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AN UPPER BOUND TO THE SECOND HANKEL
DETERMINANT FOR PRE-STARLIKE FUNCTIONS OF

ORDER α

D. VAMSHEE KRISHNA - T. RAM REDDY

The objective of this paper is to obtain an upper bound to the second
Hankel determinant H2(2) for functions f and its inverse f−1 when f
belongs to the well known class of pre-starlike functions of order α (0≤
α ≤ 1), using Toeplitz determinants.

1. Introduction

Let A denote the class of analytic functions f of the form

f (z) = z+
∞

∑
n=2

anzn (1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting
of univalent functions. For any two analytic functions g and h respectively with
their expansions as g(z) = ∑

∞
k=0 akzk and h(z) = ∑

∞
k=0 bkzk, the Hadamard prod-

uct or convolution of g(z) and h(z) is defined as the power series

(g∗h)(z) =
∞

∑
k=0

akbkzk (2)
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The Hankel determinant of f for q≥ 1 and n≥ 1 was defined by Pommerenke
[13] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (3)

This determinant has been considered by several authors in the literature. One
can easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then
further generalized the estimate |a3−µa2

2| with µ real and f ∈ S. Ali [2] found
sharp bounds to the first four coefficients and sharp estimate for the Fekete-
Szegö functional |γ3− tγ2

2 |, where t is real, for the inverse function of f defined
as f−1(w) = w+∑

∞
n=2 γnwn when it belongs to the class of strongly starlike

functions of order α (0 < α ≤ 1) denoted by S̃T (α). In this paper, we consider
the Hankel determinant in the case of q = 2 and n = 2, known as the second
Hankel determinant, given by

H2(2) =
a2 a3
a3 a4

= a2a4−a2
3. (4)

Janteng, Halim and Darus [8] have considered the functional |a2a4− a2
3| and

found a sharp upper bound for the familiar subclasses of S, namely, starlike and
convex functions denoted by ST and CV and have shown that |a2a4− a2

3| ≤ 1
and |a2a4−a2

3| ≤ 1
8 respectively. Similarly, the same coefficient inequality was

calculated for certain subclasses of analytic functions by many authors [1, 3, 4,
7, 10, 11, 15, 18].

Motivated by the above mentioned results obtained by different authors in
this direction, in this paper, using convolution technique, we seek an upper
bound to the non-linear functional |a2a4−a2

3| for the functions f and its inverse
f−1 when f belongs to the class of pre-starlike functions of order α (0≤α < 1),
defined as follows.

Definition 1.1. A function f (z) ∈ A is said to be starlike function of order
α (0 ≤ α ≤ 1), denoted by f ∈ ST (α), if and only if

Re
{

z f ′(z)
f (z)

}
> α, ∀z ∈ E. (5)

It is observed that for α = 0, we get ST (0) = ST . It follows that ST (α)⊂
ST , for (0≤ α < 1), ST(1)= {z} and ST (α)⊆ ST (β ), for α ≥ β .

Definition 1.2. A function f (z) ∈ A is said to be convex function of order
α (0 ≤ α ≤ 1), denoted by f ∈CV (α), if and only if

Re
{

1+
z f ′′(z)
f ′(z)

}
> α, ∀z ∈ E. (6)
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It can be noted that for α = 0, we get CV (0) =CV . It follows that CV (α)⊂
CV , for (0≤ α < 1) and CV (1) = {z}.

Definition 1.3. A function f ∈ A is said to be in the class of pre-starlike func-
tions of order α (0≤ α < 1), denoted by Rα , if and only if

f (z)∗ sα(z) ∈ ST (α), ∀z ∈ E, (7)

where ∗ denotes the convolution of two analytic functions and sα(z) = z
(1−z)2(1−α)

is the extremal function for the class ST (α).

The class Rα was introduced and studied by Ruscheweyh [14]. Let

c(α,n) =
∏

n
k=2(k−2α)

(n−1)!
for n = 2,3, . . . (8)

so that sα(z) can be written in the form

sα(z) = z+
∞

∑
n=2

c(α,n)zn, (9)

note that c(α,n) is a decreasing function of α with

lim
n→∞

c(α,n) =


∞, if α < 1

2 ,

1, if α = 1
2 ,

0, if α > 1
2 .

Ruscheweyh (see [17]) also showed that a necessary and sufficient condition
for f to be in Rα is that the functional

G(α,z) =
f (z)∗ sα (z)

(1−z)

f (z)∗ sα(z)
,

satisfy ReG(α,z) > 1
2 , ∀z ∈ E. Since s1(z) = z, we say that f is pre-starlike

function of order 1, if and only if

Re
f (z)

z
>

1
2
, ∀z ∈ E. (10)

Note that R0 =CV (0) and R 1
2
= ST (1

2).
It was shown that Rα ⊂ Rβ , for 0 ≤ α < β ≤ 1, which generalizes the well-
known result that CV (0)⊂ ST (1

2).
Some preliminary Lemmas required for proving our results are in the following
section.
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2. Preliminary Results

Let P denote the class of functions consisting of p, such that

p(z) = 1+ c1z+ c2z2 + c3z3 + · · ·= 1+
∞

∑
n=1

cnzn, (11)

which are regular in the open unit disc E and satisfy Re p(z)> 0 for any z ∈ E.
Here p(z) is called Carathéodory function [5].

Lemma 2.1 ([12, 16]). If p∈P , then |ck| ≤ 2, for each k≥ 1 and the inequality
is sharp for the function 1+z

1−z .

Lemma 2.2 ([6]). The power series for p given in (11) converges in the open
unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n = 1,2,3 . . .

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
∑

m
k=1 ρk p0(exp(itk)z), ρk > 0, tk real and tk 6= t j, for k 6= j, where p0(z) =

(1+z
1−z

)
;

in this case Dn > 0 for n < (m−1) and Dn
.
= 0 for n≥ m.

This necessary and sufficient condition found in [6] is due to Carathéodory
and Toeplitz. We may assume without restriction that c1 > 0. On using Lemma
2.2, for n = 2 and n = 3 respectively, we obtain

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8+2Re{c2
1c2}−2|c2|2−4|c1|2]≥ 0,

it is equivalent to

2c2 = {c2
1 + x(4− c2

1)}, for some x, |x| ≤ 1; (12)

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3−4c1c2+c3
1)(4−c2

1)+c1(2c2−c2
1)

2| ≤ 2(4−c2
1)

2−2|(2c2−c2
1)|2. (13)
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Simplifying the relations (12) and (13), we get

4c3 = {c3
1+2c1(4−c2

1)x−c1(4−c2
1)x

2+2(4−c2
1)(1−|x|2)z}, with |z| ≤ 1.

(14)

To obtain our results, we refer to the classical method devised by Libera and
Zlotkiewicz [9].

3. Main Results

Theorem 3.1. If f (z) = z+∑
∞
n=2 anzn ∈ Rα then

|a2a4−a2
3| ≤

1
8(1−α)

, for
(

0≤ α <
1
2

)
.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ Rα , from Definition 1.3, we have

f (z)∗ sα(z) ∈ ST (α), ∀z ∈ E. (15)

By the convolution, we have

g(z) = f (z)∗ sα(z) =

{
z+

∞

∑
n=2

anzn

}
∗

{
z+

∞

∑
n=2

c(α,n)zn

}

= z+
∞

∑
n=2

c(α,n)anzn. (16)

Since g(z)∈ ST (α), from Definition 1.1, there exists an analytic function p∈P
in the open unit disc E with p(0) = 1 and Re p(z)> 0 such that

zg′(z)−αg(z)
(1−α)g(z)

= p(z)⇔ zg′(z)−αg(z) = (1−α)g(z)p(z). (17)

Replacing the values of g(z), g′(z) from (16) and p(z) with their equivalent
series expressions in (17), we have

z

{
1+

∞

∑
n=2

c(α,n)nanzn−1

}
−α

{
z+

∞

∑
n=2

c(α,n)anzn

}

= (1−α)

{
z+

∞

∑
n=2

c(α,n)anzn

}{
1+

∞

∑
n=1

cnzn

}
.
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Upon simplification, we obtain

c(2,α)a2 +2c(3,α)a3z+3c(4,α)a4z2 + . . . = (1−α)×[
c1 +{c2 + c(2,α)c1a2}z+{c3 + c(2,α)c2a2 + c(3,α)c1a3}z3 + . . .

]
. (18)

Equating the coefficients of like powers of z0, z and z2 respectively on both sides
of (18), after simplifying, we get

a2 =
c1

2
; a3 =

1
2(3−2α)

{
c2 +(1−α)c2

1
}

;

a4 =
1

4(2−α)(3−2α)

{
2c3 +3(1−α)c1c2 +(1−α)2c3

1
}
. (19)

Considering, second Hankel functional |a2a4−a2
3| for the function f ∈ Rα and

substituting the values of a2,a3 and a4 from (19), we have

|a2a4−a2
3|=

∣∣∣∣c1

2
1

4(2−α)(3−2α)

{
2c3 +3(1−α)c1c2 +(1−α)2c3

1
}

− 1
4(3−2α)2

{
c2 +(1−α)c2

1
}2
∣∣∣∣ .

Upon simplification, we obtain

|a2a4−a2
3|=

1
8(2−α)(3−2α)2 |2(3−2α)c1c3 +(1−α)(1−2α)c2

1c2

−2(2−α)c2
2− (1−α)2c4

1|.

The above expression is equivalent to

|a2a4−a2
3|=

1
8(2−α)(3−2α)2 ×|d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1|, (20)

where d1 = 2(3−2α);d2 = (1−α)(1−2α);d3 =−2(2−α);d4 =−(1−α)2.
(21)

Substituting the values of c2 and c3 from (12) and (14) respectively from Lemma
2.2 on the right-hand side of (20), we have

|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1|

= |d1c1×
1
4
{c3

1 +2c1(4− c2
1)x− c1(4− c2

1)x
2 +2(4− c2

1)(1−|x|2)z}+

d2c2
1×

1
2
{c2

1 + x(4− c2
1)}+d3×

1
4
{c2

1 + x(4− c2
1)}2 +d4c4

1|. (22)
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Using the facts that |z|< 1 and |xa+yb| ≤ |x||a|+ |y||b|, where x, y, a and b are
real numbers, on the right-hand side of the above expression, after simplifying,
we get

4|d1c1c3+d2c2
1c2+d3c2

2+d4c4
1| ≤ |(d1+2d2+d3+4d4)c4

1+2d1c1(4−c2
1)+

2(d1 +d2 +d3)c2
1(4− c2

1)|x|−
{
(d1 +d3)c2

1 +2d1c1−4d3
}
(4− c2

1)|x|2|. (23)

Using the values of d1,d2,d3 and d4 from the relation (21), upon simplification,
we obtain

d1 +2d2 +d3 +4d4 = 0; d1 = 2(3−2α); d1 +d2 +d3 = 2α
2−5α +3. (24)

(d1 +d3)c2
1 +2d1c1−4d3 = (2−2α)c2

1 +4(3−2α)c1 +8(2−α). (25)

Consider

(2−2α)c2
1 +4(3−2α)c1 +8(2−α)

= (2−2α)

{
c2

1 +
4(3−2α)

(2−2α)
c1 +

8(2−α)

(2−2α)

}
(26)

After simplifying, the expression (26) is equivalent to

(2−2α)c2
1 +4(3−2α)c1 +8(2−α) = (2−2α)

·
[

c1 +

{
2(3−2α)

(2−2α)
+

2
(2−2α)

}][
c1 +

{
2(3−2α)

(2−2α)
− 2

(2−2α)

}]
. (27)

Since c1 ∈ [0,2], noting that (c1 +a)(c1 +b)≥ (c1−a)(c1−b), where a,b≥ 0
on the right-hand side of (27), which simplifies to{

(2−2α)c2
1 +4(3−2α)c1 +8(2−α)

}
≥
{
(2−2α)c2

1−4(3−2α)c1 +8(2−α)
}
. (28)

From the relations (25) and (28), we get

−
{
(d1 +d3)c2

1 +2d1c1−4d3
}
≤−

{
(2−2α)c2

1−4(3−2α)c1 +8(2−α)
}
.

(29)
Substituting the calculated values from (24) and (29) on the right-hand side of
(23), we have

4|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤ |4(3−2α)c1(4− c2

1)+

2(2α
2−5α +3)c2

1(4− c2
1)|x|

−
{
(2−2α)c2

1−4(3−2α)c1 +8(2−α)
}
(4− c2

1)|x|2|.
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Choosing c1 = c ∈ [0,2], applying triangle inequality and replacing | x | by µ on
the right hand side of the above inequality, we obtain

4|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤ [4(3−2α)c(4− c2)+

2(2α
2−5α +3)c2(4− c2)µ

+
{
(2−2α)c2−4(3−2α)c+8(2−α)

}
(4− c2)µ2]

= F(c,µ), for 0≤ µ = |x| ≤ 1, (30)

where F(c,µ) = [4(3−2α)c+2(2α
2−5α +3)c2

µ

+
{
(2−2α)c2−4(3−2α)c+8(2−α)

}
µ

2]× (4− c2). (31)

Further, we maximize the function F(c,µ) in the closed region [0,1]× [0,2].
Differentiating F(c,µ) given in (31) partially with respect to µ , we obtain

∂F
∂ µ

= [2(2α
2−5α +3)c2

+2
{
(2−2α)c2−4(3−2α)c+8(2−α)

}
µ]× (4− c2). (32)

For 0 < µ < 1 , for fixed c with 0 < c < 2 and 0 ≤ α < 1
2 , from (32), we

observe that ∂F
∂ µ

> 0, which implies that F(c,µ) is an increasing function of µ

and hence, there exists no point of maximum in the interior of the closed region
[0,1]× [0,2]. Moreover, for fixed c ∈ [0,2], we have

max
0≤µ≤1

F(c,µ) = F(c,1) = G(c). (33)

Therefore, replacing µ by 1 in (31), upon simplification, we obtain

G(c) =−4(2−α)
{
(1−α)c4−2(1−2α)c2−8

}
, (34)

G′(c) =−16(2−α)
{
(1−α)c3− (1−2α)c

}
, (35)

G′′(c) =−16(2−α)
{

3(1−α)c2− (1−2α)
}
. (36)

For optimum value of G(c), consider G′(c) = 0. From (35), we get

−16(2−α)c
{
(1−α)c2− (1−2α)

}
= 0. (37)

We now discuss the following cases.
Case 1: If c = 0, then, from (36), we obtain

G′′(c) = 16(2−α)(1−2α)> 0, for 0≤ α <
1
2
.
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From the second derivative test, G(c) has minimum value at c = 0.
Case 2: If c 6= 0, then, from (37), we get

c2 =
(1−2α)

(1−α)
= 2− 1

(1−α)
. (38)

Substituting the value of c2 from (38) in (36), which simplifies to

G′′(c) =−32(2−α)(1−2α)< 0, for 0≤ α <
1
2
.

By the second derivative test, G(c) has maximum value at c, where c2 given by
(38). Substituting the value of c2 in (34), which simplifies to

max
0≤c≤2

G(c) =
4(2−α)(3−2α)2

(1−α)
. (39)

Considering, the maximum value of G(c) only at c2, from (30) and (39), upon
simplification, we obtain

|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤

(2−α)(3−2α)2

(1−α)
. (40)

Simplifying the expressions (20) and (40), we obtain

|a2a4−a2
3| ≤

1
8(1−α)

. (41)

This completes the proof of Theorem 3.1.

Remark 3.2. For the choice of α = 0, from (41), we obtain |a2a4− a2
3| ≤ 1

8 .
This inequality is sharp and this result coincides with that of Janteng , Halim
and Darus [8].

Theorem 3.3. If f (z) = z+∑
∞
n=2 anzn ∈ Rα (0≤ α < 1) and

f−1(w) = w+∑
∞
n=2 tnwn near w = 0, is the inverse function of f , then

|t2t4− t2
3 | ≤

1
(2−α)(4−3α)

.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ Rα , from the Definition of inverse function

of f , we have
w = f

{
f−1(w)

}
. (42)
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Using the expression for f (z), the relation (42) is equivalent to

w = f
{

f−1(w)
}
= f−1(w)+

∞

∑
n=2

an
{

f−1(w)
}n

=
{

f−1(w)
}
+a2

{
f−1(w)

}2
+a3

{
f−1(w)

}3
+ . . . (43)

Using the expression for f−1(w) in (43), we have

w = (w+ t2w2 + t3w3 + . . .)+a2(w+ t2w2 + t3w3 + . . .)2+

a3(w+ t2w2 + t3w3 + . . .)3 +a4(w+ t2w2 + t3w3 + . . .)4 + . . .

Upon simplification, we obtain

(t2 +a2)w2 +(t3 +2a2t2 +a3)w3+

(t4 +2a2t3 +a2t2
2 +3a3t2 +a4)w4 + . . .= 0. (44)

Equating the coefficients of like powers of w2, w3 and w4 on both sides of (44)
respectively, further simplification gives

t2 =−a2; t3 =−a3 +2a2
2; t4 =−a4 +5a2a3−5a3

2. (45)

Using the values of a2, a3 and a4 from (19) along with (45), upon simplification,
we obtain

t2 =−
c1

2
; t3 =−

1
2(3−2α)

{
c2− (2−α)c2

1
}

;

t4 =−
1

8(2−α)(3−2α)

{
4c3−2(7−2α)c1c2 +(2α

2−9α +12)c3
1
}
. (46)

Substituting the values of t2, t3 and t4 from (46) in the second Hankel functional
|t2t4− t2

3 | for the inverse function of f ∈ Rα , after simplifying, we get

|t2t4− t2
3 |=

1
16(2−α)(3−2α)2×

|4(3−2α)c1c3 +(8α−10)c2
1c2−4(2−α)c2

2 +(4−3α)c4
1|.

The above expression is equivalent to

|t2t4− t2
3 |=

1
16(2−α)(3−2α)2 |d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1|, (47)

where d1 = 4(3−2α); d2 = (8α−10); d3 =−4(2−α); d4 = (4−3α). (48)
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Substituting the values of c2 and c3 from (12) and (14) respectively from Lemma
2.2 on the right-hand side of (47), applying the same procedure as described in
Theorem 3.1, we obtain

4|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤ |(d1 +2d2 +d3 +4d4)c4

1 +2d1c1(4− c2
1)

+2(d1 +d2 +d3)c2
1(4− c2

1)|x|
−
{
(d1 +d3)c2

1 +2d1c1−4d3
}
(4− c2

1)|x|2|. (49)

Using the values of d1, d2, d3 and d4 from the relation (48), upon simplification,
we obtain

d1 +2d2 +d3 +4d4 = 0; d1 = 4(3−2α); d1 +d2 +d3 = 2(2α−3). (50)

(d1 +d3)c2
1 +2d1c1−4d3 = 4

{
(1−α)c2

1 +2(3−2α)c1 +4(2−α)
}
. (51)

Since c1 ∈ [0,2], using the same procedure as described in Theorem 3.1, we get

−
{
(d1 +d3)c2

1 +2d1c1−4d3
}

≤−4
{
(1−α)c2

1−2(3−2α)c1 +4(2−α)
}
. (52)

Substituting the calculated values from (50) and (52) on the right-hand side of
(49), we have

4|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤ |8(3−2α)c1(4− c2

1)+

4(2α−3)c2
1(4− c2

1)|x|
−4
{
(1−α)c2

1−2(3−2α)c1 +4(2−α)
}
(4− c2

1)|x|2|.

Choosing c1 = c ∈ [0,2], applying triangle inequality and replacing |x| by µ on
the right-hand side of the above inequality, which semplifies to

|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤ [2(3−2α)c(4− c2)+

(3−2α)c2(4− c2)µ +
{
(1−α)c2−2(3−2α)c+4(2−α)

}
(4− c2)µ2]

= F(c,µ), for 0≤ µ = |x| ≤ 1, (53)

where F(c,µ) = [2(3−2α)c+(3−2α)c2
µ

+
{
(1−α)c2−2(3−2α)c+4(2−α)

}
µ

2](4− c2). (54)

We next maximize the function F(c,µ) on the closed region [0,2]× [0,1]. Dif-
ferentiating F(c,µ) in (54) partially with respect to µ , we obtain

∂F
∂ µ

= [(3−2α)c2 +2
{
(1−α)c2−2(3−2α)c+4(2−α)

}
µ](4− c2). (55)



120 D. VAMSHEE KRISHNA - T. RAM REDDY

For 0 < µ < 1 , for fixed c with 0 < c < 2 and 0≤ α < 1, from (55), we observe
that ∂F

∂ µ
> 0. Therefore, F(c,µ) is an increasing function of µ and and hence it

cannot have a maximum value at any point in the interior of the closed region
[0,2]× [0,1]. Further, for fixed c ∈ [0,2], we have

max
0≤µ≤1

F(c,µ) = F(c,1) = G(c). (56)

Therefore, from (54) and (56), upon simplification, we obtain

G(c) =−(4−3α)c4 +8(1−α)c2 +16(2−α), (57)

G′(c) =−4(4−3α)c3 +16(1−α)c, (58)

G′′(c) =−12(4−3α)c2 +16(1−α). (59)

For extreme values of G(c), consider G′(c) = 0. From (58), we have

−4c
{
(4−3α)c2−4(1−α)

}
= 0. (60)

We now discuss the following cases.
Case 1: If c = 0, then, from (59), we obtain

G′′(c) = 16(1−α)> 0, for 0≤ α < 1.

From the second derivative test, G(c) has minimum value at c = 0.
Case 2: If c 6= 0, then, from (60), we get

c2 =
4(1−α)

4−3α
=

4
3

{
1− 1

(4−3α)

}
> 0, for 0≤ α < 1. (61)

Substituting the value of c2 in (59), which simplifies to

G′′(c) =−32(1−α)< 0, for 0≤ α < 1.

By the second derivative test, G(c) has maximum value at c, where c2 is given
in (61). Using the value of c2 in (57), after simplifying, we get

max
0≤c≤2

G(c) =
16(2α−3)2

(4−3α)
. (62)

Considering, the maximum value of G(c) only at c2, from (53) and (62), we
obtain

|d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1| ≤

16(2α−3)2

(4−3α)
. (63)

Simplifying the relations (47) and (63), we get

|t2t4− t2
3 | ≤

1
(2−α)(4−3α)

. (64)

This completes the proof of our Theorem 3.3.
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Remark 3.4. Choosing α = 0, we have R0 = CV , for which, from (64), we
obtain |t2t4− t2

3 | ≤ 1
8 .

Special Remark. For α = 0, we have R0 =CV , from Theorems 3.1 and 3.3 we
observe that |a2a4−a2

3| ≤ 1
8 and |t2t4− t2

3 | ≤ 1
8 . From this, we conclude that the

upper bound to the second Hankel functional for the function f and its inverse
is the same, provided f ∈CV.
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