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ON q2-ANALOGUE SOBOLEV TYPE SPACES

AHMED SAOUDI - AHMED FITOUHI

This paper is devoted to define the q2-Sobolev type spaces on Rq by
using the q2-analogue Fourier transform and its inverse. In particular, we
provide the readers by some embedding results with these spaces. More-
over we study the related q2-potential analysis and some of its properties.

1. Introduction

The Sobolev spaces were introduced firstly by Sergei Lvovich Sobolev in 30s of
the previous century to search for weak solutions, before being taken by Laurent
Schwartz. Their importance comes from the fact that solutions of partial differ-
ential equations are naturally found in Sobolev spaces, rather than in spaces of
continuous functions and with the derivatives understood in the classical way
defined in [6]

∀m ∈ N∗,∀1≤ p≤ ∞, Wm,p(R) =
{

u ∈ Lp(R),∂ k
x u ∈ Lp(R);0≤ k ≤ m

}
.

Their use and the study of their properties were facilitated by the theory of dis-
tributions and Fourier analysis. The Sobolev spaceWs,p(R) is defined in [1] by
the use of the classical Fourier transform as the set of all tempered distribution
u such that its classical Fourier transform F(u) satisfying
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(1+ |ξ |2)s/2F(u) ∈ Lp(R).

Generalization of the Sobolev space have been studied by replacing the classical
Fourier transform by a generalized one. In the context of differential-differences
operators, the generalized Sobolev has already been studied in various settings
in [3, 4, 12] and in the context of q-differential-differences operators, has al-
ready been studied in [5, 11, 13]. This paper is an attempt to fill this gap by
generalizing the Sobolev spaces associated with the q-Rubin’s operator intro-
duced in [5].

This paper is organized as follows. In section 2, we present some prelimi-
nary results and notations that will be useful in the sequel. In section 3, we recall
the main results about the harmonic analysis associated with the q-theory that
will be frequently used in this work. In section 4, we introduce and investigate
Sobolev spaces associated with q2-analogue Fourier transform. Finally, we deal
with the q2-potential spaces in section 5.

2. Preliminaries

In this section we give a summary of the mathematical notations and definitions
used in the q-theory. We refer the reader to the book of Gasper and Rahmen
[7] and the book of Kac and Cheung [10] for the definitions, notations and
properties on q-hypergeometric functions. Other recent references in q-theory,
we refer the reader to [2].
For a ∈ C, the q-shifted factorials are defined by

(a;q)n =


1 if n = 0
n−1

∏
k=0

(1−aqk) if n ∈ N and (a;q)∞ =
∞

∏
k=0

(1−aqk) (1)

(a1,a2, . . . ,ap;q)n = (a1;q)n(a2;q)n . . .(aP;q)n, n = 0,1, . . .∞. (2)

The q-number or basic nubmer is denoted by

[a]q =
1−qa

1−q
, a ∈ C. (3)

The q-number factorial and the corresponding q-number factorial shifted are
defined for a non-negative integer n respectively by

[n]q =
n

∏
k=1

[k]q, [a]q;n =
n−1

∏
k=0

[a+ k]q. (4)
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We denote the q-Gamma function by

Γq(x) =
(q;q)∞

(qx;q)∞

(1−q)1−x. (5)

For 0 < q < 1 we denote

Rq = {±qn;n ∈ Z} and R̃q = {±qn;n ∈ Z}∪{0}.

The q-Jackson integral is defined in [7] by∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx, (6)

where ∫ a

0
f (x)dqx = a(1−q)

+∞

∑
n=0

f (aqn)qn, (7)

and ∫ +∞

−∞

f (x)dqx = (1−q)
+∞

∑
n=−∞

{ f (qn)+ f (−qn)}qn, (8)

provided the sums converge absolutely.
When f is continuous on [0,a], one can show that

lim
q→1

∫ a

0
f (x)dqx =

∫ a

0
f (x)dx.

The q-trigonometric functions are defined as

cos(x;q2) :=
+∞

∑
n=0

(−1)nb2n(x;q2) (9)

and

sin(x;q2) :=
+∞

∑
n=0

(−1)nb2n+1(x;q2), (10)

where

bn(x;q2) =
q[

n
2 ]([

n
2 ]+1)

n!q
xn. (11)

These two functions introduced the notion of ∂q-adapted q2-analogue exponen-
tial function given by

e(z;q2) := cos(−iz;q2)+ isin(−iz;q2) =
+∞

∑
n=0

bn(x;q2), (12)
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satisfying the following inequality

|exp(ix;q2)| ≤ 2
(q;q)∞

, ∀x ∈ Rq. (13)

exp(z;q2) is absolutely convergent for all z in the plane since both of its compo-
nent functions are, and we have lim

q→1−
e(z;q2) = ez point-wise and uniformly on

compacts.
The q2-analogue differential operator is defined by

∂q f (z) =


f (q−1z)+ f (−q−1z)− f (qz)+ f (−qz)−2 f (−z)

2(1−q)z
if z 6= 0

lim
z→0

∂q f (z) in Rq if z = 0.

3. Harmonic analysis associated with Rubin operator

In the sequel, we denote by

• C p
q (Rq) the space of functions p times q-differentiable on R̃q, such that

for all 0≤ k ≤ p, ∂ k
q f is continuous on R̃q.

• Dq(Rq) the space of functions infinitely q-differentiable on Rq with com-
pact supports.

• Sq(Rq) the q-analogue of Schwartz space of functions defined on Rq and
satisfying

∀n,m ∈ N Pn,m,q( f ) = sup
x∈Rq;0≤k≤n

∣∣(1+ x)m
∂

n
q f (x)

∣∣< ∞

and
lim
x→0

∂q f (x) (in Rq) exists.

Sq(Rq) is equipped with the induced topology defined by the semi-norms
Pn,m,q.

• S ′q(Rq) the space of temperate distributions on Rq. It is the topological
dual of Sq(Rq).

• Lp
q(Rq),1≤ p < ∞, the set of all functions defined on Rq such that

‖ f‖Lp
q (Rq)

=

{∫
∞

−∞

| f (x)|pdqx
} 1

p

< ∞. (14)
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• L∞
q (Rq), the set of all functions defined on Rq such that

‖ f‖L∞
q (Rq) = sup

x∈Rq

| f (x)|< ∞. (15)

• The q2-analogue Fourier transform introduced by Richard L. Rubin in
[15] as

Fq( f )(x) := K
∫

∞

−∞

f (t)e(−itx;q2)dqt, x ∈ R̃q (16)

where

K =
(1+q)1

2

2Γq2(1
2)

.

Letting q ↑ 1 subject to the condition

log(1−q)
log(q)

∈ 2Z, (17)

gives at least formally, the classical Fourier Transform. In the remainder of this
paper, we assume that (17) holds.

It was shown in [9, 15] that the q2-analogue Fourier transform Fq verifies
the following properties:

Lemma 3.1. 1. If f (u),u f (u) ∈ L1
q(Rq), then

∂q(Fq)( f )(x) = Fq(−iu f (u))(x).

2. If f ,∂q f ∈ L1
q(R), then Fq(∂q( f ))(x) = ixFq( f )(x).

3. Fq is an isomorphism from Sq(Rq) (resp L2(Rq)) onto itself and we have

‖Fq( f )‖2,q = ‖ f‖2,q, ∀ f ∈ L2(Rq)

and
∀t ∈ Rq, f (t) = K

∫
∞

−∞

Fq( f )e(itx;q2)dqt.

Definition 3.2 (see [15]). The q-translation operator Tq,x, x ∈ Rq is defined on
L1

q(Rq) by

Tq,y( f )(x) =
∫

∞

−∞

Fq( f )(t)e(ity;q2)e(itx;q2)dqt, y ∈ Rq, (18)

Tq,0( f )(x) = f (x). (19)

It verifies the following properties (see [9, 14, 15]).
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Proposition 3.3. 1. For f ,g ∈ L1
q(Rq), we have

Tq,y f (x) = Tq,x f (y), ∀x,y ∈ Rq.

2. Tq,y f is an isomorphism for f ∈ L2
q(Rq) onto itself and we have

‖Tq,y f‖L2
q(Rq) ≤

2
(q,q)∞

‖ f‖L2
q(Rq), ∀x ∈ R̃q.

3. Let f ∈ L2
q(Rq), then

Fq(Tq,y f )(λ ) = e(iλy;q2)Fq( f )(λ ).

4. If f ,∂q f ∈ (L1∩L2)dq, then

∂q[Tq,y f ](x) = [Tq,y(∂q f )](x).

Definition 3.4. The q-convolution product is defined by using the q-translation
operator for f ∈ L2

q(Rq) and g ∈ L1
q(Rq), as follows

f ∗q g(y) = K
∫

∞

−∞

Tq,y f (−x)g(x)dqx.

We have
f ∗q g = g∗q f ,

∀ f ,g ∈ (L1∩L2)dq, Fq( f ∗q g) = Fq( f )Fq(g),

and
∀ f ,g ∈ Sq(Rq), f ∗q g ∈ Sq(Rq).

Definition 3.5 (see[5]). The q2-analogue Fourier transform of a distribution u
in S ′q(Rq) is defined by

〈Fq(u),ϕ〉= 〈u,Fq(ϕ)〉, ∀ϕ ∈ Sq(Rq). (20)

Proposition 3.6 (see[5]). The q2-analogue Fourier transform is a topological
isomorphism from S ′q(Rq) onto itself.

Let τ be in S ′q(Rq). We define the distribution ∂qτ , by

〈∂qτ,ψ〉=−〈τ,∂qψ〉, ∀ψ ∈ Sq(Rq). (21)

Hence, if we denote the q2-analogue Laplace operator ∆q := ∂ 2
q we deduce

〈∆qτ,ψ〉= 〈τ,∆qψ〉, ∀ψ ∈ Sq(Rq). (22)

These distributions satisfy the following properties

Fq(∂qτ) = iyFq(τ), (23)

Fq(∆
n
qτ) = (−1)ny2nFq(τ), ∀n ∈ N. (24)
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4. q2-analogue Sobolev type spaces

In this section, we generalize the Sobolev spaces associated with q-Rubin oper-
ator introduced in [5] and we establish their main properties.

Definition 4.1. Let s ∈ R and 1≤ p < ∞, we define the spaceWs,p
q (Rq) as{

u ∈ S ′q(Rq) : (1+ |ξ |2)
s
2Fq(u) ∈ LP

q (Rq)
}
.

We provide this space with the norm

‖u‖Ws,p
q (Rq)

:=
(∫

Rq

(1+ξ
2)

sp
2 |Fq(u)(ξ )|2dq

) 1
p

.

Remark 4.2. For p = 2, we use the notationHs
q(Rq) instead ofWs,2

q (Rq).

Proposition 4.3. 1. Let 1 ≤ p < ∞. The spaceWs,p
q (Rq) provided with the

norm ‖u‖Ws,p
q (Rq)

is a Banach space.

2. Let 1≤ p < ∞ and s1, s2 in R such that s1 > s2 then

Ws1,p
q (Rq) ↪→Ws2,p

q (Rq).

3. Let s ∈ R and 1≤ p < ∞, then Sq(Rq)⊂Ws,p
q (Rq).

4. For (s, p) ∈ R× [1,∞) the operator ∂q is continuous fromWs,p
q (Rq) into

Ws−1,p
q (Rq) and

‖∂qu‖Ws−1,p
q (Rq)

≤ ‖u‖Ws,p
q (Rq)

.

Proof. It is clear that Lp(R,(1+ |ξ |2)
sp
2 dqξ ) is complete and since Fq is an

isomorphism from S ′q(Rq) onto S ′q(Rq),Ws,p
q (Rq) is then a Banach space.

The results 2. and 3. are immediately taken from definition of the general-
ized Sobolev space. By Lemma 3.1, we deduce 4.

Proposition 4.4. Let 1≤ p < ∞ and s1,s,s2 be three real numbers: s1 < s < s2.
Then, for all ε > 0, there exists a non-negative constant Kε such that for all u in
Ws,p

q (Rq)
‖u‖Ws,p

q (Rq)
≤ Kε‖u‖Ws1 ,p

q (Rq)
+ ε‖u‖Ws2 ,p

q (Rq)
.

Proof. For all s1 < s < s2, there exists t ∈ (0,1) such that s = (1− t)s1 + ts2.
Moreover, using Holder inequality it is easy to see

‖u‖Ws,p
q (Rq)

≤ ‖u‖1−t
Ws1 ,p

q (Rq)
‖u‖t

Ws2 ,p
q (Rq)

.
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Therefore

‖u‖Ws,p
q (Rq)

≤
(

ε
− t

1−t ‖u‖Ws1 ,p
q (Rq)

)1−t (
ε‖u‖Ws2 ,p

q (Rq)

)t

≤ ε
− t

1−t ‖u‖Ws1 ,p
q (Rq)

+ ε‖u‖Ws2 ,p
q (Rq)

.

Hence, the proof is completed for Kε = ε
− t

1−t .

After that, we will characterize the spaces Ws,p
q (Rq), for s = m, a positive

integer.

Proposition 4.5. Let m ∈ N, then for 1≤ p < ∞

Wm,p
q (Rq) =

{
u ∈ S ′q(Rq) : Fq(∂

j
q u) ∈ Lp(Rq),0≤ j ≤ m

}
.

Proof. Let u ∈Wm,p
q (Rq). Then using the Lemma 1, we have

Fq(∂qu)(ξ ) =−iξFq(u)(ξ ), u ∈ S ′q(Rq).

and

∀0≤ j ≤ m,
∫
Rq

|Fq(∂
j

q u)(ξ )|pdqξ =
∫
Rq

|(−iξ ) jFq(u)(ξ )|pdqξ

≤
∫
Rq

(1+ |ξ |2)
mp
2 |Fq(u)(ξ )|pdqξ < ∞.

Conversely, we assume now that Fq(∂
j

q u) ∈ Lp
q(Rq),∀0 ≤ j ≤ m. It is easy to

see that there exists K > 0 such that (1+ξ 2)
mp
2 ≤

m

∑
j=0
|ξ |p j.

Then∫
Rq

(1+ |ξ |2)
mp
2 |Fq(u)(ξ )|pdqξ ≤ K

m

∑
j=0

∫
Rq

|(−iξ ) jFq(u)(ξ )|pdqξ

= K
m

∑
j=0

∫
Rq

|Fq(∂
j

q u)(ξ )|pdqξ < ∞.

Remark 4.6. 1. For m ∈N and p = 2, we find the particular case studied in

Wm,2
q (Rq) =

{
f ∈ L2

q(Rq) : ∂
j

q f ∈ L2
q(Rq), j = 0, . . . ,m

}
.

2. H0
q(Rq) = L2

q(Rq).
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Corollary 4.7. For all (s, p) ∈ R× [1,+∞], we have Sq(Rq)⊂Ws,p
q (Rq).

Example 4.8. Let (s, p) ∈ R× [1,+∞] such that ps <−1, then for any x in Rq

the q2-analogue Dirac distribution δx defined by

δx(y) =
{

[(1−q)x]−1 if x = y,
0 if x 6= y

belongs toWs,p
q (Rq).

In fact, for any ϕ ∈ Sq(Rq), we have

〈Fq(δx),ϕ〉= 〈δx,Fq(ϕ)〉= Fq(ϕ)(x) = K
∫

∞

−∞

ϕ(t)e(−itx;q2)dqt.

Hence
Fq(ϕ)(x) = Ke(−itx;q2),

thank to (13), we obtain∫ +∞

−∞

(1+ξ
2)

sp
2 |Fq(u)(ξ )|pdqξ ≤ K p

(q,q)p
∞

∫ +∞

−∞

(1+ξ
2)

sp
2 dqξ

≤+∞.

Proposition 4.9. For (s, p) ∈ R× [1,+∞[, the map

T : (Ws,p
q (Rq),‖.‖Ws,p

q (Rq)
)−→ (Lp(Rq),‖.‖Lp(Rq))

u 7−→ ψ(u) = (1+ξ
2)

s
2Fq(u)

is an isometric isomorphism.

Proof. Let u be in Lp
q(Rq). It’s clear that (1+ ξ 2)−

s
2 u ∈ S ′q(Rq) and since the

q2-analogue Fourier transform is an isomorphism from S ′q(Rq) onto itself, there
exists an unique v ∈ S ′q(Rq) such that

Fq(u) = (1+ξ
2)−

s
2 u.

Hence
u = (1+ξ

2)
s
2Fq(u) = ψ(u).
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Proposition 4.10. Let m be in N. The q2-Sobolev space H−2m
q (Rq) is spanned

by the {
(∂q)

ku;u ∈ L2
q(Rq);0≤ k ≤ 2m

}
.

Moreover, for all T ∈ H−2m
q (Rq) there exists u ∈ L2

q(Rq) such that

T = (1−∆q)
mu with ∆q = ∂

2
q .

Proof. We have L2
q(Rq) = H0

q (Rq), then

(−∆q)
ku ∈ H−2m

q (Rq), ∀u ∈ L2
q(Rq).

Let now T ∈ H−2m
q (Rq), then there exists u ∈ L2

q(Rq) such that

(1+ξ
2)−mFq(T ) = Fq(u)

so, that implies

Fq(T ) = (1+ξ
2)mFq(u) = Fq((1−∆q)

mu).

Applications

1. We consider the q-differential-difference equation

P(−∆q)(g) = u, (25)

where P a polynomial of degree m.
If u ∈Hs

q(Rq), the solutions of (25) is inHs+2m
q (Rq). In fact, by a simple

computation, we deduce from the relation (24) that

Fq(u)(ξ ) = Fq(P(−∆q)(g))(ξ ) = P(ξ 2)Fq(g)(ξ ).

As u ∈Hs
q(Rq), we deduce∫ +∞

−∞

(1+ξ
2)s|P(ξ 2)|2|Fq(g)(ξ )|2dqξ <+∞.

On the other hand, we have

(1+ξ
2)s+m|Fq(g)(ξ )|2 ∼ |Fq(g)(ξ )|2 (ξ −→ 0)

and

(1+ξ
2)s+m|Fq(g)(ξ )|2 ∼ (1+ξ

2)s|P(ξ 2)|2|Fq(g)(ξ )|2 (ξ −→ 0).

Hence ∫ +∞

−∞

(1+ξ
2)s+m|Fq(g)(ξ )|2dqξ <+∞.
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2. Let consider now the following q-differential-difference equation

∆qu−λu = f , (26)

where λ is a given positive number.
If f is inHs

q(Rq) then u∈Hs+2
q (Rq). In fact, by applying the q2-analogue

Fourier transform Fq, (26) becomes

−(λ +ξ
2)Fq(u)(ξ ) = Fq( f )(ξ ).

Let f be in S ′q(Rq), as Fq is an involution in S ′q(Rq), we have a unique
solution u ∈ S ′q(Rq) for this equation given by

Fq(u)(ξ ) =−(λ +ξ
2)−1Fq( f )(ξ ).

Hence, we have

(1+ξ
2)

s+2
2 Fq(u)(ξ ) =−

1+ξ 2

λ +ξ 2 (1+ξ
2)

s
2Fq( f )(ξ ).

Using the fact that the function ξ 7→ 1+ξ 2

λ+ξ 2 is bounded, we obtain that

∫ +∞

0
(1+ξ

2)s+2|Fq(u)(ξ )|2dqξ ≤Cq,λ‖ f‖Hs
q
, Cq,λ = ess sup

ξ∈Rq

| 1+ξ 2

λ +ξ 2 |

which gives the result .

5. The q2-potential spaces

In this section, we generalize and investigate the q2-potential associated to the
q2-analogue Fourier Transform studied in [5]. As an application, it is shown that
for given T ∈ Bs,p

q (Rq), the solution of (1−∆q)
ku = T , belongs to Bs+2k,p

q (Rq).

Definition 5.1 (see [5]). For u ∈ S ′q(Rq) and s ∈R, the q2-potential operator Ps
q

of order s is defined as follow

Ps
q : S ′q(Rq)−→S ′q(Rq)

T 7−→ (Fq)
−1((1+ξ

2)−
s
2Fq(T )).

Proposition 5.2 (see [5]). 1. Ps
qoP t

q = Ps+t
q ,∀s, t ∈ R.

2. P0
q = idS ′q(Rq).
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3. For all s in R, the q2-potential Ps
q is a topological isomorphism from

S ′q(Rq) onto itself. Its inverse is given by P−s
q .

Definition 5.3. For all (s, p) ∈ R× [1,+∞[, we define the q2-potential space as

Bs,p
q (Rq) =

{
T ∈ S ′q(Rq),P−s

q (T ) ∈ Lp
q(Rq)

}
.

In other words
Bs,p

q (Rq) = Ps
q(L

p
q(Rq)).

Remark 5.4. For all (s, p) ∈ R× [1,+∞[, one can easily see that Sq(Rq) ⊂
Bs,p

q (Rq).

Proposition 5.5. For all (s, p) ∈ R× [1,+∞[, we have the following properties

1. The map T 7→ ‖T‖Bs,p
q (Rq)

= ‖P−s
q (T )‖Lp

q
defines a norm on Bs,p

q (Rq).

2. The operator Pq
s is an isometric isomorphism from Lp

q(Rq) onto
(Bs,p

q (Rq),‖.‖Bs,p
q (Rq)

). Its inverse is given by P−s
q .

3. (Bs,p
q (Rq),‖.‖Bs,p

q (Rq)
) is a Banach space.

4. P t
q(B

s,p
q (Rq)) = Bs+t,p

q (Rq), for all s, t ∈ R. Moreover, P t
q is an isometric

isomorphism from Bs,p
q (Rq) on Bs+t,p

q (Rq). Its inverse is given by P−s
q .

5. Bs,2
q (Rq) = H

s
2

q (Rq).

Proof. One can easily see that the properties 1,2,3,4 are obvious and the prop-
erty 5 can be deduced directly from the q-Plancherel theorem.

Theorem 5.6. Let s > 1, then for all p ∈ [1,+∞[,Bs,p
q (Rq) ⊂ Lp

q(Rq) and the
canonical injection Bs,p

q (Rq) ↪→ Lp
q(Rq) is continuous, that is there exists a pos-

itive constant Cp,s such that

‖T‖Lp
q (Rq)

≤Cp,s‖T‖Bs,p
q (Rq)

, For all T ∈ Bs,p
q (Rq).

Proof. Since the map ξ 7→ (1+ ξ 2)−
s
2 belongs to L1

q(Rq)∩ L∞
q (Rq), then us-

ing the inversion theorem for the q2-analogue Fourier transform property, there
exists ks ∈ L1

q(Rq) such thatFq(ks)(ξ ) = (1+ξ 2)−
s
2 , so by Lemma 3.1, we have

∀ f ∈ Lp
q(Rq), (1+ξ

2)−
s
2Fq( f )(ξ ) = Fq(ks)(ξ ).Fq( f )(ξ ) = Fq(ks ∗q f )(ξ ).

Hence
∀ f ∈ Lp

q(Rq), P−s
q ( f ) = (ks ∗q f ).



ON q2-ANALOGUE SOBOLEV TYPE SPACES 75

Using Lemma 3.1 we find

∀ f ∈ Lp
q(Rq), ‖P−s

q ( f )‖Lp
q
≤ ‖ks‖L1

q
‖ f‖Lp

q
,

or equivalently

∀T ∈ Bs,p
q (Rq), ‖T‖Lp

q
≤Cp,s‖T‖Bs,p

q
.

This gives the result, where Cp,s = ‖ks‖L1
q(Rq).

Corollary 5.7. For any p ∈ [1,+∞[ and s, t ∈ R such that s ≥ t + 1, we have
Bs,p

q (Rq) ⊂ Bt,p
q (Rq) and the canonical injection Bs,p

q (Rq) ↪→ Bt,p
q (Rq) is con-

tinuous. Moreover,

∀ f ∈ Bs,p
q (Rq), ‖ f‖Bs,p

q (Rq)
≤Cp,s‖ f‖Bs,p

q (Rq)
,

where Cp,s is the positive constant given in the latter theorem.

Proof. Let f ∈ Bs,p
q (Rq) so P−t

q ( f ) ∈ Bs−t,p
q (Rq) and by the Theorem 5.6, we

deduce

P−t
q ( f ) ∈ Lp

q(Rq) and ‖P−t
q ( f )‖Lp

q (Rq)
≤Cp,s‖ f‖Bs−t,p

q (Rq)
.

Using now property 4 of Proposition 5.5, we obtain

‖P−t
q ( f )‖Lp

q (Rq)
≤Cp,s‖ f‖Bs,p

q (Rq)
.

This shows that f belongs to Bt,p
q (Rq) and that

‖ f‖Bt,p
q (Rq)

≤Cp,s‖ f‖Bs,p
q (Rq)

which achieves the proof.

Application

We study the regularity in S′q(Rq) of the solution of the following q-differential-
difference equation

(1−∆q)
kU = T

with k ∈ N and T ∈ S′q(Rq). After applying the q2-analogue Fourier transform,
this equation becomes

(1+ξ
2)kFq(U) = Fq(T ).



76 AHMED SAOUDI - AHMED FITOUHI

Or the q2-analogue Fourier transform is an involution from S′q(Rq) onto itself, so
we deduce that the above differential equation has in S′q(Rq) a unique solution
given by

U = (Fq)
−1
(
(1+ξ

2)−kFq(T )
)
.

Now, by Proposition 5.5 we deduce that U ∈ Bs+2k,p
q (Rq) whenever T ∈

Bs,p
q (Rq), and in particular U ∈ L2

q(Rq).
Moreover if

T =
k

∑
p=0

λp(−∆q)
p fp,

where λ1,λ2, . . . ,λk are constants and f1, f2, . . . , fk ∈ L2
q(Rq) because of in

this case T ∈ B−2k,p
q (Rq) by virtue of Proposition 5.5 and consequently U ∈

B0,p
q (Rq) = L2

q(Rq).
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