n} and no label of u_{i} s occur in the different W_{n}, we have, for any two vertices s_{i}, t_{j} of $P_{m} \circ W_{n},\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 2$ when $d\left(s_{i}, t_{j}\right)=1$ and $\mid f\left(s_{i}\right)-$ $f\left(t_{j}\right) \mid \geq 1$ when $d\left(s_{i}, t_{j}\right)=2$. Hence f is a distance two labeling.
Since $n+4$ is the maximum label we have used, $\lambda\left(P_{m} \circ W_{n}\right) \leq n+4$. Since $P_{m} \circ W_{n}$ contains three vertices of degree $\Delta=n+2$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ W_{n}\right) \geq \Delta+2=n+4$. Hence $\lambda\left(P_{m} \circ W_{n}\right)=n+4=\Delta+2$. Hence the theorem follows in this case.

Case $2 n$ is odd.
Define f to the vertices of W_{n} which are adjacent to u_{i}, for $i \equiv 0,1(\bmod 3)$ as follows:
Let the central vertex be v_{0} and the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{n-1}$,

$$
\begin{aligned}
f\left(v_{0}\right) & =n+4 \\
f\left(v_{1}\right) & =4 \\
f\left(v_{2}\right) & =\frac{n+5}{2}+1 \\
f\left(v_{i}\right) & =f\left(v_{1}\right)+\frac{i-1}{2}, \text { if } i \text { is odd and } i=3,5, \ldots, n-2 \\
f\left(v_{i}\right) & =f\left(v_{2}\right)+\frac{i-2}{2}, \text { if } i \text { is even and } i=4,6, \ldots, n-1
\end{aligned}
$$

Define f to the vertices of W_{n} which are adjacent to u_{i}, for $i \equiv 2(\bmod 3)$ as follows:
Let the central vertex be v_{0} and the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{\frac{n-1}{2}}$, and $w_{1}, w_{2}, \ldots, w_{\frac{n-1}{2}}$.

$$
\begin{aligned}
& f\left(v_{0}\right)=1 \\
& f\left(v_{i}\right)=2 i+1 \text { if } i=1,2, \ldots, \frac{n-1}{2} \\
& f\left(w_{i}\right)=2 i+2 \text { if } i=1,2, \ldots, \frac{n-1}{2}
\end{aligned}
$$

Now we prove that this f is a distance two labeling.
Since u_{i} s are labeled with $0,2, n+3$ consecutively and repeatedly we have,

$$
\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right|=2 \text { or } n+1 \text { or } n+3,
$$

when $d\left(u_{i}, u_{j}\right)=1$ and $d\left(u_{i}, u_{j}\right)=2$. By construction of f, for $v_{i}, v_{j} \in$ $W_{n},\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 2$ when $d\left(v_{i}, v_{j}\right)=1$ and $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 1$ when $d\left(v_{i}, v_{j}\right)=2$.

Since no label of u_{i} s occur in the corresponding W_{n}, each u_{i} maintains a minimum label difference 2 with respect to the corresponding W_{n} and no label of u_{i} s occur in the different W_{n}, we have, for any two vertices s_{i}, t_{j} of $P_{m} \circ W_{n},\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 2$ when $d\left(s_{i}, t_{j}\right)=1$ and $\left|f\left(s_{i}\right)-f\left(t_{j}\right)\right| \geq 1$ when $d\left(s_{i}, t_{j}\right)=2$. Hence f is a distance two labeling.
Since $n+4$ is the maximum label we have used, $\lambda\left(P_{m} \circ W_{n}\right) \leq n+4$. Since $P_{m} \circ W_{n}$ contains three vertices of degree $\Delta=n+2$ such that one of them is adjacent to the other two, we have $\lambda\left(P_{m} \circ W_{n}\right) \geq \Delta+2=n+4$. Hence $\lambda\left(P_{m} \circ W_{n}\right)=n+4=\Delta+2$. Hence the theorem follows in this case also.

Hence the theorem.
Theorem 3.8. For any two graphs G_{1} and $G_{2}, \lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{1}\right)+\lambda^{\prime}\left(G_{2}\right)+2$ and the bound is attainable when G_{1} and G_{2} are complete.

Proof. Let f_{1} be the $L(2,1)$-labeling of G_{1} corresponding to $\lambda\left(G_{1}\right)$ and f_{2} be the injective $L(2,1)$-labeling of G_{2} corresponding to $\lambda^{\prime}\left(G_{2}\right)$. Set $V\left(G_{1}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and define a labeling f on $V\left(G_{1} \circ G_{2}\right)$:

$$
\begin{aligned}
& f\left(u_{i}\right)=f_{1}\left(u_{i}\right) \\
& f\left(v_{i}\right)=f_{2}\left(v_{i}\right)+\lambda\left(G_{1}\right)+2
\end{aligned}
$$

for all v_{i} in all copies. Clearly f is a $L(2,1)$-labeling for $G_{1} \circ G_{2}$. Hence

$$
\lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{1}\right)+\lambda^{\prime}\left(G_{2}\right)+2
$$

Now let us assume that G_{1} and G_{2} are complete. Since G_{1} is complete on m vertices, any $L(2,1)$-labeling of $G_{1} \circ G_{2}$ needs $2 m$ distinct labels for the vertices of G_{1} and a different set of $2 n$ labels for the vertices of G_{2}. Since we can use the label zero also,

$$
\lambda\left(G_{1} \circ G_{2}\right) \geq 2 m+2 n-2=2 m-2+2 n-2+2=\lambda\left(G_{1}\right)+\lambda^{\prime}\left(G_{2}\right)+2 .
$$

That is, $\lambda\left(G_{1} \circ G_{2}\right)=\lambda\left(G_{1}\right)+\lambda^{\prime}\left(G_{2}\right)+2$.
Theorem 3.9. For any two graphs G_{1} and G_{2},

$$
\lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right)+m+2,
$$

where m is the multiplicity of the $L(2,1)$-labeling corresponding to $\lambda\left(G_{2}\right)$.
Proof. Let f_{1} be the $L(2,1)$-labeling of G_{1} corresponding to $\lambda\left(G_{1}\right), f_{2}$ be the $L(2,1)$-labeling of G_{2} corresponding to $\lambda\left(G_{2}\right)$ and m be the multiplicity of f_{2}. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If f_{2} is injective,
then by the above theorem, $\lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right)+2$ and since $m=0$ in this case, the theorem is true. Otherwise, we rename the vertices of G_{2} as below.

Let $k=\lambda\left(G_{2}\right)$ and let n_{i} denotes the multiplicity of the label i of f_{2}. For $i=0,1,2, \ldots, k$ and $j=0,1,2, \ldots, n_{i}$ let $\left\{v_{i, j}\right\}$ denote the set of all vertices of G_{2} which receive the colour i in f_{2} and these sets form a partition of $V\left(G_{2}\right)$. We note that for some i, this set may be empty. Hence the multiplicity of f_{2} is $n_{0}+n_{1}+\cdots+n_{k}$.

Define f_{2}^{\prime} on $V\left(G_{2}\right)$ as below. For $i=0,1,2, \ldots, k$ and $j=0,1,2, \ldots, n_{i}$, let

$$
f_{2}^{\prime}\left(v_{i, j}\right)=i+\left(n_{i-k}+n_{i-(k-1)}+\cdots+n_{i-1}\right)+j
$$

where n_{α} is zero, when $\alpha<0$. Since f_{2} is an $L(2,1)$-labeling of G_{2}, f_{2}^{\prime} is also an $L(2,1)$-labeling and strictly increasing and $k+\left(n_{0}+n_{1}+\cdots+n_{k-1}\right)+n_{k}=$ $\lambda\left(G_{2}\right)+n_{0}+n_{1}+\cdots+n_{k}$ is its maximum label. Now, we define a new labeling f on $V\left(G_{1} \circ G_{2}\right)$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =f_{1}\left(u_{i}\right), \quad i=1,2, \ldots, m \quad \text { and } \\
f\left(v_{i, j}\right) & =f_{2}^{\prime}\left(v_{i, j}\right)+\lambda\left(G_{1}\right)+2
\end{aligned}
$$

for all $v_{i, j}$ in all copies for $i=0,1,2, \ldots, k$ and $j=0,1,2, \ldots, n_{i}$. Clearly f is an $L(2,1)$-labeling for $G_{1} \circ G_{2}$ and

$$
\lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{2}\right)+n_{0}+n_{1}+\cdots+n_{k}+\lambda\left(G_{1}\right)+2
$$

Hence

$$
\lambda\left(G_{1} \circ G_{2}\right) \leq \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right)+m+2
$$

where m is the multiplicity of the $L(2,1)$-labeling corresponding to $\lambda\left(G_{2}\right)$.

Acknowledgement

The author would like to sincerely thank the anonymous referee for his valuable comments and suggestions that improved the quality and the presentation of the paper.

REFERENCES

[1] J. R. Griggs - R. K. Yeh, Labeling graphs with a condition at diameter 2, SIAM J. Discrete Math. 5 (1992), 586-595.
[2] G. J. Chang - D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (2) (1996), 309-316.
[3] S. K. Vaidya - D. D. Bantva, Some new perspectives on distance two labeling, International Journal of Mathematics and soft computing 3 (3) (2013), 7-13.
[4] S. K. Vaidya - P. L. Vihol - N. A. Dani - D. D. Bantva, $L(2,1)$-labeling in the context of some graph operations, Journal of Mathematics Research 2 (3) (2010), 109-119.
[5] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Mathematics 306 (2006), 1217-1231.
[6] G. J. Chang - D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discr. Math. 9 (1996), 309-316.
[7] D. Kral - R. Skrekovski, A theorem about channel assignment problem, SIAM J. Discr. Math. (2003), 426-437.
[8] D. Gonçalves, On the $L(p, 1)$-labeling of graphs, Discr. Math. 308 (2008), 14051414.

MUTHALI MURUGAN
School of Science
Tamil Nadu Open University
577, Anna Salai, Chennai - 600 015, India
e-mail: muruganganesan@yahoo.in

