LE MATEMATICHE Vol. LXIX (2014) – Fasc. II, pp. 237–242 doi: 10.4418/2014.69.2.20

ON PTÁK FUNCTION FOR BOUNDED OPERATORS

ABDELLAH EL KINANI

The purpose of this paper is to prove that if the Pták function p is an operator norm, on $\mathcal{B}(E)$, associated to a norm |.|, then (E, |.|) is a pseudo-Hilbert space. As a consequence, we obtain that if $\mathcal{B}(E)$ is a C^* -algebra, then E is a Hilbert space.

1. Introduction

A pseudo-Hibertizable normed space is a complex normed space (E, ||.||) on which is defined a scalar product $\langle .,. \rangle$ such that $||x||^2 = \langle x,x \rangle$, for every $x \in E$. Let *A* be a complex algebra. The spectrum and spectral radius of an element *x* of *A* will be denoted by *Spx* and $\rho(x)$, respectively. An algebra norm on *A* is a linear norm ||.|| satisfying $||xy|| \leq ||x|| ||y||$, for every $x, y \in A$. A normed unitary algebra will be called *Q*-normed algebra if the group G(A) if its invertible elements is open. Let *A* be a complex Banach algebra with the involution $x \mapsto x^*$ and unit *e*. An element *h* of *A* is called hermitian if $h^* = h$. It is said to be positive if it is hermitian and $Sph \subset [0, +\infty[$. The set of all Hermitian (resp. positive) elements of *A* will be denoted by H(A) (resp. P(A)). We say that the Banach algebra *A* is Hermitian if the spectrum of every element of H(A) is real ([5]). For elements *h* and *k* of H(A), we write $h \geq k$ to indicate that h - k is

Entrato in redazione: 25 novembre 2013

AMS 2010 Subject Classification: 46K99, 46H30.

Keywords: Pseudo-Hilbertizable space, Hilbert space, Normed algebra, Q-algebra, Hermitian element, Hermitian Banach algebra, Pták function, Bounded linear operator, C^* -algebra, Mobius transformation.

positive, i. e., that $Sp(h-k) \subset [0, +\infty[$. Let *x* be an element of *A*. We denote by $p(x) = \rho(x^*x)^{\frac{1}{2}}$ the Ptàk function of an element $x \in A$. In [5], V. Pták proved the following result: if *A* is a Hermitian Banach algebra, then the function *p* is an algebra seminorm on *A* such that $\rho(x) \leq p(x)$, for every $x \in A$. A Banach algebra with involution $(A, \|.\|)$ is called a *C**-algebra if $\|x^*x\| = \|x\|^2$ for each $x \in A$.

Let $(A, \|.\|)$ be a complex unital Banach algebra. In the sequel, we will use the following result of Shirali-Ford ([6]):

A Hermitian
$$\iff x^* x \ge 0$$
, for every $x \in A$. (1)

Let (E, ||.||) be a normed space, we denote by $\mathcal{B}(E)$ the complex normed algebra of all bounded linear operators on E with respect to the operator norm associated to ||.||. For scalars λ , we often write simply λ for the element λI of $\mathcal{B}(E)$, where I stands for the identity operator on E. In the case where the algebra $\mathcal{B}(E)$ is endowed with an involution $T \mapsto T^*$, we say that Pták function p is an operator norm on $\mathcal{B}(E)$ if there exists a norm |.| in E such that p is an operator norm associated to |.|, i.e.,

$$p(T) = \sup_{|x| \le 1} |T(x)|$$
, for every $T \in \mathcal{B}(E)$.

For $0 < |\lambda| < 1$, we consider the Möbius transformation Φ_{λ} defined by:

$$\Phi_{\lambda}(z) = \frac{z + \lambda}{1 + \overline{\lambda}z}, \text{ for every } z \in \mathbb{C} \setminus \left\{ -\frac{1}{\lambda} \right\}$$

It is clear that Φ_{λ} is holomorphic in $\mathbb{C} \setminus \{-\frac{1}{\lambda}\}$. Therefore, in particular, in a neighborhood of the closed unit disk.

If *E* is a Hilbert space, then $(\mathcal{B}(E), \|.\|)$ is a *C**algebra. In this case

$$||T|| = \sup_{||x|| \le 1} ||T(x)|| = p(T)$$
, for every $T \in \mathcal{B}(E)$.

Therefore p is an operator norm associated to $\|.\|$. Whence the following question: Given a Banach space $(E, \|.\|)$ and an involution $T \mapsto T^*$ on $\mathcal{B}(E)$ such that p is an operator norm, on $\mathcal{B}(E)$, associated to a norm |.| on E. Does it follows that $(\mathcal{B}(E), \|.\|)$ is a C*algebra? The purpose of this paper is to give the answer to this question. We prove (Theorem 2.1) that if there exists a norm |.|, in E, such that the Pták function p is an operator norm associated to |.|, then (E, |.|) is a pseudo-Hibertizable space. As a consequence, we show (Corollary 2.2 that if $\mathcal{B}(E)$ is a C*-algebra, then E is a Hilbert space. The method of the proof of Theorem 2.1 goes along the lines of [2] with suitable modifications.

The following lemmas will be needed later on.

Lemma 1.1. Let A be a complex unital Hermitian Banach algebra. Then

- $l. \ P(A) = \{aa^* : a \in A\} = \{h^2 : h \in H(A)\}.$
- 2. For every $x \in A$, we have

$$p(x) \le 1 \iff e - x^* x \ge 0$$

Proof. 1. It ensues just from (1) and Ford's square root lemma ([4]).

2. First assume $p(x) \le 1$. It is clear that $e - x^*x$ is a Hermitian element of *A*. By the spectral mapping theorem, we have:

$$Sp(e-x^*x) = \{1-\lambda : \lambda \in Sp(x^*x)\}$$
(2)

It follows from 1) that $Sp(x^*x) \subset [0, r]$, where $r = p(x)^2 \leq 1$. Thus $\beta \geq 0$ for every $\beta \in Sp(e-x^*x)$. We prove the converse. By 1), we obtain $1-\lambda \geq 0$ for every $\lambda \in Sp(x^*x)$. This implies that $\max_{\lambda \in Sp(x^*x)} \lambda \leq 1$. Hence, $p(x) \leq 1$.

Lemma 1.2. Let $(E, \|.\|)$ be a complex Banach space and |.| be a norm, in E, such that the Pták function p is an operator norm, on $\mathcal{B}(E)$, associated to |.|. Let $T \in \mathcal{B}(E)$ with $p(T) \leq 1$. Then $p(\Phi_{\lambda}(T)) \leq 1$.

Proof. Observe first that the hypothesis imply that *p* is subadditive. Thus, by [4], $\mathcal{B}(E)$ is Hermitian algebra. Suppose now that $T \in \mathcal{B}(E)$ with $p(T) \leq 1$. Let $0 < |\lambda| < 1$ and consider *r* such that $0 < r < \left|\frac{1}{\lambda}\right| - 1$, i. e., $1 < 1 + r < \left|\frac{1}{\lambda}\right|$. Then the function Φ_{λ} is holomorphic in the open disk $D(0, 1+r) = \Omega$. Moreover $\Phi_{\lambda}(\underline{D}(0,1) \subset D(0,1)$ and $\Phi_{\lambda}(C(0,1)) \subset C(0,1)$. Hence $|\Phi_{\lambda}(z)| \leq 1$, for every $z \in \overline{D}(0,1)$. On the other hand, we have

$$\Phi_{\lambda}(T) = (T+\lambda) \left(I + \overline{\lambda}T\right)^{-1}$$

and

$$I - \Phi_{\lambda} (T)^{*} \Phi_{\lambda} (T) = I - (I + \lambda T^{*})^{-1} \left(T^{*} + \overline{\lambda} \right) (T + \lambda) \left(I + \overline{\lambda} T \right)^{-1}$$
$$= \left(1 - |\lambda|^{2} \right) (I + \lambda T^{*})^{-1} (I - T^{*}T) \left(I + \overline{\lambda} T \right)^{-1}.$$

Now, since $p(T) \le 1$, we have $I - T^*T \ge 0$. So, by 1) of lemma 1.1, there exists a hermitian operator *S* on *E* so that $I - T^*T = S^2$. Hence

$$I - \Phi_{\lambda}(T)^{*} \Phi_{\lambda}(T) = \left(1 - |\lambda|^{2}\right) (I + \lambda T^{*})^{-1} S^{2} \left(I + \overline{\lambda} T\right)^{-1}$$

Whence, by lemma 1.1, $I - \Phi_{\lambda}(T)^* \Phi_{\lambda}(T) \ge 0$ and $p(\Phi_{\lambda}(T)) \le 1$.

239

2. Main result

Theorem 2.1. Let *E* be a complex Banach space. If there exists a norm |.|, in *E*, such that the Pták function *p* is an operator norm associated to |.|, then (E, |.|) is pseudo-Hilbertizable space.

Proof. By the same argument as in Lemma 1.2, the Banach algebra $\mathcal{B}(E)$ is Hermitian. Let $\varphi \in E^*$ (the conjugate space of *E*) and $a \in E$ such that $|\varphi| |a| \le 1$, and consider $T \in \mathcal{B}(E)$ defined by $T(x) = \varphi(x)a$. Then

$$|T| = \sup_{x \neq 0} \frac{|T(x)|}{|x|} \le |\varphi| |a| \le 1.$$

This implies that $p(T) \le 1$ for p(T) = |T|. By Lemma 1.1, $p(\Phi_{\lambda}(T)) \le 1$ and so

$$\left| (T + \lambda I) \left(I + \overline{\lambda} T \right)^{-1} (x) \right| \le |x|, \text{ for every } x \in E.$$

This is equivalent to:

$$|(T + \lambda I)(x)| \le |(I + \overline{\lambda}T)(x)|$$
, for every $x \in E$.

Since $T(x) = \varphi(x)a$, for every $x \in E$, we have

$$|\varphi(x)a + \lambda x| \le |x + \overline{\lambda}\varphi(x)a|$$
, for every $x \in E$. (3)

Consider $x, y \in E$ such that $|x| \ge |y| > 0$. It follows from the Hahn Banach theorem that there exists $\psi \in E^*$ such that

$$|\psi| = |x|^{-1}$$
 and $\psi(x) = 1$.

Set a = y, we get

$$|\psi||a| = \frac{|y|}{|x|} \le 1$$

Then by (3), we have

$$|\psi(x)a + \lambda x| \le |x + \overline{\lambda}\psi(x)a|$$

i.e.,

$$|y + \lambda x| \le |x + \overline{\lambda} y|$$
, for every $|\lambda| < 1$.

Now using the same argument as in [2], the reader can prove that, for every $x, y \in E$ with |x| = |y|,

$$|\alpha x + \beta y| = |\beta x + \alpha y|$$
, for every $(\alpha, \beta) \in \mathbb{R}^2$.

Finally, by a result of Ficken ([3]), the norm |.| is derivable from an inner product. So (E, |.|) is a pseudo-Hilbertizable space.

If $\mathcal{B}(E)$ is a C^* -algebra, then p is exactly the operator norm associated to $\|.\|$. Whence the preceding result forces the space E to be a Hilbert space, as the following result shows:

Corollary 2.2. Let $(E, \|.\|)$ be a complex Banach space. The following assertions are equivalent:

- *1.* $(E, \|.\|)$ *is a Hilbert space.*
- 2. $\mathcal{B}(E)$ is a C^{*}-algebra.

Corollary 2.3. Let $(A, \|.\|)$ be a complex semi-simple Q-normed algebra with unit e such that $\|e\| = 1$. If $\mathcal{B}(A)$ is a C^{*}-algebra, then A is isomorphic to the field of complex numbers.

Proof. By Corollary 2.3, (A, ||.||) is a Hilbertizable algebra. So (A, ||.||) is a complex semi-simple Hilbertizable *Q*-normed algebra with unit *e* such that ||e|| = 1. If It follows, from Corollary 3.2 of [1], that *A* is isomorphic to the field of complex numbers.

Acknowledgements

The author thanks the referee for his remarks and valuable suggestions.

REFERENCES

- A. El Kinani, On pseudo-Hilbertizable Q-normed algebras, Bull. Greek Math. Soc. 53 (2007), 101–105.
- [2] C. Foias, Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux, Acta Sci. Math (Szeged) 18 (1957), 15–20.
- [3] F. A. Ficken, Note on the existence of scalar products in normed linear spaces, Annals of Math. 45 (1946), 362–366.
- [4] J. W. M. Ford, A square root lemma for Banach *-algebras, J. London Math. Soc. 42 (1967), 521–522.
- [5] V. Pták, Banach algebras with involution, Manuscripta Math. 6 (1972), 245–290.
- [6] S. Shirali J. W. M. Ford, Symmetry in complex involutory Banach algebras II, Duke Math. J. 37 (1970), 275–280.

ABDELLAH EL KINANI Université Mohammed V-Agdal École Normale Supérieure de Rabat Department of Mathematics B.P. 5118, 10105 Rabat (Morocco) e-mail: abdellah_elkinani@yahoo.fr