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ON GENERALIZED COMPOSITE
FRACTIONAL q-DERIVATIVE

MRIDULA GARG - SUBHASH ALHA - LATA CHANCHLANI

In the present paper, we define a generalized composite fractional q-
derivative Dα,β ;ν

q and obtain some results for it. These results are image
of power function under Dα,β ;ν

q , composition of Riemann-Liouville type
fractional q-integral Iα

q with Dα,β ;ν
q and q-Laplace transform of Dα,β ;ν

q .
We also obtain solutions of a q-difference equation with derivative as

Dα,β ;ν
q and discuss some special cases. A q-difference equation of Dα,β ;ν

q
is solved using q-Laplace transform and its inverse.

1. Introduction

The study of q-analysis is an old subject, which dates back to the end of the19th

century. A detailed account of the work on this subject can be seen in the books
by Exton [9], Gasper and Rahman [10] and Ernst [8]. The q-analysis has found
many applications in such areas as the theory of partitions, combinatorics, ex-
actly solvable models in statistical mechanics, computer algebra etc. The sub-
ject of q-analysis concerns mainly the properties of the so-called q-special func-
tions, which are the extensions of the classical special functions based on a
parameter, or the base q. In recent years, mathematicians have reconsidered q-
difference equations for their links with other branches of mathematics such as

Entrato in redazione: 16 luglio 2014

AMS 2010 Subject Classification: 39A13, 26A33.
Keywords: q-Laplace transform, q-integrals, q-derivatives.



124 MRIDULA GARG - SUBHASH ALHA - LATA CHANCHLANI

quantum algebras and q-combinatory. The q-difference equations involve a new
kind of difference operator, the q-derivative, which can be viewed as a sort of
deformation of the ordinary derivative.

Fractional calculus is the theory of integrals and derivatives to an arbitrary
order, which generalizes integer-order differentiation and integration. Fractional
derivatives have proved to be very efficient and adequate to describe many phe-
nomena with memory and hereditary processes. These phenomena are abundant
in science, engineering, viscoelasticity, control, porous media, mechanics, elec-
trical engineering, electromagnetism etc. Recent books on fractional calculus
([6], [7], [16], [20], [21]) exhibit its application in various fields of science
and engineering. Unlike the classical derivatives, fractional derivatives have the
ability to characterize adequately, the processes involving a past history. Dif-
ferent from classical (or integer-order) derivatives there are several definitions
for fractional derivatives given in different contexts (see [12], [13], [15], [18],
[19]).

From the point of view of q-calculus several authors have introduced various
fractional q-integrals and fractional q-derivatives ([2], [3], [17], see also[5]).

In the present paper, we define a new fractional q-derivative termed as gen-
eralized composite fractional q-derivative and obtain some basic useful results
for it. We also obtain solution of a q-difference equation with this q-derivative,
using q-Laplace transform.

2. Preliminaries

We shall use the following definitions and results in subsequent sections.
The q-shifted factorial (q-analogue of Pochhammer symbol) is defined as in

[10]:

(a;q)n =
n−1

∏
k=0

(
1−aqk

)
, n ∈ N (1)

with (a;q)0 = 1, q 6= 1.
If we consider (a;q)

∞
, then as the infinite product diverges when a 6= 0 and

|q| ≥ 1, therefore whenever (a;q)
∞

appears in a formula, we shall assume that
|q|< 1. Also, for any complex number α , we have

(a;q)
α
=

(a;q)
∞

(aqα ;q)
∞

, (2)

where the principal value of qα is taken.
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The q-derivative of a function [10] is defined by:

(Dq f )(t) =
f (z)− f (qt)
(1−q) t

, (t 6= 0,q 6= 1) (3)

(Dq f )(0) = lim
t→0

(Dq f )(t)

The Riemann-Liouville type fractional q-integral of order α > 0, for a real
valued function f (t), is defined as ([17], see also [5])

Iα
q f (t) =

tα−1

Γq (α)

∫ t

0

(
qτ
/

t;q
)

α−1 f (τ)dqτ, 0 < |q|< 1, (4)

with I0
q f (t) = f (t) .

The Riemann-Liouville type fractional q-derivative of order α

(m−1 < α ≤ m, m ∈ N) , for a real valued function f (t), is defined as [17]:

Dα
q f (t) = Dm

q Im−α
q f (t) , 0 < |q|< 1, (5)

where Dm
q ≡ Dq.Dq . . .Dq (m times).

The Caputo type fractional q-derivative of order α

(m−1 < α ≤ m, m ∈ N) , is defined as [17]

∗Dα
q f (t) = Im−α

q Dm
q f (t) , 0 < |q|< 1. (6)

The q-Laplace transform of a function f (t) is defined by means of following
q-integral [1]

f̃ (s) = qLs { f (t)}= 1
(1−q)

∫ s−1

0
E−qst

q f (t)dqt,s > 0, (7)

where Et
q is the q-exponential function given by

Ez
q =

∞

∑
n=0

q

 n
2


zn

(q;q)n
= (−z;q)

∞
. (8)

Now we mention some results for Iα
q , Dα

q and ∗Dα
q and q-Laplace transform

which will be required subsequently [5].

(i) Iα
q Iβ

q f (t) = Iβ
q Iα

q f (t) = Iα+β
q f (t) , α ≥ 0, β ≥ 0. (9)

(ii) Iα
q tλ−1 =

Γq (λ )

Γq (λ +α)
tλ+α−1, α ≥ 0, λ > 0 . (10)
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(iii) Composition of Riemann-Liouville type fractional q-integral and
Riemann-Liouville type fractional q-derivative

Iα
q Dα

q f (t) = f (t)−
m−1

∑
k=0

(t)α−k−1

Γq (α− k)
Dα−k−1

q f (t)
∣∣
t→0+ ,

m−1 < α,β ≤ m, m ∈ N. (11)

(iv) qLs
[
Iα
q f (t)

]
=

(1−q)α

sα qLs [ f (t)] , α ≥ 0. (12)

(v) qLs
[
Dα

q f (t)
]
=

sα

(1−q)α qLs [ f (t)]−
m−1

∑
k=0

sk

(1−q)k+1 Dα−k−1
q f (t)

∣∣
t→0+ ,

m−1 < α ≤ m, m ∈ N. (13)

(vi) qLs
[
∗Dα

q f (t)
]
=

sα

(1−q)α qLs [ f (t)]−
m−1

∑
k=0

sα−k−1

(1−q)α−k

[
Dk

q f (t)
]

t→0+
,

m−1 < α ≤ m, m ∈ N. (14)

(vii) qLs {tν}=
(q;q)

ν

sν+1 =
(1−q)ν

Γq (ν +1)
sν+1 , 0 < |q|< 1, Re(ν)>−1.

(15)
(viii) qLs ( f ∗q g)(t) = qLs { f (t)} qLs {g(t)} , (16)

where f ∗q g is the Laplace q-convolution of two analytic functions
f (t) and g(t), defined as follows ([11], see also [5])

( f ∗q g)(t) =
1

(1−q)

∫ t

0
f (u)g [t−qu]dqu, (17)

where g [t−qu] =∑
∞
n=0 an(t−qu)(t−q2u) . . .(t−qnu), for the function

g(t) = ∑
∞
n=0 antn .

3. Generalized composite fractional q-derivative

We define the generalized composite fractional q-derivative for m−1 < α,β ≤
m, 0≤ ν ≤ 1, m ∈ N, 0 < |q|< 1, as follows

Dα,β ;ν
q f (t) = Iν(m−β )

q Dm
q I(1−ν)(m−α)

q f (t) . (18)
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For ν = 0, (18) reduces to the Riemann-Liouville type fractional q-derivati-
ve of order α defined by (5) and for ν = 1, it reduces to the Caputo type frac-
tional q-derivative of order β defined (6)

For 0 < ν < 1, it interpolates continuously between the Riemann-Liouville
type fractional q-derivative of order α and the Caputo type fractional q-derivati-
ve of order β .

Remark 3.1. If we let q→ 1in (18), we get a new definition named as general-
ized composite fractional derivative

Dα,β ;ν f (t) = Iν(m−β )DmI(1−ν)(m−α) f (t) , (19)

m−1 < α,β ≤ m, 0≤ ν ≤ 1, m ∈ N.

Remark 3.2. For α = β , (18) reduces to the following composite fractional
q-derivative

Dα,α;ν
q f (t) = Iν(m−α)

q Dm
q I(1−ν)(m−α)

q f (t) = Dα,ν
q f (t) , (20)

m−1 < α ≤ m, 0≤ ν ≤ 1, m ∈ N, 0 < |q|< 1.

This Dα,ν
q is a q-extension of the generalized Riemann-Liouville fractional

derivative Dα,ν defined by Hilfer [12].

We now obtain some results for the generalized composite fractional q-
derivative Dα,β ;ν

q .

Theorem 3.3. For m−1 < α,β ≤m, 0≤ ν ≤ 1, m ∈N, 0 < |q|< 1, t > 0 and
λ > max{0,1+(ν−1)(m−ν)} we have the image of power function under
Dα,β ;ν

q as follows

Dα,β ;ν
q tλ−1 =

Γq (λ )

Γq (ν (α−β )+λ −α)
tν(α−β )+λ−α−1. (21)

Proof. In view of definition (18) and the result (10), we get

Dα,β ;ν
q tλ−1 = Iν(m−β )

q Dm
q

Γq (λ )

Γq (λ +(1−ν)(m−α))
t(1−ν)(m−α)+λ−1

= Iν(m−β )
q

Γ(λ )

Γq (λ +αν−α−mν)
tαν−α−mν+λ−1. (22)

Using result (10) again, we get (21).
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Theorem 3.4. For m−1 < α,β ≤m, 0≤ ν ≤ 1, m ∈N, 0 < |q|< 1, the com-
position of Riemann-Liouville type fractional q-integral (4) with the general-
ized composite fractional q-derivative (18) is given by

Iα+ν(β−α)
q Dα,β ;ν

q f (t)

= f (t)−
m−1

∑
k=0

tα+ν(m−α)−k−1

Γq (α +ν (m−α)− k)
Dα+ν(m−α)−k−1

q f (t)
∣∣∣
t→0+

. (23)

Proof. From (18) we can write

Dα,β ;ν
q f (t) = Iν(m−β )

q Dm
q I(1−ν)(m−α)

q f (t) = Iν(m−β )
q Dα+ν(m−α)

q f (t) . (24)

Applying Iα+ν(β−α)
q on both the sides and using the semigroup property (9), we

get

Iα+ν(β−α)
q Dα,β ;ν

q f (t) = Iα+ν(m−α)
q Dα+ν(m−α)

q f (t) . (25)

In view of the result (11), we arrive at (23).

Theorem 3.5. For m− 1 < α,β ≤ m, 0 ≤ ν ≤ 1, m ∈ N, 0 < |q| < 1, the q-
Laplace transform of the generalized composite fractional derivative is given
by

qLs

[
Dα,β ;ν

q f (t)
]
=

sα+ν(β−α)

(1−q)α+ν(β−α) qLs [ f (t)]

−
m−1

∑
k=0

sk−ν(m−β )

(1−q)k−ν(m−β )+1 Dm−k−1
q I(1−ν)(m−α)

q f (t)
∣∣∣
t→0+

. (26)

Proof. For convenience, let us write g(t) = Dm
q I(1−ν)(m−α)

q f (t) = Dm
q h(t). Now

by definition of Dα,β ;ν
q and in view of the result (12), we have

qLs

[
Dα,β ;ν

q f (t)
]
= qLs

[
Iν(m−β )
q g(t)

]
=

(1−q)ν(m−β )

sν(m−β ) qLs [g(t)] . (27)

Now writing g(t) in terms of h(t) and using the following formula of q-Laplace
transform of mth q-derivative of a function,

qLs
{

Dm
q f (t)

}
=

sm

(1−q)m qLs { f (t)}−
m−1

∑
k=0

sk

(1−q)k+1

[
D(m−k−1)

q f (t)
]

t→0+
,

(28)
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we can write the right side of (27) as

qLs

[
Dα,β ;ν

q f (t)
]

=
(1−q)ν(m−β )

sν(m−β )

[
sm

(1−q)m qLs [h(t)]−
m−1

∑
k=0

sm−k−1 Dm−k−1h(t)
∣∣
t→0+

]
, (29)

where h(t) = I(1−ν)(m−α)
q f (t). Using the result (12) for q-Laplace transform of

h(t), we arrive at the result (26).

On taking q→ 1 in Theorems 3.3 to 3.5, we get corresponding results for
generalized composite fractional derivative Dα,β ;ν defined by (19). On further
taking α = β in the results thus obtained, we get corresponding results for the
composite fractional derivative Dα,ν , as given in the works of [18], [12] and
[19] respectively.

4. Solution of q-difference equation with generalized composite fractional
q-derivative

Theorem 4.1. Consider the following q-initial value problem with Dα,β ;ν
q , the

generalized composite fractional q-derivative defined by (18)

Dα,β ;ν
q y(t)−λy(t) = g(t) , m−1 < α,β ≤ m, 0≤ ν ≤ 1, m ∈ N, (30)

λ is a real number and g(t) is some known function, with initial conditions

Dm−k−1
q I(1−ν)(m−α)

q y(t)
∣∣∣
t→0+

= yk; k = 0,1,2, . . . ,m−1. (31)

The solution of above problem is given by

y(t) =
∫ t

0
uα+ν(β−α)−1eα+ν(β−α),α+ν(β−α)

(
λuα+ν(β−α);q

)
g [t−qu] dqu

+
m−1

∑
k=0

yk tα+ν(m−α)−k−1eα+ν(β−α),α+ν(m−α)−k

(
λ tα+ν(β−α);q

)
, (32)

with
∣∣∣λ {t (1−q)}α+ν(β−α)

∣∣∣< 1.

Proof. Taking q-Laplace transform of (30), using Theorem 3.5 and initial con-
ditions (31), we get



130 MRIDULA GARG - SUBHASH ALHA - LATA CHANCHLANI

ỹ(s) =
(1−q)α+ν(β−α)

sα+ν(β−α)

g̃(s){
1−λ

(1−q)α+ν(β−α)

sα+ν(β−α)

}
+

∑
m−1
k=0 yk

sk−α−ν(m−α)

(1−q)k−α−ν(m−α)+1{
1−λ

(1−q)α+ν(β−α)

sα+ν(β−α)

} , (33)

where ỹ(s) is q-Laplace transform of y(t). Next, we write the binomial expres-
sion occurring in (33) in series form and rewrite (33) as

ỹ(s) =
∞

∑
r=0

λ
r (1−q)α+ν(β−α)+r(α+ν(β−α))

sα+ν(β−α)+r(α+ν(β−α))
g̃(s)

+
m−1

∑
k=0

∞

∑
r=0

ykλ
r (1−q)α+ν(m−α)−k+r(α+ν(β−α))−1

sα+ν(m−α)−k+r(α+ν(β−α))
. (34)

We take q-Laplace inversion of (34) and using the result (15) and (16), we
arrive at the following

y(t) =

=
∫ t

0
uα+ν(β−α)−1

∞

∑
r=0

(
λuα+ν(β−α)

)r

Γq (α +ν(β −α)+ r (α +ν(β −α)))
g [t−qu] dqu

+
m−1

∑
k=0

yktα+ν(m−α)−k−1
∞

∑
r=0

(
λ tα+ν(β−α)

)r

Γq (α +ν (m−α)− k+ r (α +ν(β −α)))
. (35)

In view of the q-Mittag-Leffler function [5] defined as

eα,β (z;q) =
∞

∑
n=0

zn

Γq (αn+β )
,
(∣∣z(1−q)α

∣∣< 1
)
, (36)

we arrive at (32).

Special Cases:
(i) If we take α = β in Theorem 4.1, we obtain the following result

Corollary 4.2. Consider the q-initial value problem with Dα,ν
q is the composite

fractional q-derivative defined by (20)

Dα,ν
q y(t)−λy(t) = g(t) , m−1 < α ≤ m, 0≤ ν ≤ 1, m ∈ N. (37)

λ is a real number and g(t) is some known function, with initial conditions

Dk−m−1
q I(1−ν)(m−α)

q y(t)
∣∣∣
t→0

= yk; k = 0,1,2, . . . ,m−1. (38)
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The solution of above problem is given by

y(t) =
∫ t

0
uα−1 eα,α (λuα ;q) g [t−qu]dqu

+
m−1

∑
k=0

yk tα+ν(m−α)−k−1eα,α+ν(m−α)−k (λ tα ;q) , (39)

with
∣∣λ {t (1−q)}α

∣∣< 1.

In the above result if we take the limit as q→ 1, we arrive at a result essen-
tially similar to the result given in [12]. If we further take g(t) = 0 and m = 1,
we arrive at the generalized fractional relaxation problem considered in the book
by Hilfer [13].
(ii) On taking ν = 0 in Theorem 4.1, we get the following result

Corollary 4.3. Consider the q-initial value problem with Dα
q is the Riemann-

Liouville type fractional q-derivative of order α defined by (5)

Dα
q y(t)−λy(t) = g(t) , m−1 < α ≤ m, m ∈ N. (40)

λ is a real number and g(t)is some known function, with initial conditions

Dk−m−1
q I(m−α)

q y(t)
∣∣∣
t=0

= yk; k = 0,1,2, . . . ,m−1. (41)

The solution of above problem is given by

y(t) =
∫ t

0
uα−1 eα,α (λuα ;q)g [t−qu]dqu +

m−1

∑
k=0

yk tα−k−1eα,α−k (λ tα ;q) ,

(42)
with

∣∣λ {t (1−q)}α
∣∣< 1.

(iii) On taking ν = 1 in Theorem 4.1, we get the following result

Corollary 4.4. Consider the q-initial value problem with ∗D
β
q is the Caputo type

fractional q-derivative of order β defined by (6).

∗Dβ
q y(t)−λy(t) = g(t) , m−1 < β ≤ m, m ∈ N, (43)

λ is a real number and g(t) is some known function, with initial conditions

∗Dk−m−1
q y(t)

∣∣
t=0 = yk; k = 0,1,2, . . . ,m−1. (44)
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The solution of above problem is given by

y(t) =
∫ t

0
uβ−1 eβ ,β

(
λuβ ;q

)
g [t−qu]dqu +

m−1

∑
k=0

yk tm−k−1eβ ,m−k

(
λ tβ ;q

)
,

(45)
with

∣∣∣λ {t (1−q)}β

∣∣∣< 1.

(iv) If we let q→ 1 in Theorem 4.1, we obtain the following result

Corollary 4.5. Consider the initial value problem with Dα,β ;ν is the new gen-
eralized fractional derivative defined by (19).

Dα,β ;νy(t)−λy(t) = g(t) , m−1 < α ≤ m, m ∈ N. (46)

λ is a real number and g(t)is some known function, with initial conditions

Dm−k−1I(1−ν)(m−α)y(t)
∣∣∣
t=0

= yk; k = 0,1,2, . . . ,m−1. (47)

The solution of above problem is given by

y(t) =
∫ t

0
uα+ν(β−α)−1Eα+ν(β−α),α+ν(β−α)

(
λuα+ν(β−α)

)
g [t−u] du

+
m−1

∑
k=0

yk tα+ν(m−α)−k−1Eα+ν(β−α),α+ν(m−α)−k

(
λ tα+ν(β−α)

)
. (48)

Here, Eα,β is the Mittag-Leffler function defined as [15]

Eα,β =
∞

∑
n=0

zn

Γ(αn+β )
, (49)

where z, β ∈ C, Re(α)> 0.

5. Conclusion

In this paper, we have defined a generalized composite fractional q-derivative
which is a q-extension of generalized Riemann Liouville fractional derivative
defined by Hilfer in 2009. It also provides generalization of both Riemann-
Liouville and Caputo type fractional q-derivatives. We study some basic prop-
erties for this derivative which are useful in its applications to physical prob-
lems. We also solve a q-difference equation with this fractional q-derivative
using q-Laplace transform.
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