
FAMILIES OF N-GONAL CURVES WITH MAXIMAL VARIATION... 185

LE MATEMATICHE
Vol. LXI (2006) - Fasc. I, pp. 185-209

FAMILIES OF N-GONAL CURVES

WITH MAXIMAL VARIATION OF MODULI

SERGEY GORCHINSKIY - FILIPPO VIVIANI

1. Introduction.

In 1963 Manin proved the Mordell conjecture for function fields (see
[18]): Let K be a function field and let X be a nonisotrivial curve of genus
at least 2 defined over K . Then X has finitely many K -rational points.

Some years later Parshin (in the case of a complete base, [23]) and
Arakelov (in the general case, [1]) proved the Shafarevich conjecture for
function fields: Let B be a nonsingular, projective, complex curve and let
S be a finite subset of points of B. Fix an integer g ≥ 2. Then there exist
only finitely many nonisotrivial families of smooth curves of genus g over
B − S. Moreover Parshin showed how Mordell conjecture follows from
Shafarevich conjecture (this is known as Parshin trick).

Two analogous theorems for number fields were proved by Faltings in
1983 (see [11]). Also in this context, the Parshin trick allows to deduce
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Mordell conjecture from Shafarevich one. Moreover it allows to give some
explicit estimations on the number of rational points for fixed number field
K , g and the set of points of bad reduction S (see [26]).

A uniform version of Shafarevich and Mordell conjectures for function
fields was obtained recently by L. Caporaso ([6]). She proved that, in the
case of a one-dimensional base, there is a uniform bound for the Shafarevich
and Mordell conjectures depending only on the genus of the fiber, the genus
of the base and the cardinality of the set of bad reduction (where the fiber
is not smooth). She proved analogous uniform results in higher dimension
for ”canonically polarized varieties”, that is smooth varieties V with ample
canonical bundle KV . In that case she found uniform bounds depending
only on the Hilbert polynomial h(x) of the canonical polarization (h(n) =

χ(Kn
V )), the canonical degree of the subvariety T of bad reduction and the

genus g of the fiber. We mention that uniform results in the number field
case are still conjectural (the best result in that direction is contained in [8],
where it is shown that this uniformity result would follow from the Lang
conjectures).

In a subsequent paper ([7]), L. Caporaso considered smooth irreducible
subvarieties V of P

r obtaining a uniform bound depending on the degree
of the subvariety V , on the degree of locus T of bad reduction and on the
genus g of the fiber. Also she described an example, due to J. de Jong, which
shows that in the case where the place T of bad reduction has codimension
1 the bound should depend on its degree (while she proved this is not the
case if T has codimension bigger that 1). But in the last section of this
paper, she considered an interesting case where one can obtain a uniform
bound independent from the locus of bad reduction, namely the case of
families with maximal variation of moduli.

A family of smooth curves (or more generally of stable curves) of genus
g over a base V is said to have maximal variation of moduli if the image
of the modular map V → Mg (or more generally V → Mg) is of maximal
dimension, namely min{dim(V ), 3g − 3}. This means that the family is
a truly varying family of curves (just the opposite of an isotrivial family
where the modular map is constant and the fibers don’t vary at all).

Of particular interest are the families with maximal varation of moduli
over a base of dimension 3g−3 because then the modular map is generically
finite and dominant. In that case (and for g ≥ 24, when it is known that Mg

is of general type) Caporaso proved that the number of families over a fixed
base V as well as the number of rational sections of every such family is
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bounded by a constant that depends only on the base V and on the genus g
(see [7, Prop. 4]).

Moreover she proved ([7, Lemma 5]) that if such a family has a rational
section then the degree of the modular map (which is called the modular
degree) must be a multiple of 2g−2 and from the proof one deduces that this
result is sharp, namely that there exist such families with modular degree
exactly 2g − 2.

The aim of this paper is to generalize this lemma to families of n-
gonal curves, namely curves that have a n to 1 map to P

1 (or equivalently a
base-point free g1

n ). In order to explain the results we obtained and to give
the ideas of our proofs, we first review the instructive proof of Caporaso’s
lemma.

Lemma 1.1 (Caporaso). Let V be a complex irreducible variety of dimen-
sion 3g − 3 and let F → V be a family of smooth curves of genus g ≥ 2
with maximal variation of moduli. If this family has a rational section, then
the degree of the modular map V → Mg (which is generically finite by
hypothesis) is a multiple of 2g − 2. Moreover this result is sharp, i.e. there
exist such families with a section and with modular degree exactly 2g − 2.

Proof. Consider the modular map (generically finite by hypothesis) φF :
V → Mg associated to our family f : F → V . Restricting to an
open subset of V we can assume the map to be finite and also with the
image contained in M0

g , which is the open subset in Mg corresponding to
curves without automorphisms. Now suppose that the family has a section
σ (which we can assume to be regular after restricting the base again) and
look at the following diagram:

F

�f

��

fφF �� C0

g

π

��
V

σ

��

φF

�� M0

g

where C
0
g is the universal family over M0

g . If we call D the horizontal

divisor on C
0
g defined by D := Im(�φF ◦ σ), then the diagram above factors

as a composition of two cartesian diagrams as follows:
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F

�f

��

�� C0

g ×M0
g

D

�π�

��

�� C0

g

π

��
V

σ

��

fφF◦σ

�� D

σ�

��

π|D

�� M0

g

where σ � is the tautological section. This implies that deg(φF ) is divisible
by deg(π|D), which is the relative degree of D with respect to the map
π : C

0
g → M0

g . But D defines an element of the relative Picard group of C
0
g

over M0
g and by the Franchetta conjecture over C (now a theorem of Harer

[14] and Arbarello-Cornalba [3]), this relative Picard group is free of rank 1
generated by the relative dualizing sheaf ω

C
0
g/M

0
g
which has vertical degree

2g − 2. Hence the relative degree of D should be a multiple of 2g − 2 and
the same for the degree of the modular map.

Moreover, taking D an effective divisor representing ω
C

0
g/M

0
g

and

pulling back the universal family above it, we obtain a family with a section
(the tautological one) and with modular degree exactly 2g − 2. �

So the main ingredients in the proof of this lemma are the existence of
a universal family over M0

g and the fact (Franchetta’s conjecture, theorem
of Harer-Arbarello-Cornalba) that the relative dualizing sheaf generates the
relative Picard group of this family over the base M0

g . Unfortunately this
theorem is known only over the complex numbers because the proof relays
heavily on the analytic results of Harer ([14]) and hence the lemma of
Caporaso is valid only in characteristic 0.

If one wants to generalize to n-gonal curves, one soon realizes that the
hyperelliptic case is very different from the higher gonal case (n ≥ 3).

In fact since every hyperelliptic curve has a non-trivial automorphism,
namely the hyperelliptic involution (and for the generic hyperelliptic curve
this is the only non-trivial automorphism), there doesn’t exist a universal
family over any open subset of the moduli space Hg of hyperelliptic curves
(see [17] for a detailed study of hyperelliptic families and their relation with
the coarse moduli space Hg). Thus there is no hope to generalize the method
of the proof of Caporaso’s lemma to hyperelliptic curves. Nevertheless
we realized that the problem of the existence of a rational section for
hyperelliptic families is closely related to another important problem, that is
the existence of a global g1

2 for such families, namely of a line bundle on the
family (defined uniquely up to the pull-back of a line bundle coming from
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the base) that restricts on every fiber to the unique g1
2 of the hyperelliptic

curve. Although the unicity of such a g1
2 on a hyperelliptic curve could make

one think that it should extend to a family, actually this is not the case for g
odd (in general), while it holds for g even! Moreover in [17] we proved that
the existence of such a g1

2 is equivalent to the Zariski local-triviality of the
family of P

1 for which the initial family of hyperelliptic curves is a double
cover (in fact it’s true that every hyperelliptic family is a double cover of
a family of P

1, or in other words it’s true that the hyperelliptic involution
extends to families but it’s not true that it is associated to a global g 1

2!). And
then having reduced the problem to the Zariski local-triviality of this family
of P

1, we use the existence of a universal family of P
1 over Hg (non locally-

trivial!) to deduce a condition on the divisibility of the modular map. The
result we obtain in section 2 is the following.

Theorem 1.2. Let V be an irreducible variety of dimension 2g−1 over an
algebraically closed field of characteristic different from 2 and let F → V
be a family of smooth hyperelliptic curves of genus g ≥ 2 with maximal
variation of moduli. If this family has a rational section then the degree
of the modular map V → Hg (which is generically finite by hypothesis)
is a multiple of 2 and this is sharp (namely there exist such families with
modular degree exactly 2 for any g).

Note that this result is valid in any characteristic (different from 2,
to avoid problems in the construction of double covers) and the proof is
completely algebraic.

The situation is quite different in the higher gonal case. In fact for
this case it is known (see section 3) that the generic n-gonal curve (with
n ≥ 3) doesn’t have any non-trivial automorphism and hence over the
moduli space (Mg,n−gon)

0 of n-gonal curves without automorphisms there
exists a universal family Cg,n−can , namely the restriction of the universal
family over M0

g . Hence to imitate the proof of Caporaso’s lemma it remains
to determine the relative Picard group of this universal family over the base.

To do this we use a classical construction of Maroni (see [19], [20])
which permits to embed a canonical n-gonal curve inside an (n − 1)-
rational normal scroll. Moreover it is known (see [5]) that for a generic
canonical n-gonal curve the rational normal scrolls obtained in this way are
all isomorphic and in fact they are the ”generic” scrolls, namely the ones
that specialize to all the others. Hence if we fix one of such scrolls X and
consider the Hilbert scheme HilbX

n−can of canonical n-gonal curves inside
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it, then we have a dominant map of HilbX
n−can to the locus Mg,n−can of n-

gonal curves. Now using that the fibers of this map are unirational (they
are precisely Aut(X )0) we prove that the relative Picard groups of the two
universal families C

X
n−can → HilbX

n−can and Cg,n−gon → (Mg,n−can)
0 are

isomorphic. Moreover it is possible to deduce from this construction that
there is an effective divisor on Cg,n−gon representing a relative G1

n.
Now observe that on the universal family C

X
n−can over HilbX

n−can there
are two natural line bundles induced by cutting with the hyperplane section
D and with the fiber f of the ruling, and this two line bundles restrict, on
each fiber of the universal family, to the canonical sheaf and the unique g1

n

correspondingly.
So we are naturally lead to the following

Conjecture (1). The relative Picard group of C
X
n−can → HilbX

n−can is
generated by D and f .

From what we said before, this conjecture is equivalent to the following

Conjecture (1’). On the universal family Cg,n−gon over (Mg,n−gon)
0 there

is a line bundle G1
n (that restricts to the unique g1

n on the generic n-gonal
curve) such that the relative Picard group R(Cg,n−gon) is generated by G1

n

and the relative canonical sheaf ω.

In particular it would follow from this second conjecture, just imitating
the proof of Caporaso’s lemma, the following weaker

Conjecture (2). Let V be an irreducible variety of dimension
2g + 2n − 5 (with 4 ≤ 2n − 2 < g) and let F → V be a family of smooth
n-gonal curves of genus g with maximal variation of moduli. If this family
has a rational section then the degree of the modular map V → Mg,n−gon is
a multiple of gcd{n, 2g − 2}. Moreover this number is sharp, namely there
is no other natural number d being a nontrivial multiple of gcd{n, 2g − 2}
such that for any family with maximal variation of moduli and with a ratio-
nal section its modular degree should be a multiple of d .

In the last part of this article, we prove conjecture 1 and hence conjec-
ture 2 in the case of trigonal curves over an arbitrary algebraically closed
field. Unfortunately our argument seems to work only for families of curves
lying on a surface (as in the trigonal case). We don’t know yet how to attack
this problem in general.
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2. Families of hyperelliptic curves.

In this section we work over an algebraically closed field of charac-
teristic different from 2. Recall that the moduli scheme Hg parametrizing
isomorphism classes of hyperelliptic curves is an integral subscheme of Mg

of dimension 2g − 1 and can be described as

Hg = (Bin(2, 2g + 2) − �)/PGL(2)

where Bin(2, 2g+2) is the projective space of binary forms in two variables
of degree 2g + 2, � is the closed subset over which the discriminant
vanishes and PGL(2) acts naturally on Bin(2, 2g+2) preserving the locus
� (see [22, Chap. IV, Section 1]).

We want to study families F → V of smooth hyperelliptic curves of
genus g ≥ 2 (with V irreducible) such that the modular map φF : V → Hg

is dominant and generically finite, or equivalently families over a base V
of dimension 2g − 1 with maximal variation of moduli. We want a ”sharp”
condition on the degree on the modular map assuming the existence of a
rational section for our family. It turns out that this problem is very closely
related to the following

Problem. Given a family of hyperelliptic curves F → V , does there exist
a line bundle on F that restricts to the g1

2 of every fiber? In other words can
the g1

2 be defined globally on a family of hyperelliptic curves?

The last problem is birational on the base, namely if there exists a
global g1

2 defined on an open subset of the base V , then it extends in a
unique way to a global g1

2 on the whole V (see [17, prop. 3.4]). Let’s begin
with the following
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Proposition 2.1. If a family of smooth hyperelliptic curves F → V has a
rational section then it has also a globally defined g 1

2 .

Proof. Every family of smooth hyperelliptic curves is a 2 : 1 cover of a
family P of P

1 (see [17, theo. 3.1])

F

π

2:1

���
��

��
��

f

��

P

P
1

p

����
��

��
�

V

Now if the family F → V has a rational section σ then also the
family P → V has a rational section given by the composition π ◦ σ .
This implies that the family of P

1 is Zariski locally trivial (see [17, prop.
2.1]) and hence it has a line bundle OP(1) of vertical degree 1. Now the
line bundle π ∗(OP(1)) is the required globally defined g1

2 .
Explicitly, as a representative of a global g1

2 we can take the divisor

σ(V )+i(σ (V )), where σ : V → F is the section, i stays for the involution
i : F → F corresponding to π : F → P , and the bar denotes Zariski
closure. �

The converse of this is false, namely to have a globally defined g1
2 is

strictly stronger than having a rational section. Nevertheless the following
is true.

Proposition 2.2. If a family of smooth hyperelliptic curves F → V has a
globally defined g1

2 then, up to restricting to an open subset of the base, we
can find another family F

� → V with the same modular map and admitting
a rational section.

We will give two proofs of this proposition.

Proof. [I Proof] In [17, prop. 3.4] we proved that the existence of a global
g1
2 is equivalent to the Zariski local triviality of the underlying family P

of P
1 and actually the global g1

2 is the pullback of the line bundle OP(1).
This shows that we can choose an effective divisor D on F that represents
the global g1

2 . Also, taking D to be the pull-back of a general rational
section of P → V , we can suppose D is not entirely contained in the
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Weierstrass divisor (the ramification divisor of the map F → P). So, after
possibly restricting to an open subset of the base V , we can assume that the
projection D → V is an 2 : 1 étale cover (and let’s call j the involution on
D that exchanges the two sheets). Also on the family F there is a natural
involution i that on every fiber is the hyperelliptic involution. Now consider
the diagram

D ×V F

�

��

��

j×i

��
F

��

i

��

D ��

σ�

��

j

�� V

where σ � is the tautological section. Since all the involutions commute with
the map, we can form the quotients obtaining

where the tautological section σ �, being compatible with the involutions,
gives rise to a section σ of the new family F

� → V that, by construction,
has also the same modular map of the original family, q.e.d. �

Proof. [II Proof] This proof is done by passing to the generic point η =

Spec(k(V )) of V . In [17, prop. 2.1 and 3.4] it is shown that the existence
of a global g1

2 is equivalent to the isomorphism Pη
∼= P

1
η , where P as

before is the family of P
1 underlying F . In this case we showed also that

Fη is a hyperelliptic curve over k(V ) whose affine part is given in A
2 by an
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equation of the form ay2 = f (x) where a ∈ k(V )∗/(k(V )∗)2 and f (x) is
a homogeneous polynomial of degree 2g + 2 whose roots in k(V ) define a
point in Hg corresponding to the image of η under the modular map.

Now the existence of a rational section of the family F → V is
equivalent to the existence of a rational point of Fη over k(V ). But this
is achieved very easily by varying our a without modifying the polynomial
f (x) (and thus the modular map): for example if we just take a � := f (x0) �=

0 with x0 ∈ k(V ) then the new hyperelliptic curve F
�
η given by the equation

a�y2 = f (x) will have an evident rational solution (x, y) = (x0, 1). �

Thus studying families of hyperelliptic curves having a rational section
from the point of view of the degree of their modular map is equivalent to
the studying of families of hyperelliptic curves with a globally defined g 1

2 .
The last problem is solved in the last section of [17] as an application of the
theory developed there.

Let us briefly review certain results from [17] and describe how do they
provide an answer to the problem in question.

RESULTS from [17]

(i) There exists a family Pg → H0
g of P

1 and a horizontal flat and
relatively smooth divisor D2g+2 of vertical degree 2g + 2 that is
universal, in the sense that every other family P → V of P

1 endowed
with a horizontal flat and relatively smooth divisor D of vertical degree
2g + 2 is the pull-back of this one by a unique map from the base V
to Hg. In particular given a family F → V of smooth hyperelliptic
curves, the underlying family P of P

1 together with the branch divisor
D of the 2 : 1 cover F → P fulfills this properties and hence it is
the pull-back of the couple (Pg, D2g+2) by mean of the modular map
V → H0

g . Moreover the universal P
1-family Pg → H0

g is not Zariski
locally trivial (see [17, theo. 6.5]).

(ii) A family F → V of smooth hyperelliptic curves has a globally defined
g1
2 if and only if the underlying family P → V of P

1 is Zariski locally
trivial (see [17, prop. 3.4]).

(iii) Given a Zariski locally trivial family P of P
1 over the base V , there

exists an open subset U ⊂ V such that P|U corresponds to a family
F → U of hyperelliptic curves (see [17, theo. 3.5]).

For a discussion of the existence of a global g1
2 for families of hyperel-
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liptic curves, see also the last section of [21].
Now we can use these results to answer the initial problem.

Theorem 2.3. If a family of smooth hyperelliptic curves F → V with
dominant and generically finite modular map has a globally defined g 1

2 ,
then the degree of the modular map is a multiple of 2 and this is sharp in
the sense that there exist families with that property.

Proof. Note that, after restricting V to an open subset, we can assume
that the image of the modular map is contained in H 0

g . By (ii) above the

existence of a global g1
2 is equivalent to the Zariski local-triviality of the

underlying family of P
1. But by (i) the P

1-family P → V is the pull-back
via the modular (finite) map of the universal family Pg → H0

g , and since
the last one is not Zariski locally trivial a necessary condition to become
trivial is the parity of the degree of the modular map (see the last section of
[17]).

On the other hand, there exists a map V → H0
g of degree 2 such that

the pull-back of the universal family Pg is Zariski locally trivial. Hence by
(iii) this map is modular on a suitable open subset U ⊂ V , having hence a
globally defined g1

2 by (ii), and this concludes the proof. �

Now combining theorem 2.3 with propositions 2.1 and 2.2, we get
theorem 1.2.

3. Families of n-gonal curves (n ≥ 3).

In this section we study the case of higher n-gonal curves. Before doing
this we want to recall (for the convenience of the reader) some known
classical facts on gonal curves.

Let g ≥ 2 and n ≥ 2 be integers. Inside the moduli space Mg of curves
of genus g let us denote with Mg,n−gon the subset corresponding to curves
carrying a g1

n (i.e. a linear system of degree n and dimension 1). It is known
that:

(1) Mg,n−gon is a closed irreducible subvariety of Mg (see [12]).
(2) The dimension of Mg,n−gon is min{3g−3, 2n+2g−5}. In particular

every curve of genus g has a g1
n for 2n − 2 ≥ g (see [25]).

(3) The generic n-gonal curve with n > 2 doesn’t have non-trivial
automorphisms; the generic 2-gonal curve (i.e. hyperelliptic curve) has only
the hyperelliptic involution as non-trivial automorphism. Hence for n ≥ 3
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there exists a universal family over (Mg,n−gon)
0 (simply the restriction of

the universal family over the open subset of Mg of curves without non-
trivial automorphisms).

(4) As for the number of g1
n carried by a generic n-gonal curve, we

have that:

(i) If 2n − 2 < g, then a generic n-gonal curve has only one g1
n (see [2]).

(ii) If 2n − 2 = g, then the generic n-gonal curve has only a finite number

of g1
n and this number is equal to

(2n − 2)!

n!(n − 1)!
(see [16, pag. 359]).

(iii) If 2n − 2 > g, then the dimension of the space of all the g1
n is equal to

2n − 2 − g (Brill-Noether theory).

As explained in the introduction, we will use a classical construction
(due to Maroni [19], [20]) that allows to embed a canonical n-gonal curve
(after having chosed a base-point-free g1

n) in a rational normal scroll. The
construction is based on the observation that, by the geometric version of
the Riemann-Roch theorem (see [4, pag. 12]), on the canonical curve a g1

n

is given by effective divisors of degree n lying on a (n − 2)-plane. Thus we
obtain a ruling of (n − 2)-planes parametrized by P

1. It’s a classical result
of B. Segre (see [25]) that, since 2n − 2 < g, this ruling is made of non-
intersecting planes and so they sweep a non-singular rational normal scroll.
Observe also that this construction is canonical for the generic curve, since
it has only one g1

n . From now on, we always assume that 2n − 2 < g.
Thus we have embedded our n-gonal canonical curve C inside a non-

singular rational normal scroll X of dimension n−1 inside P
g−1 (and hence

of degree g−n+1). It’s well known that the Chow ring of a rational normal
scroll is generated by the hyperplane section D and the fiber f of the ruling
(see [13, Chap. 3, Sect. 3]):

(3.1) CH(X ) = Z[D, f ]/( f 2, Dn−1 − (g − n + 1)Dn−2 · f ).

By construction it follows that D cuts on our curve the canonical divisor
while f cuts the linear system g1

n .

Theorem 3.1. In the construction above the curve C inside X is rationally
equivalent to n · Dn−2 + (n − 2)(n − g + 1)Dn−3 · f .

Proof. Since the Chow ring of X is generated by D and f , our curve C is
rationally equivalent to aDn−2 + bDn−3 · f . Intersecting with the fiber f
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we get

n = f · C = f · (aDn−2 + bDn−3 · f ) = a

while intersecting with D we get

2g − 2 = D · C = D · (aDn−2 + bDn−3 · f ) = a(g − n + 1) + b

since Dn−1 = deg(X )Dn−2 · f = deg(X ){pt} and the degree of X is
g − n + 1. Solving the two equations we get the desired result. �

Now observe that a (n − 1)-rational normal scroll is isomorphic ab-
stractly to the projectivization of a vector bundle E of rank n − 1 over
P
1 and it’s well known that every vector bundle on P

1 splits as direct sum
of line bundles and, multiplying by a line bundle, we can normalize it as

E =

n−1�

i=1

O(−ri) with 0 = r1 ≤ · · · ≤ rn−1. Further a necessary and suffi-

cient condition for P(E) to be embedded as a non-singular rational normal

scroll inside P
g−1 (of degree g − n + 1) is that, set N :=

n−1�

i=1

ri , it holds

N < g − n + 1 and N ≡ g (mod n − 1). In fact the embedding is the

map associated to the very ample divisor c1(OP(E)(1)) +

�
g − N

n − 1
− 1

�

f .

The invariants 0 = r1 ≤ r2 ≤ · · · ≤ rn−1 we obtain via the Maroni
construction are also related to the dimension of the multiples of the g1

n we

start with (see [24, section 2]). Precisely, if we put η :=
g − N

n − 1
− 1, it

holds that

h0(C, kg1
n) =






k + 1 if 0 ≤ k < η

( j + 1)k + 1 − jη −

j�

t=1

rt
if η + rj ≤ k < η + rj+1

for j = 1, · · · , n − 2

nk + 1 − g if η + rn−1 ≤ k.

Note that there is a finite number of isomorphic classes of rational
normal scrolls inside P

g−1. Hence, since the locus of the n-gonal curves
inside Mg is irreducible, the rational normal scrolls canonically associated
to the generic n-gonal curves will be isomorphic. The next theorem of
Ballico (see [5]) says that a general n-gonal canonical curve lies inside the
generic rational normal scroll.
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Theorem 3.2 (Ballico). Let C be a generic n-gonal curve of genus g (with
2n − 2 < g) and let g1

n be the unique linear system of dimension 1 and
degree n. Then

h0(C, kg1
n) =






k + 1 if k <
g

n − 1
,

nk − g + 1 if k ≥
g

n − 1
.

Corollary 3.3. Let r be the integer such that 0 ≤ r < n−1 and r ≡ g mod
n − 1. The rational normal scroll associated via the Maroni construction
to the generic n-gonal curve of genus g is abstractely isomorphic to
P(On−1−r

P1 ⊕ O
P1(−1)r).

Since all the embeddings inside a projective space are conjugated by a
projective automorphism, from now on we can fix a generic rational normal
scroll Xn−1

g−n+1 ⊂ P
g−1 (of dimension n − 1 and degree g − n + 1). We will

consider the locally closed subset of the Hilbert scheme of canonical curves
inside X consisting of the curves rationally equivalent to n · Dn−2 + (n −

2)(n − g + 1)Dn−3 · f and we will call it HilbX
n−can . What the preceding

theorem tells us is that the canonical map from HilbX
n−can to Mg,n−gon is

dominant. We want to look more closely to the fibers of this map as well as
to the variety HilbX

n−can .
First we need two results about the canonical class of a rational normal

scroll and its automorphism group.

Lemma 3.4. The canonical class of a rational normal scroll X n−1
g−n+1 ⊂

P
g−1 is KX = −(n − 1)D + (g − n − 1) f .

Proof. Recall that X is isomorphic to P(E) (with E a vector bundle over
P
1 of rank n − 1 and c1(E) = −N) embedded via the map associated to

the very ample divisor D = c1(OP(E)(1)) +

�
g − N

n − 1
− 1

�

f . On P(E) we

have the two exact sequences (let’s denote with T
P(E)/P1 the vertical tangent

bundle with respect to the fibration π over P
1):

0 → OP(E) → π∗E ⊗ OP(E)(1) → T
P(E)/P1 → 0

and

0 → T
P(E)/P1 → TP(E) → π∗T

P1 → 0

or putting them togheter

(3.2) 0 → OP(E) → π∗E ⊗ OP(E)(1) → TP(E) → π∗T
P1 → 0.
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Taking the first Chern classes in the last exact sequence, we get

c1(TP(E)) = c1(π
∗T

P1) + c1(π
∗E ⊗ OP(E)(1)) =

π∗(c1(TP1)) + (n − 1)c1(OP(E)(1)) + π∗(c1(E)) =

(n − 1)c1(OP(E)(1)) + (2 − N ) f.

Hence KX = −(n − 1)c1(OP(E)(1)) + (N − 2) f and substituting D =

c1(OP(E)(1)) +

�
g − N

n − 1
− 1

�

f we get the conlusion. �

Proposition 3.5. Let X n−1
g−n+1 ⊂ P

g−1 be a generic rational normal scroll.
Then:

(i) Aut(X ) has dimension n2 − 2n + 3.

(ii) Aut(X ) is connected with the exception of the case when X ∼= P
1 × P

1

in which case it has two connected component (according to whether
an automorphism exchanges or not the two components of P

1).

(iii) Aut(X ) is rational.

Proof. Let’s first suppose that X ∼= P(E) �∼= P
1 × P

1 In this case an
automorphism of P(E) must respect the fibration π : P(E) → P

1 (since the
only subvarieties of the scroll isomorphic to P

n−2 are the fibers of the map
π ), so that we have a map Aut(P(E)) → Aut(P1). The kernel of this map
is the group Aut(P(E)

P1) of vertical automorphisms, i.e. automorphisms of
the scroll that induce the identity on the base of the fibration P(E) → P

1.
So we have an exact sequence:

(3.3) 0 → Aut(P(E)
P
1) → Aut(P(E)) → Aut(P1).

The last map is surjective. In fact given an automorphism φ of P
1, from

the fact that φ doesn’t change the linear class of divisors on P
1 and that on

P
1 every vector bundle is split, we have that φ∗(E) ∼= E. Therefore there

exists an isomorphism P(φ∗(E)) ∼= P(E) commuting with φ on the base.
Moreover, Aut(P(E)

P1) = P(Aut(E)). In general the subgroup of ver-
tical automorphisms of the projectivized bundle coming from the automor-
phism of the vector bundle can be identified with the subgroup of the verti-
cal automorphisms that preserve the line bundle OP(E)(1) (use the fact that
π∗(OP(E)(−1)) = E∗). However using the fact that the base of the fibration
is P

1, we can prove that the two groups are the same. In fact an element
ψ ∈ Aut(P(E)

P1) should preserve the relative canonical sheaf which is

K
P(E)/P1 = π∗(c1(E)−1) ⊗ OP(E)(1 − n)
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(since the relative tangent is

T
P(E)/P1 = Hom(OP(E)(−1), π∗(E)/OP(E)(−1))).

Since ψ commutes with π , then ψ∗(OP(E)(1 − n)) = OP(E)(1 − n) from
which we get the claim since the Picard group of P

1 doesn’t contain
elements of (1 − n)-torsion.

There is a cohomological interepretation of these ideas. Consider the
sheaf of non-commutative groups SL(E) consisting of the automorphisms
of E of determinant 1 (indeed, the determinant for automorphisms of vector
bundles is well-defined since it doesn’t change under the conjugation). Also
there is a non-commutative sheaf Aut(P(E)

P1) and the exact sequence in the
étale topology (we really need the étale topology since we have to extract
root of degree 1 − n from the determinant):

1 → µ1−n → SL(E) → Aut(P(E)
P1) → 1,

where µ1−n denotes the sheaf of roots of unity of degree 1 − n. From
the long cohomological sequence we get the inclusion Coker(SL(E) →

Aut(P(E)
P1)) ⊂ H1

ét(P
1, µ1−n) = Pic(P1)1−n = 0. The last map may be

also defined as follows: it associates to h ∈ Aut(P(E)
P1) the invertible

sheaf L ∈ Pic(P1) such that h∗
OP(E)(1) ⊗ OP(E)(1)

−1 ∼= π∗(L). As it
was discussed above the sheaf OP(E)(1 − n) must be preserved by h, so
L ∈ Pic(P1)1−n .

Finally let us mention that we could reformulate this fact in a more
explicit way by passing from the étale topology to the Zariski one, replacing
SL(E) by GL(E) = Aut(E), µ1−n by O

∗
P1 , and using the inclusion

H1
ét(P

1, µ1−n) = Pic(P1)1−n ⊂ Pic(P1) = H1
Zar(P

1,O∗
P1). Namely let’s

take h ∈ Aut(P(E)
P1). Consider a Zariski open covering of the base by the

open subsets Ui over which E is trivial, and over which there exist elements
gi ∈ Aut(E |Ui ) coinciding with h on P(E |Ui ). Let Ai j ∈ GL(Ui ∩ Uj ) be
the transition functions for E . Then on the intersection Ui ∩Uj we have the
equality

λi j gi = Ai j gj A
−1
i j

for some λi j ∈ O
∗(Ui ∩ Uj). As for determinants we get the equality

λ1−n
i j det(gi) = det(gj) so the cocyle λ1−n

i j is trivial, while the cocycle λi j

defines an element in Pic(P1)1−n whose triviality implies the existence of
g ∈ Aut(E) whose action on P(E) coincides with h.

To compute the dimension of Aut(P(E)), note that P(Aut(E)) is the
open subset of P(End(E)) = P(H0(E ⊗ E∗)) over which the determinant
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doesn’t vanish and therefore, since E = P(On−1−r
P
1 ⊕ O

P1(−1)r), we have

dimAut(P(E)
P1) = h0(P1, E ⊗ E∗) − 1 = (n − 1)2 − 1

from which one get part (i) using the exact sequence 3.3.
The connectedeness and the rationality of Aut(P(E)) follows from the

exact sequence 3.3 since both the first and the last group is connected and
rational.

Finally, in the case where X ∼= P(E) ∼= P
1 ×P

1, an automorphism may
also exchange the two fibrations of P

1, so that we have an exact sequence:

0 → Aut(P(E) → P
1) → Aut(P(E)) → Z/2Z → 0,

and for Aut(P(E) → P
1) we can repeat the same argument of above which

will conclude our proof. �

Theorem 3.6. For a generic rational normal scroll X n−1 ⊂ P
g−1, the

scheme HilbX
n−can is smooth and irreducible of dimension 2g + n2 − 2

and the natural (dominant) map HilbX
n−can → Mg,n−gon has generic fiber

isomorphic to the algebraic subgroup Aut(X )0 (the connected component
of the unity inside Aut(X )).

Proof. From the theory of deformations, we known that the tangent space
to the semiversal space for the embedded deformations of a curve C inside
X has dimension h0(C, NC/X) while the space of obstructions sits inside
H1(C, NC/X ). Hence at the point [C] ∈ HilbX

n−can , it holds:

h0(C, NC/X) − h1(C, NC/X) ≤ dim[C](HilbX
n−can)

≤ dimT[C](HilbX
n−can) ≤ h0(C, NC/X).

We will prove that for every [C] ∈ HilbX
n−can , it holds:

(3.4) χ(C, NC/X) = 2g + n2 − 2

(3.5) h1(C, NC/X) = 0

from which it follows that HilbX
n−can is smooth of dimension 2g + n2 − 2.

From the exact sequence

0 → TC → TX |C → NC/X → 0

it follows that

χ(C, NC/X ) = χ(C, TX |C) − χ(C, TC) = χ(C, TX |C) − (3 − 3g).
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To compute χ(TX |C), we apply the Riemann-Roch theorem for fiber
bundles, using the fact that, in the Chow ring of X , the class of C is
nDn−2 +(n−2)(n−g+1)Dn−3 · f (by lemma 3.1) and the canonical class
of X is −(n − 1)D + (g − n − 1) f (by lemma 3.4):

(3.6)
χ(C, TX |C) = deg(c1(TX |C)) + rk(TX |C) · (1 − g) =

= −KX · C + (n − 1)(1 − g) = n2 + 1 − g

from which it follows formula 3.4.
Now consider the diagram

0 �� TC
��

��

TX|C ��

��

NC/X �� 0

p∗TP1

id ��

��

(π∗TP1)|C

��
0 0

where π : X → P
1 indicates the projection of the scroll X onto P

1 (or in in
other words the map associated to the divisor f ), p : C → P

1 denotes its
restriction to C (which is therefore the map associated to the unique g1

n of
C) and the vertical maps are the differential maps of these morphisms.

Passing to the cohomological exact sequences, the vanishing of
H1(C, NC/X ) will follow once we prove that

H1(C, TX |C)
∼=

−→H1(C, p∗T
P
1).

We will prove the last isomorphism by showing that both these groups have
the same dimension g− 2n + 2 (since we know that the map between them
is surjective).

In fact since 2n−2 < g and C is a general n-gonal curve, from theorem
3.2 it follows:

h1(C, p∗T
P1) = h1(C, 2g1

n) = h0(C, 2g1
n) − χ(C, 2g1

n)

= 3 − (2n + 1 − g) = g − 2n + 2.

On the other hand it’s easy to see that the automorphisms of X come
from projectivity of P

g−1 and the ones that fix the canonical curve C are a
finite number because Aut(C) is finite. Hence by proposition 3.5 (since X
is generic)

h0(C, TX |C) = h0(X, TX) = dimAut(TX) = n2 − 2n + 3,
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which togheter with formula 3.6 gives h1(C, TX |C) = g − 2n + 2.
Now two generic curves C and C � in HilbX

n−can are isomorphic if and
only if there exists a projectivity of P

g−1 sending one into the other. But
clearly, since X is canonically attached to the generic C, this projectivity
must stabilize X and hence is an automorphism of X that will preserve
the rational class of C and hence, in view of proposition 3.5, belongs to
Aut(X )0.

The connectedeness of HilbX
n−can (and hence its irreducibility because

of its smoothness) follows from the fact that it has a dominant map into a
connected variety with connected fibers. �

So after this construction, we end up with the following situation

CX
n−can

��

��

Cg,n−gon

��
HilbX

n−can φ
�� Mg,n−gon

where C
X
n−can → HilbX

n−can is the universal family over the Hilbert scheme,
Cg,n−gon → Mg,n−gon is the tautological family over the locus of n-gonal
curves (universal over the open subset of curves without automorphisms)
and we know that the canonical map φ is dominant with generic fiber
isomorphic to Aut(X )0. We want to compute the relative Picard group
(i.e. line bundles of the family modulo pull-back of line bundles of the
base) of these two families of curves. This is called classically the group
of rationally determined line bundles (the terminology is due to the fact
that it doesn’t change if we restrict the family to an open subset of the base,
[9, prop.2.2]).

In [9] there are many properties of this group and in particular we
found there a very usefull result that allows to compare the groups of
rationally determined line bundles for two families between which there
is a correspondence which is “generically unirational”.

More precisely, let F = (C, S, p) and F
� = (C�, S�, p�) be two

families of schemes over an irreducible and smooth base and let’s denote
with R(F ) and R(F �) the two relative Picard groups. Let T ⊂ S×S � be an
algebraic correspondence between S and S� such that the two projections
π : T → S and π

�
: T → S� are dominant. For any point x ∈ S we will

denote by S�
x the closed subset of S � associated to x by this correspondence,
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namely S�
x = π

�
(π−1(x)). We use analogous notation for Sx � if x � ∈ S�.

Theorem 3.7. [see [9]] If, for every x ranging in an open dense subset
of S, S�

x is unirational then there is a natural monomorphism of groups
R(F �) �→ R(F ). If the same hypothesis is true for Sx � , then we have a
natural isomorphism R(F �) ∼= R(F ).

The hypothesis of the theorem are valid in our case since φ :
HilbX

n−can → Mg,n−gon is dominant between irreducible varieties with
generic rational fiber Aut(X )0, and it gives the isomorphism between the
relative Picard groups of our two families.

Now observe that on the universal family C
X
n−can over HilbX

n−can there
are two natural line bundles induced by cutting with the divisors D and f
(we will use the same letters for these two line bundles). Since over each
fiber of the universal family, D restricts to the canonical sheaf while f
restricts to the unique g1

n , these two line bundles correspond to the relative
canonical line bundle (defined everywhere and in a canonical way) and to a
globally defined g1

n (which is well defined only as an element of the relative
Picard group). Now we make the following

Conjecture (1). The relative Picard group of C
X
n−can → HilbX

n−can is
generated by D and f .

From what we said before, this conjecture is equivalent to the following

Conjecture (1’). On the universal family Cg,n−gon over (Mg,n−gon)
0 there

is a line bundle G1
n (that restricts to the unique g1

n on the generic n-gonal
curve) such that the relative Picard group R(Cg,n−gon) is generated by G1

n

and the relative canonical sheaf ω.

Corollary 3.8. Any line bundle on the universal family C
1
g,n has relative

degree a multiple of gcd{2g − 2, n}.

Now imitating words for words the proof of Caporaso’s lemma, one
proves that this conjecture imply the following answer to the original
problem.

Conjecture (2). Let V be an irreducible variety of dimension 2g + 2n − 5
(with 4 ≤ 2n−2 < g) and let F → V be a family of smooth n-gonal curves
of genus g with maximal variation of moduli. If this family has a rational
section then the degree of the modular map V → Mg,n−gon is a multiple
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of gcd{n, 2g − 2}. Moreover this number is sharp, namely there is no other
natural number d being a nontrivial multiple of gcd{n, 2g−2} such that for
any family with maximal variation of moduli and with a rational section its
modular degree should be a multiple of d .

The sharpness may be obtained as follows. On C
X
n−can there exists

an effective divisor representing the sheaf f : just fix any fiber on the
scroll X and take its intersection with corresponding curves on X . This
divisor on C

X
n−can is Aut(X )0-equivariant and so we get an effective divisor

on Cg,n−gon being a section of G1
n . Thus we get a family with maximal

variation of moduli, with a rational section and whose modular degree is
equal to n. The sharpness easily follows from this and from the existence
of an effective relative canonical divisor on Cg,n−gon .

Now we are going to prove conjecture (1) for trigonal curves over an
arbitrary algebraically closed field.

Theorem 3.9. Conjecture (1) (and hence (1’) and (2)) is true for n = 3.

To prove this theorem first we will establish a certain rather general
statement.

Consider a smooth projective surface S, and let L be a linear system
of divisors on S. Let’s say that the system L is rather free if and only
if for a generic curve C from the linear system L and for each point
x ∈ C we have an equality dim((L|C)(−x)) = dim(L|C) − 1. Here
by the restriction L|C we mean the image of L under the natural map
H0(S,OS(C)) → H0(C,OC(C)).

Example If L = H0(S,L) where L is a very ample sheaf then evidently
L is rather free.

Example If H1(S,OS) = 0, L = H0(S,L) and (L.ωS) ≤ −2 where L is
an invertible sheaf on S and ωS denotes a canonical sheaf, then L is rather
free.

To show this fact first consider the exact sequence of sheaves

0 → OS → OS(C) → OC(C) → 0,

associated to a general curve C from L. Together with the condition
H1(S,OS) = 0 it leads to the equality L|C = H0(C,OC (C)) =

H0(C,L|C ) and so (L|C)(−x) = H0(C,L|C (−x)). Now the property of
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L to be rather free comes from the inequality degC(L|C(−x)) > 2g(C)−2.
Indeed

2g(C) − 2 = (ωX ⊗ L.L) < (L.L) − 1,

and

(L.L) − 1 = degC(L|C(−x))).

Now consider the universal curve C inside P(L) × S = P × S. Let’s
denote by π1 and π2 two natural projections to P and S respectively.

Theorem 3.10. If L is rather free then the map

π∗
2 : Pic(S) → Pic(C)/π∗

1 (Pic(P))

is surjective.

Proof. Step 1. Fix a generic point p ∈ P and consider the blow-up σ(P) of
P with the center at p. Let π be the natural contraction map from σ(P) to
P. Then π∗(C) → C is also a blow-up with the center at the curve C that
is a fiber of C over p. By a general result (see [9]) the relative Picard group
doesn’t change so we may concentrate on the new family π ∗(C) → σ(P).
Indeed if the total space of the family is regular then the relative Picard
group of a family is invariant when changing the base by its open subset:
the isomorphism between two relative Picard groups is obtained in one
direction just by the restriction and in the other direction by taking the
Zariski closure (here we use the regularity of the total space).

Step 2. We have the embedding π ∗(C) ⊂ σ(P) × S. Let f denote the
composition of this embedding with the natural map σ(P)× S → P

N−1 × S
where N +1 = dim(L) and P

N−1 corresponds to lines in P passing through
p. Then f :π ∗(C) → P

N−1 × S is the blow-up with the center at the
subvariety R ⊂ P

N−1 × S of codimension 2 that may be defined in the
following way: a point (l, x) ∈ P

N−1 × S belongs to R if and only if
x ∈ C ∩ Cq where Cq stays for the fiber of C over a generic point q ∈ l .
Let’s remark that indeed the set C ∩ Cq doesn’t depend on q ∈ l because
obviously all the curves in the pencil l are passing through (C.C) points on
C obtained by intersecting it with one of the element of this pencil.

Hence Pic(π∗(C)) is generated by Pic(PN−1×S) = Pic(PN−1)×Pic(S)

and the irreducible components of f −1(R). Besides, the image of the
generator of Pic(PN−1) in Pic(π ∗(C)) is coming from the base σ(P).

Step 3. We claim that R is irreducible. There is an embedding R ⊂

P
N−1 × C. Also we may identify P

N−1 with P(L|C). Hence a fiber of R
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over a point x ∈ C is exactly P(L|C(−x)). Since L is rather free, R is just
the projectivization of the vector bundle of rank N − 1 over C whose fiber
over x ∈ C is the vector space (L|C)(−x) (which is of dimension N − 1
by hypothesis).

Moreover we may easily compute the class of f −1(R) in the relative
Picard group: on the restriction of the family π ∗(C) over the open subset
σ(P)−P

N−1 the divisor f −1(R) coincides with the pull-back of P
N−1×C ⊂

P
N−1 × S so comes from Pic(S).

Thus we get the initial statement. �

Remark The proof of this theorem is very much inspired by the proof
of Theorem 4.2 from [9], essentially by the idea of considering pencils of
curves inside a family to obtain the information about the relative Picard
group (in [9] this method is said to have been already known to Enriques
and Chisini).

Now let’s come back to our initial problem and take S = X , L =

H0(X, 3D+(4−g) f ), where X is a scroll corresponding to trigonal curves
of genus g. Since ωS = −2D + (g − 4) f , f 2 = 0, (D. f ) = 1 and
D2 = g − 2 we have the equality (ωS.(3D + (4 − g) f )) = −g − 8. Also
H1(X,OX ) = 0, and so L is rather free by the example before theorem
3.10.

Another way to see that L is rather free is to show that 3D + (4 − g) f
is very ample on X . In fact in the case g even, X will be isomorphic to

F0 = P
1 × P

1 with D = C0 +
g − 2

2
f (in the notation of [15b, V, section

2]). Hence 3D + (4 − g) f = 3C0 +
g − 2

2
f is very ample by [15b, V,

cor. 2.18]. In the case g odd, X will be isomorphic to F1 = P(O ⊗ O(−1))

with D = C0 +
g − 1

2
f . Hence 3D + (4− g) f = 3C0 +

g + 5

2
f is very

ample by the same corollary.
Next note that HilbX

n−can is a Zariski open subset inside P(L) because
the Chow groups of scrolls are discrete: rational equivalency and algebraic
equivalency coincide with each other (in the case of divisors it is again
the reflection of the fact that H1(X,OX ) = 0). Moreover C

X
n−can is the

restriction of C to HilbX
n−can . So applying theorem 3.10 and using the

birational invariancy of the relative Picard group we get conjecture 1 for
the trigonal case.
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