ON GRADED n–ABSORBING SUBMODULES

MOHAMMAD HAMODA - ARWA EID ASHOUR

Let G be a group with identity e. Let R be a G–graded commutative ring, M be a graded R–module and n be a positive integer. In this article, we introduce and study the concepts of graded n–absorbing submodules. Various properties of graded n–absorbing submodules are considered. For example, we show that if R is a Noetherian G–graded ring and M is a finitely generated graded R–module, then every nonzero proper graded submodule of M is a graded n–absorbing submodule of M for some positive integer n.

1. Introduction

Weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by Anderson and Smith in [4]. Various generalization of prime ideals were studied in [14–18, 20]. Prime submodules, weakly prime submodules, and primary submodules have been studied by various authors, see for example [11, 19, 24]. Graded prime and graded primary ideals of a commutative graded ring R with nonzero identity have been introduced and studied by Refai and Al-Zoubi in [23]. Graded prime and graded primary submodules of graded R–modules have been studied by Oral, Tekir and Agargun in [22]. Also, graded weakly prime submodules of graded R–modules have been studied by Atani in [8].

Entrato in redazione: 8 novembre 2014

AMS 2010 Subject Classification: 13A02, 16W50.

Keywords: graded prime submodules, graded weakly prime submodules, graded primary submodules, graded n–absorbing submodules.
The concept of $2-$absorbing ideals have been studied and investigated by Badawi in [12]. Weakly $2-$absorbing ideals and $n-$absorbing ideals of commutative rings have been studied by various authors. They prove many important results about these two concepts, see for example [5, 13]. Graded $2-$absorbing and weakly graded $2-$absorbing submodules have been studied by Al-Zoubi and Abou-Dawwas in [3].

In this paper, we characterize graded $n-$absorbing submodules in commutative rings, which are a generalization of graded prime ideals. The purpose of this paper is to explore some basic facts of these class of submodules. First, we show that if N is a graded $n-$absorbing submodule of M, then N_g is a $g-n-$absorbing R_e-submodule of M_g for every $g \in G$ (see Lemma 2.5). We show (Theorem 2.6) that if N is a graded submodule of a cyclic multiplication graded $R-$module, then N is graded $n-$absorbing submodule of M if and only if $(N:_RM)$ is graded $n-$absorbing ideal of R. Next, we give some characterizations of graded $n-$absorbing submodules (see section 2).

We start by recalling some background material. Let G be a group with identity e. By a $G-$graded commutative ring we mean a commutative ring R with nonzero identity together with a direct sum decomposition (as an additive group) $R = \bigoplus_{g \in G} R_g$ with the property that $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$, here $R_g R_h$ denotes the additive subgroup of R consisting of all finite sums of elements $r_g s_h$ with $r_g \in R_g$ and $s_h \in R_h$. We denote this by (R, G). The elements of R_g are called homogeneous of degree g. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in R_g. Also, we write $h(R) = \bigcup_{g \in G} R_g$. Moreover, if $R = \bigoplus_{g \in G} R_g$ is a G-graded ring, then R_e is a subring of R. $1_R \in R_e$ and R_g is an R_e-module for all $g \in G$. Let I be an ideal of R. For $g \in G$, let $I_g = I \cap R_g$. Then I is called a graded ideal of (R, G) if $I = \bigoplus_{g \in G} I_g$. In this case, I_g is called the $g-$component of I for $g \in G$. Let $R = \bigoplus_{g \in G} R_g$ be a $G-$graded ring and let I be a graded ideal of R. Then the quotient ring R/I is also a $G-$graded ring. Indeed, $R/I = \bigoplus_{g \in G} (R/I)_g$, where $(R/I)_g = \{x + I : x \in R_g\}$. For simplicity, we will denote the graded ring (R, G) by R. Let R be a $G-$graded ring and M be an $R-$module. We say that M is a $G-$graded $R-$module (or graded $R-$module) if there exists a family of subgroups $\{M_g\}_{g \in G}$ of M such that $M = \bigoplus_{g \in G} M_g$ (as abelian groups) and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. Here, $R_g M_h$ denotes the additive subgroup of M consisting of all finite sums of elements $r_g s_h$ with $r_g \in R_g$ and $s_h \in M_h$. Also, we write $h(M) = \bigcup_{g \in G} M_g$ and the elements of $h(M)$ are called homogeneous. Let $M = \bigoplus_{g \in G} M_g$ be a graded $R-$module, then for all $g \in G$ the subgroup M_g of M is an R_e-module.
Let \(M = \bigoplus_{g \in G} G_{M_g} \) be a graded \(R \)-module and \(N \) be a submodule of \(M \). Then \(N \) is called a graded submodule of \(M \) if \(N = \bigoplus_{g \in G} G_{N_g} \) where \(N_g = N \cap M_g \) for \(g \in G \). In this case \(N_g \) is called the \(g \)-component of \(N \). Moreover, \(M/N \) becomes a \(G \)-graded \(R \)-module with \(g \)-component \((M/N)_g = (M_g + N)/N \) for \(g \in G \). A graded \(R \)-module \(M \) is called cyclic if \(M = Rm \), for some \(m \in h(M) \). A graded \(R \)-module \(M \) is called a multiplication graded module if every submodule \(N \) of \(M \) has the form \(IM \) for some graded ideal \(I \) of \(R \). A graded \(R \)-module \(M \) is called a nilpotent submodule if whenever \(rm \in N \) for some \(m \in h(M) \). A graded \(R \)-module \(M \) is called a multiplication graded module if every submodule \(N \) of \(M \) has the form \(IM \) for some graded ideal \(I \) and \(J \) of \(R \) implies \(I = J \). Now, we have the following definition, see [7, 23].

Definition 1.1. A proper graded ideal \(I \) of a \(G \)-graded ring \(R \) is said to be graded prime (resp. graded weakly prime) ideal if whenever \(a, b \in h(R) \) with \(ab \in I \) (resp. \(0 \neq ab \in I \)), then either \(a \in I \) or \(b \in I \).

Next, recall the following two definitions, see [8, 22].

Definition 1.2. A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded prime (resp. graded weakly prime) submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \) (resp. \(0 \neq rm \in N \)), then either \(r \in (N :_R M) \) or \(m \in N \).

Definition 1.3. A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded primary submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), then either \(m \in N \) or \(r^k \in (N :_R M) \) for some positive integer \(k \).

If \(N \) is a graded prime (resp. graded primary) submodule of \(M \), then \(P := (N :_R M) \) (resp. \(P := \sqrt{(N :_R M)} \)) is a prime ideal of \(R \). In this case, we say that \(N \) is a graded \(P \)-prime (resp. graded \(P \)-primary) submodule of \(M \).

A submodule \(N \) of the \(R \)-module \(M \) is called a nilpotent submodule if \((N :_R M)^n = 0 \) for some positive integer \(n \), and \(m \in M \) is said to be nilpotent if \(Rm \) is a nilpotent submodule of \(M \), [1]. Assume that \(Nil(M) \) is the set of all nilpotent elements of \(M \), then \(Nil(M) \) is a submodule of \(M \) provided that \(M \) is faithful module, and if in addition \(M \) is multiplication, then \(Nil(M) = Nil(R)M = \bigcap P \), where the intersection runs of all prime submodules of \(M \) ([1], Th.6).

Al-Zoubi and Abou-Dawwas [3] define the graded \(2 \)-absorbing and weakly graded \(2 \)-absorbing ideals as follows:

Definition 1.4. A proper graded ideal \(I \) of a \(G \)-graded ring \(R \) is said to be graded \(2 \)-absorbing (resp. weakly graded \(2 \)-absorbing) ideal if whenever \(rs, t \in h(R) \) with \(rst \in I \) (resp. \(0 \neq rst \in I \)), then either \(rs \in I \) or \(rt \in I \) or \(st \in I \).

In [5] Anderson and Badawi defined the \(n \)-absorbing ideals as follows:
Definition 1.5. Let R be a commutative ring with $1 \neq 0$ and n be a positive integer. A proper ideal I of R is called an n–absorbing ideal if whenever $a_1a_2 \cdots a_{n+1} \in I$ for $a_1, a_2, \ldots, a_{n+1} \in R$, then there are n of the a_i’s whose product is in I.

The motivation of this paper is to continue the studying of the graded 2–absorbing and weakly graded 2–absorbing submodules, also to extend the results of Anderson and Badawi [5], Oral, Tekir, and Agargun [22], and Al-Zoubi and Abu-Dawwas [3] to the graded n–absorbing submodules.

2. Main Results

Our starting point is the following definitions:

Definition 2.1. Let R be a G–graded ring and let n be a positive integer. A proper graded ideal I of R is said to be graded n–absorbing ideal if whenever $a_1, \ldots, a_{n+1} \in h(R)$ with $a_1 \cdot \cdots \cdot a_{n+1} \in I$, then there are n of the a_i’s whose product is in I.

Definition 2.2. Let R be a G–graded ring, M be a graded R–module, N be a graded submodule of M, and let $g \in G$.

(i) We say that N_g is a $g – n$–absorbing submodule of R_e–module M_g, if $N_g \neq M_g$; and whenever $a_1, \ldots, a_n \in R_e$ and $m \in M_g$ with $a_1 \cdot \cdots \cdot a_n m \in N_g$, then either $a_1 \cdot \cdots \cdot a_n \in (N_g : R_e M_g)$ or there are $n – 1$ of the a_i’s whose product with m is in N_g.

(ii) We say that N is a graded n–absorbing submodule of M, if $N \neq M$; and whenever $a_1, \ldots, a_n \in h(R)$ and $m \in h(M)$ with $a_1 \cdot \cdots \cdot a_n m \in N$, then either $a_1 \cdot \cdots \cdot a_n \in (N : R M)$ or there are $n – 1$ of the a_i’s whose product with m is in N.

Remark 2.3. (1) It is clear that if N is a graded n–absorbing submodule of M, then it is a graded m–absorbing submodule of M for every integer $m \geq n$. Also if N_g is a $g – n$–absorbing submodule of R_e–module M_g, then it is a $g – m$–absorbing submodule of R_e–module M_g for every integer $m \geq n$.

(2) If N is a graded n–absorbing submodule of M for some positive integer n, then by following [5], define $w_M(N) = \min\{n : N$ is a graded n-absorbing submodule of $M\}$; otherwise, the set $w_M(N) = \infty$ (we will just write $w(N)$ when the context is clear). Moreover, we define $w(M) = 0$. Therefore, for any graded submodule N of M, we have $w_M(N) \in \mathbb{N} \cup \{0, \infty\}$, with $w(N) = 1$ iff N is a graded prime submodule of M and $w(N) = 0$ iff $M = N$. Then $w(N)$ measures, in some sense, how far N is from being a graded prime submodule of M.
Lemma 2.4 ([6, 10]). Let R be a G–graded ring, M be a graded R–module, and N be a graded submodule of M. Then the following hold:
(i) $(N :_RM) = \{ r \in R : rM \subseteq N \}$ is a graded ideal of R.
(ii) rN and Rm are graded submodules of M, where $r \in h(R)$ and $m \in h(M)$.

Lemma 2.5. Let R be a G–graded ring, M be a graded R–module, and N be a graded submodule of M. If N is a graded n–absorbing submodule of M, then N_g is a $g - n$–absorbing R_e–submodule of M_g for every $g \in G$.

Proof. Assume that N is a graded n–absorbing submodule of M. For $g \in G$, assume that $a_1 \cdots a_n m \in N_g \subseteq N$, where $a_1, \ldots, a_n \in R_e$ and $m \in M_g$. Since N is a graded n–absorbing submodule of M, we have either $a_1 \cdots a_n \in (N :_RM)$ or there are $n - 1$ of the a_i's whose product with m is in N. As $M_g \subseteq M$ and $N_g = N \cap M_g$, so either $a_1 \cdots a_n \in (N :_RM)$ or there are $n - 1$ of the a_i's whose product with m is in N_g. Hence N_g is a $g - n$–absorbing R_e–submodule of M_g for every $g \in G$. \qed

Theorem 2.6. Let R be a G–graded ring, M be a cyclic multiplication graded R–module, and N a graded submodule of M. Then N is a graded n–absorbing submodule of M if and only if $(N :_RM)$ is a graded n–absorbing ideal of R.

Proof. Suppose that $M = Rm$ for some $m \in h(M)$ is a cyclic multiplication graded R–module and N is a graded n–absorbing submodule of M. Assume that $a_1, \ldots, a_{n+1} \in h(R)$ with $a_1 \cdots a_{n+1} \in (N :_RM)$. For every $1 \leq i \leq n$, let \hat{a}_i be the element of R which is obtained by eliminating a_i from $a_1 \cdots a_n$. Assume that $\hat{a}_i a_{n+1} \notin (N :_RM)$ for every $1 \leq i \leq n$. Then $\hat{a}_i a_{n+1} m \notin N$. So it follows from $(a_1 \cdots a_n)(a_{n+1}m) \in N$ and the fact that N is a graded n–absorbing that $a_1 \cdots a_n \in (N :_RM)$. Hence $(N :_RM)$ is a graded n–absorbing ideal of R.

Conversely, suppose that $(N :_RM)$ is a graded n–absorbing ideal of R. Let $a_1, \ldots, a_n \in h(R)$ and $x \in h(M)$ with $a_1 \cdots a_n x \in N$. Then there exists $a_{n+1} \in h(R)$ with $x = a_{n+1}m$. Thus $a_1 \cdots a_n a_{n+1}m \in N$. So $a_1 \cdots a_n a_{n+1} \in (N :_Rm) = (N :_RM)$. Since $(N :_RM)$ is a graded n–absorbing ideal of R, so there are (n) of the a_i's whose product is in $(N :_RM)$. This implies that either $a_1 \cdots a_n \in (N :_RM)$ or there are $n - 1$ of the a_i's whose product with x is in N. Therefore N is a graded n–absorbing submodule of M. \qed

Theorem 2.7. Let R be a G–graded ring and M be a graded R–module. If N_j is a graded n_j–absorbing submodule of M for every $1 \leq j \leq k$, then $\bigcap_{j=1}^k N_j$ is a graded n–absorbing submodule of M for $n = n_1 + \ldots + n_k$.

Proof. Let $a_1, \ldots, a_n \in h(R), m \in h(M)$ and $N = \bigcap_{j=1}^k N_j$ with $a_1 \cdots a_n m \in N$ such that there are not $n - 1$ of the a_i's whose product with m is in N. We want to show that $a_1 \cdots a_n \in (N :_RM)$. As $a_1 \cdots a_n m \in N$, so $a_1 \cdots a_n m \in N_j$
for every $1 \leq j \leq k$. Therefore $a_1 \cdot \ldots \cdot a_n \in (N_j :_R M)$ for every $1 \leq j \leq k$ since N_j is a graded n_j–absorbing submodule of M and $n_j \leq n$. Therefore $a_1 \cdot \ldots \cdot a_n \in \bigcap_{j=1}^k (N_j :_R M) = (N :_R M)$. Hence $\bigcap_{j=1}^k N_j$ is a graded n–absorbing submodule of M. \hfill \Box

Note 2.8. The result of Theorem 2.7 may be recast using w function as

$$w(N_1 \bigcap \ldots \bigcap N_k) \leq w(N_1) + \ldots + w(N_k).$$

Theorem 2.9. Let R be a G–graded ring, M be a graded R–module, and N, V be graded R–submodules of M with $V \subseteq N$. Then N is a graded n–absorbing submodule of M if and only if N/V is a graded n–absorbing R–submodule of M/V.

Proof. Assume that N is a graded n–absorbing submodule of M.

Let $a_1, \ldots, a_n \in h(R)$, $m \in h(M)$, and $a_1 \cdot \ldots \cdot a_n(m + V) \in N/V$. Since N is a graded n–absorbing submodule of M and $a_1 \cdot \ldots \cdot a_n m \in N$, we have either $a_1 \cdot \ldots \cdot a_n \in (N :_R M)$ or there are $n – 1$ of the a_i's whose product with m is in N.

Hence either $a_1 \cdot \ldots \cdot a_n \in (N/V :_R M/V)$ or there are $n – 1$ of the a_i's whose product with $(m + V)$ is in N/V. Therefore N/V is a graded n–absorbing R–submodule of M/V.

Conversely, suppose that N/V is a graded n–absorbing R–submodule of M/V. Let $a_1, \ldots, a_n \in h(R)$ and $m \in h(M)$ with $a_1 \cdot \ldots \cdot a_n m \in N$. Since N/V is a graded n–absorbing R–submodule of M/V and $a_1 \cdot \ldots \cdot a_n (m + V) \in N/V$, we conclude that either $a_1 \cdot \ldots \cdot a_n \in (N/V :_R M/V)$ or there are $n – 1$ of the a_i's whose product with $(m + V)$ is in N/V and hence either $a_1 \cdot \ldots \cdot a_n \in (N :_R M)$ or there are $n – 1$ of the a_i's whose product with m is in N. Therefore N is a graded n–absorbing submodule of M. \hfill \Box

Notation. Let R be a G–graded ring and $a_1, \ldots, a_n \in h(R)$. We denote by \hat{a}_i the element $a_1 \cdot \ldots \cdot a_{i-1}a_{i+1} \cdot \ldots \cdot a_n$. In this case the definition of a graded n–absorbing submodule can be reformulated as: the graded submodule N of the graded R–module M is called a graded n–absorbing if when $a_1, \ldots, a_n \in h(R)$ and $m \in h(M)$ with $a_1 \cdot \ldots \cdot a_n m \in N$, then either $a_1 \cdot \ldots \cdot a_n \in (N :_R M)$ or $\hat{a}_i m \in N$ for some $1 \leq i \leq n$. Similarly the definition of a $g – n$–absorbing submodule can be reformulated as: the $g – n$–absorbing submodule N_g of R_e–module M_g is called a $g – n$–absorbing if whenever $a_1, \ldots, a_n \in R_e$ and $m \in M_g$ with $a_1 \cdot \ldots \cdot a_n m \in N_g$, then either $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_e} M_g)$ or $\hat{a}_i m \in N_g$ for some $1 \leq i \leq n$.

The following theorem shows the relationship between graded P–primary submodules and graded n–absorbing submodules.
Theorem 2.10. Let \(R \) be a \(G \)-graded ring, \(M \) be a graded \(R \)-module, and \(N \) be a graded submodule of \(M \). If \(N \) is a graded \(P \)-primary submodule of \(M \) and \(P^nM \subseteq N \) for some positive integer \(n \), then \(N \) is a graded \(n \)-absorbing submodule of \(M \).

Proof. Assume that \(a_1, \ldots, a_n \in h(R) \) and \(m \in h(M) \) with \(a_1 \cdots a_nm \in N \) such that \(\hat{a}_im \nsubseteq N \) for every \(1 \leq i \leq n \). We show that \(a_1 \cdots a_n \in (N :_RM) \). For every \(1 \leq i \leq n \), as \(a_ia_i \in N \) with \(\hat{a}_im \nsubseteq N \) and \(N \) is a graded \(P \)-primary submodule of \(M \), we have \(a_i \in P \). Consequently, \(a_1 \cdots a_n \in P^n \subseteq (N :_RM) \). Hence \(N \) is a graded \(n \)-absorbing submodule of \(M \). \(\square \)

Note 2.11. The result of Theorem 2.10 may be recast using \(w \) function as

\[
w(N) \leq n.
\]

Theorem 2.12. Let \(R \) be a Noetherian \(G \)-graded ring and \(M \) be a finitely generated graded \(R \)-module. Then every nonzero proper graded submodule of \(M \) is a graded \(n \)-absorbing submodule of \(M \) for some positive integer \(n \).

Proof. Let \(N \) be a graded \(P \)-primary submodule of \(M \). Then \((N :_RM) \) is a graded \(P \)-primary ideal of \(R \). Since \(R \) is a Noetherian \(G \)-graded ring, then there exists a positive integer \(m \) such that \(P^m \subseteq (N :_RM) \). Thus \(N \) is a graded \(m \)-absorbing submodule of \(M \) by Theorem 2.10. Now suppose that \(K \) is a proper graded submodule of \(M \), we show that \(K \) is a graded \(n \)-absorbing submodule of \(M \). Since \(M \) is a finitely generated graded \(R \)-module, then \(M \) is Noetherian graded \(R \)-module. Assume that \(K = N_1 \cap \cdots \cap N_k \) is a primary decomposition of \(K \), where \(N_i \) is a graded \(P_i \)-primary submodule of \(M \) for any \(1 \leq i \leq k \). By the first part of the proof, each \(N_i \) \((1 \leq i \leq k) \) is a graded \(m_i \)-absorbing submodule of \(M \) for some positive integer \(m_i \). Thus, by Theorem 2.7, \(K \) is a graded \(n \)-absorbing submodule of \(M \) in which \(n = m_1 + \cdots + m_k \). \(\square \)

Recall that, the graded radical of a graded ideal \(I \) of a \(G \)-graded ring \(R \) denoted by \(Gr(I) \) is the set of all \(x \in R \) such that for each \(g \in G \) there exists a positive integer \(n_g > 0 \) with \(x^g \in I \). Note that if \(r \) is a homogeneous element of \(R \), then \(r \in Gr(I) \) iff \(r^n \in I \) for some positive integer \(n \) (see[23], definition 1.1).

The graded radical of a graded submodule \(N \) of a graded \(R \)-module \(M \) denoted by \(M - rad(N) \) is defined to be the intersection of all graded prime submodule of \(M \) containing \(N \). According to [2], a proper submodule \(N \) of an \(R \)-module \(M \) is said to be divided if \(N \subseteq Rm \) for all \(m \in M \setminus N \). Also, a prime ideal \(P \) of a ring \(R \) is said to be a divided prime ideal if \(P \subseteq xR \) for every \(x \in R \setminus P \).
Theorem 2.13. Let R be a G—graded ring, M be a finitely generated faithful multiplication graded R—module, and $K = PM$ be a divided graded prime submodule of M, where $P = (K :_R M)$ is a graded prime ideal of R. If $M - \text{rad}(N) = K$ and N is a graded n—absorbing submodule of M for some positive integer n, then N is graded P—primary submodule of M.

Proof. First of all, by [25, Th.2.12], $M - \text{rad}(N) = \sqrt{(N :_R M)}M$. On the other hand, $M - \text{rad}(N) = K = PM$ ([25], Corollary 2.11). Moreover, every finitely generated faithful multiplication module is cancelation. Thus $M - \text{rad}(N) = \sqrt{(N :_R M)}M = K = PM$ implies that $P = (K :_R M) = \sqrt{(N :_R M)}$. Assume that $am \in N$ but $a \notin P$. Then from $am \in K$, $a \notin (K :_R M)$ and K prime we get $m \in K$. By [2, Prop. 6], P is a divided prime ideal of R. So $P \subset Ra^{n-1}$ since $a \notin P$. Therefore, $K = PM \subset Ma^{n-1}$, and hence $m = a^n t$ for some $t \in M$. Now it follows from $a^n t = am \in N$ and $a^n \notin (N :_R M)$ that $m = a^n t \in N$ since N is a graded n—absorbing. Therefore N is a graded P—primary submodule of M.

Theorem 2.14. Let R be a G—graded ring and M be a finitely generated faithful multiplication graded R—module. Let $\text{Nil}(M) \subset P$ be divided graded prime submodule of M. Then P^n is a graded n—absorbing submodule of M for every positive integer n.

Proof. Since M is a multiplication faithful module, we have $\text{Nil}(M) = \text{Nil}(R)M$. Also M is a cancelation module since every finitely generated faithful multiplication module is cancelation by [25]. Therefore $\text{Nil}(R) \subset (P :_R M)$ are divided prime ideals by [2, Prop.6]. It follows now from [5, Th.3.3] that $(P :_R M)^n$ is a graded $(P :_R M)$—primary ideal of R. Hence $P^n = (P :_R M)^n M = (P :_R M)^n M$ is a graded $(P :_R M)$—primary submodule of M by [9, Cor. 2]. Therefore P^n is a graded n—absorbing submodule of M by Theorem 2.10.

Corollary 2.15. Let R be a G—graded integral domain and M be a faithful multiplication graded prime R—module. Let P be a nonzero divided graded prime submodule of M. Then P^n is a graded n—absorbing submodule of M for every positive integer n.

Proof. By [1], $\text{Nil}(M) = 0$ is a divided prime submodule of M and therefore by the proof of Theorem 2.14, P^n is a graded n—absorbing submodule of M.

In [21], we have the following $R(+)^M$ construction:
Let R be a commutative ring with identity and M be an R—module. Then
$R(M) = R(+)M$ is a commutative ring with identity $(1_R, 0)$ under addition defined by $(r, m) + (s, n) = (r + s, m + n)$ and multiplication defined by $(r, m)(s, n) = (rs, rn + sm)$.

Note that $(0(+)M)^2 = 0$, so $0(+)M$ is nilpotent ideal with index 2. We view R as a subring of $R(+)M$ via $r \mapsto (r, 0)$. An ideal A is said to be homogeneous if $A = I(+)N$ for some ideal I of R and some submodule N of M.

Theorem 2.16. Let R be a G–graded ring, I be a graded ideal of R, M be a graded R–module, and N be a graded submodule of M. If $I(+)N$ is a graded n–absorbing ideal of $R(M)$ such that $I(+)N$ is a homogeneous of $R(M)$, then I is a graded n–absorbing ideal of R and N is a graded n–absorbing submodule of M.

Proof. Assume that $I(+)N$ is a graded n–absorbing ideal of $R(M)$. Let $a_1, \ldots, a_{n+1} \in h(R)$ such that $a_1 \cdot \ldots \cdot a_{n+1} \in I$, then

$$ (a_1, 0)(a_2, 0) \cdot \ldots \cdot (a_{n+1}, 0) \in I(+)N. $$

Since $I(+)N$ is a graded n–absorbing ideal of $R(M)$, then $(a_i, 0) \in I(+)N$ for some $1 \leq i \leq n$. So $a_i \in I$ for some $1 \leq i \leq n$ and hence I is a graded n–absorbing ideal of R. Now, let $a_1, \ldots, a_n \in h(R)$ and $m \in h(M)$ with $a_1 \cdot \ldots \cdot a_nm \in N$. Since $I(+)N$ is a homogeneous ideal of $R(M)$, we have $(a_1, 0)(a_2, 0) \cdot \ldots \cdot (a_n, 0)(0, m) \in I(+)N$. Since $I(+)N$ is a graded n–absorbing ideal of $R(M)$, so either $(a_1, 0)(a_2, 0) \cdot \ldots \cdot (a_n, 0) \in I(+)N$ or there exist $n - 1$ of $(a_i, 0)'s$ whose product with $(0, m)$ is in $I(+)N$. Then $a_1 \cdot \ldots \cdot a_n \in I \subseteq (N :_R M)$ or there are $n - 1$ of a_i's whose product with m is in N and hence N is a graded n–absorbing submodule of M. \hfill \Box

Theorem 2.17. Let R be a G–graded ring, M be a graded R–module, and N be a graded submodule of M. Let $g \in G$ such that N_g is a g–n–absorbing R_g–submodule of M_g. Then the following hold:

For every R_g–submodule V of M_g and every $a_1, \ldots, a_n \in R_g$ such that $a_1 \cdot \ldots \cdot a_nV \subseteq N_g$, either $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_g} M_g)$ or there are $n - 1$ of the a_i's whose product with V is contained in N_g.

Proof. Suppose that $a_1, \ldots, a_n \in R_g$, V is an R_g–submodule of M_g, and $a_1 \cdot \ldots \cdot a_nV \subseteq N_g$ such that $\hat{a}_iV \not\subseteq N_g$ for every $1 \leq i \leq n$ and for some $v \in V$. We show that $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_g} M_g)$. For every $1 \leq i \leq n$, as $a_i\hat{a}_iV \in N_g$ with $\hat{a}_iV \not\subseteq N_g$ and N_g is g–n–absorbing R_g–submodule of M_g, we conclude that $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_g} M_g)$. \hfill \Box
Theorem 2.18. Let R be a G–graded ring, M be a graded R–module, and N be a graded submodule of M. Let $g \in G$ such that M_g is cyclic R_e–module. Then N_g is a $g – n$–absorbing R_e–submodule of M_g iff $(N_g :_{R_e} M_g)$ is a $g – n$–absorbing ideal of R_e.

Proof. Suppose that N_g is a $g – n$–absorbing R_e–submodule of M_g such that $M_g = R_e x$ for some $x \in M_g$. Assume that $a_1, \ldots, a_{n+1} \in R_e$ with $a_1 \cdot \ldots \cdot a_{n+1} \in (N_g :_{R_e} M_g)$. For every $1 \leq i \leq n$, let \widehat{a}_i be the element of R_e which is obtained by eliminating a_i from $a_1 \cdot \ldots \cdot a_n$. Assume that $\widehat{a}_i a_{n+1} \notin (N_g :_{R_e} M_g)$ for every $1 \leq i \leq n$. Then $\widehat{a}_i a_{n+1} x \notin N_g$. So it follows from $(a_1 \cdot \ldots \cdot a_n)(a_{n+1} x) \in N_g$ and the fact that N_g is a $g – n$–absorbing that $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_e} M_g)$. Hence $(N_g :_{R_e} M_g)$ is a $g – n$–absorbing ideal of R_e.

Conversely; assume that $(N_g :_{R_e} M_g)$ is a $g – n$–absorbing ideal of R_e and let $a_1 \cdot \ldots \cdot a_m \in N_g$ for some $a_1, \ldots, a_n \in R_e$ and for some $m \in M_g$. Since $M_g = R_e x$, then there exists $a_{n+1} \in R_e$ with $m = a_{n+1} x$. Then $a_1 \cdot \ldots \cdot a_n a_{n+1} x \in N$. Hence $a_1 \cdot \ldots \cdot a_n a_{n+1} \in (N_g :_{R_e} x) = (N_g :_{R_e} M_g)$. Since $(N_g :_{R_e} M_g)$ is a $g – n$–absorbing ideal of R_e, so there are n of the a_i’s whose product is in $(N_g :_{R_e} M_g)$. This implies that either $a_1 \cdot \ldots \cdot a_n \in (N_g :_{R_e} M_g)$ or there are $n – 1$ of the a_i’s whose product with m is in N_g. Therefore N_g is a $g – n$–absorbing R_e–submodule of M_g.

Acknowledgements

The authors are grateful to Prof. M.H. Fahmy, and Prof. R.M. Salem, Math. Dept. Fac. of Sci. Al-Azhar Univ. Egypt, for their useful comments.

REFERENCES

MOHAMMAD HAMODA
Department of Mathematics
Al-Aqsa University, Gaza
Palestine, 4051.
e-mail: mamh_73@hotmail.com

ARWA EID ASHOUR
Department of Mathematics
The Islamic university of Gaza, Gaza
Palestine, 108.
e-mail: arashour@iugaza.edu.ps