ON GRADED n-ABSORBING SUBMODULES

MOHAMMAD HAMODA - ARWA EID ASHOUR

Let G be a group with identity e. Let R be a G-graded commutative ring, M be a graded R-module and n be a positive integer. In this article, we introduce and study the concepts of graded n-absorbing submodules. Various properties of graded n-absorbing submodules are considered. For example, we show that if R is a Noetherian $G-$ graded ring and M is a finitely generated graded R-module, then every nonzero proper graded submodule of M is a graded n-absorbing submodule of M for some positive integer n.

1. Introduction

Weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by Anderson and Smith in [4]. Various generalization of prime ideals were studied in [14-18, 20]. Prime submodules, weakly prime submodules, and primary submodules have been studied by various authors, see for example [11, 19, 24]. Graded prime and graded primary ideals of a commutative graded ring R with nonzero identity have been introduced and studied by Refai and Al-Zoubi in [23]. Graded prime and graded primary submodules of graded R-modules have been studied by Oral, Tekir and Agargun in [22]. Also, graded weakly prime submodules of graded $R-$ modules have been studied by Atani in [8].

Entrato in redazione: 8 novembre 2014
AMS 2010 Subject Classification: 13A02, 16W50.
Keywords: graded prime submodules, graded weakly prime submodules, graded primary submodules, graded $n-$ absorbing submodules.

The concept of $2-$ absorbing ideals have been studied and investigated by Badawi in [12]. Weakly 2 -absorbing ideals and n-absorbing ideals of commutative rings have been studied by various authors. They prove many important results about these two concepts, see for example [5, 13]. Graded 2-absorbing and weakly graded 2 -absorbing submodules have been studied by Al-Zoubi and Abou-Dawwas in [3].

In this paper, we characterize graded n-absorbing submodules in commutative rings, which are a generalization of graded prime ideals. The purpose of this paper is to explore some basic facts of these class of submodules. First, we show that if N is a graded n-absorbing submodule of M, then N_{g} is a $g-n$-absorbing R_{e}-submodule of M_{g} for every $g \in G$ (see Lemma 2.5). We show (Theorem 2.6) that if N is a graded submodule of a cyclic multiplication graded R-module, then N is graded n-absorbing submodule of M if and only if $\left(N:_{R} M\right)$ is graded n-absorbing ideal of R. Next, we give some characterizations of graded n-absorbing submodules (see section 2).

We start by recalling some background material. Let G be a group with identity e. By a G-graded commutative ring we mean a commutative ring R with nonzero identity together with a direct sum decomposition (as an additive group) $R=\bigoplus_{g \in G} R_{g}$ with the property that $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$, here $R_{g} R_{h}$ denotes the additive subgroup of R consisting of all finite sums of elements $r_{g} s_{h}$ with $r_{g} \in R_{g}$ and $s_{h} \in R_{h}$. We denote this by (R, G). The elements of R_{g} are called homogeneous of degree g. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_{g}$, where x_{g} is the component of x in R_{g}. Also, we write $h(R)=\bigcup_{g \in G} R_{g}$. Moreover, if $R=\bigoplus_{g \in G} R_{g}$ is a G-graded ring, then R_{e} is a subring of $R .1_{R} \in R_{e}$ and R_{g} is an R_{e}-module for all $g \in G$. Let I be an ideal of R. For $g \in G$, let $I_{g}=I \bigcap R_{g}$. Then I is called a graded ideal of (R, G) if $I=\bigoplus_{g \in G} I_{g}$. In this case, I_{g} is called the g-component of I for $g \in G$. Let $R=\bigoplus_{g \in G} R_{g}$ be a G-graded ring and let I be a graded ideal of R. Then the quotient ring R / I is also a $G-$ graded ring. Indeed, $R / I=\bigoplus_{g \in G}(R / I)_{g}$, where $(R / I)_{g}=\left\{x+I: x \in R_{g}\right\}$. For simplicity, we will denote the graded ring (R, G) by R. Let R be a G-graded ring and M be an R-module. We say that M is a G-graded R-module (or graded R-module) if there exists a family of subgroups $\left\{M_{g}\right\}_{g \in G}$ of M such that $M=\bigoplus_{g \in G} M_{g}$ (as abelian groups) and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. Here, $R_{g} M_{h}$ denotes the additive subgroup of M consisting of all finite sums of elements $r_{g} s_{h}$ with $r_{g} \in R_{g}$ and $s_{h} \in M_{h}$. Also, we write $h(M)=\bigcup_{g \in G} M_{g}$ and the elements of $h(M)$ are called homogeneous. Let $M=\bigoplus_{g \in G} M_{g}$ be a graded R-module, then for all $g \in G$ the subgroup M_{g} of M is an R_{e} - module.

Let $M=\bigoplus_{g \in G} M_{g}$ be a graded R-module and N be a submodule of M. Then N is called a graded submodule of M if $N=\bigoplus_{g \in G} N_{g}$ where $N_{g}=N \cap M_{g}$ for $g \in G$. In this case N_{g} is called the g-component of N. Moreover, M / N becomes a G-graded R-module with g-component $(M / N)_{g}=\left(M_{g}+N\right) / N$ for $g \in G$. A graded R-module M is called cyclic if $M=R m$, for some $m \in h(M)$. A graded R-module M is called a multiplication graded module if every submodule N of M has the form $I M$ for some graded ideal I of R. A graded R-module M is defined to be a cancelation module if $I M=J M$ for graded ideals I and J of R implies $I=J$. Now, we have the following definition, see [7, 23].

Definition 1.1. A proper graded ideal I of a G-graded ring R is said to be graded prime (resp. graded weakly prime) ideal if whenever $a, b \in h(R)$ with $a b \in I$ (resp. $0 \neq a b \in I$), then either $a \in I$ or $b \in I$.

Next, recall the following two definitions, see [8, 22].
Definition 1.2. A proper graded submodule N of a graded $R-$ module M is said to be graded prime (resp. graded weakly prime) submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $r m \in N$ (resp. $0 \neq r m \in N)$, then either $r \in\left(N:_{R}\right.$ $M)$ or $m \in N$.

Definition 1.3. A proper graded submodule N of a graded $R-$ module M is said to be graded primary submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $r m \in N$, then either $m \in N$ or $r^{k} \in\left(N:_{R} M\right)$ for some positive integer k.

If N is a graded prime (resp. graded primary) submodule of M, then $P:=$ $\left(N:_{R} M\right)\left(\right.$ resp. $\left.P:=\sqrt{\left(N:_{R} M\right)}\right)$ is a prime ideal of R. In this case, we say that N is a graded P-prime (resp. graded P-primary) submodule of M.
A submodule N of the $R-$ module M is called a nilpotent submodule if $\left(N:_{R}\right.$ $M)^{n} N=0$ for some positive integer n, and $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M, [1]. Assume that $\operatorname{Nil}(M)$ is the set of all nilpotent elements of M, then $\operatorname{Nil}(M)$ is a submodule of M provided that M is faithful module, and if in addition M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs of all prime submodules of M ([1],Th.6).
Al-Zoubi and Abou-Dawwas [3] define the graded 2-absorbing and weakly graded $2-$ absorbing ideals as follows:

Definition 1.4. A proper graded ideal I of a G-graded ring R is said to be graded 2 -absorbing (resp. weakly graded 2 -absorbing) ideal if whenever $r, s, t \in h(R)$ with $r s t \in I$ (resp. $0 \neq r s t \in I$), then either $r s \in I$ or $r t \in I$ or $s t \in I$.

In [5] Anderson and Badawi defined the n-absorbing ideals as follows:

Definition 1.5. Let R be a commutative ring with $1 \neq 0$ and n be a positive integer. A proper ideal I of R is called an n-absorbing ideal if whenever $a_{1} a_{2}$. $\ldots \cdot a_{n+1} \in I$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in R$, then there are n of the $a_{i}{ }^{\prime} s$ whose product is in I.

The motivation of this paper is to continue the studying of the graded $2-\mathrm{ab}-$ sorbing and weakly graded 2 -absorbing submodules, also to extend the results of Anderson and Badawi [5], Oral, Tekir, and Agargun [22], and Al-Zoubi and Abu-Dawwas [3] to the graded n-absorbing submodules.

2. Main Results

Our starting point is the following definitions:
Definition 2.1. Let R be a G-graded ring and let n be a positive integer. A proper graded ideal I of R is said to be graded n-absorbing ideal if whenever $a_{1}, \ldots, a_{n+1} \in h(R)$ with $a_{1} \cdot \ldots \cdot a_{n+1} \in I$, then there are n of the $a_{i}{ }^{\prime} s$ whose product is in I.

Definition 2.2. Let R be a G-graded ring, M be a graded $R-\operatorname{module}, N$ be a graded submodule of M, and let $g \in G$.
(i) We say that N_{g} is a $g-n$-absorbing submodule of R_{e}-module M_{g},
if $N_{g} \neq M_{g}$; and whenever $a_{1}, \ldots, a_{n} \in R_{e}$ and $m \in M_{g}$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N_{g}$, then either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N_{g}.
(ii) We say that N is a graded n-absorbing submodule of M, if $N \neq M$; and whenever $a_{1}, \ldots, a_{n} \in h(R)$ and $m \in h(M)$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N$, then either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N.

Remark 2.3. (1) It is clear that if N is a graded n-absorbing submodule of M, then it is a graded m-absorbing submodule of M for every integer $m \geq n$. Also if N_{g} is a $g-n$-absorbing submodule of $R_{e}-$ module M_{g}, then it is a $g-m$-absorbing submodule of $R_{e}-$ module M_{g} for every integer $m \geq n$.
(2) If N is a graded n-absorbing submodule of M for some positive integer n, then by following [5], define $w_{M}(N)=\min \{n: N$ is a graded n-absorbing submodule of $M\}$; otherwise, the set $w_{M}(N)=\infty$ (we will just write $w(N)$ when the context is clear). Moreover, we define $w(M)=0$. Therefore, for any graded submodule N of M, we have $w_{M}(N) \in \mathbb{N} \bigcup\{0, \infty\}$, with $w(N)=1$ iff N is a graded prime submodule of M and $w(N)=0$ iff $M=N$. Then $w(N)$ measures, in some sense, how far N is from being a graded prime submodule of M.

Lemma 2.4 ($[6,10])$. Let R be a G-graded ring, M be a graded R-module, and N be a graded submodule of M. Then the following hold:
(i) $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$ is a graded ideal of R.
(ii) $r N$ and $R m$ are graded submodules of M, where $r \in h(R)$ and $m \in h(M)$.

Lemma 2.5. Let R be a G-graded ring, M be a graded R-module, and N be
 N_{g} is a $g-n$-absorbing R_{e}-submodule of M_{g} for every $g \in G$.

Proof. Assume that N is a graded n-absorbing submodule of M. For $g \in G$, assume that $a_{1} \cdot \ldots \cdot a_{n} m \in N_{g} \subseteq N$, where $a_{1}, \ldots, a_{n} \in R_{e}$ and $m \in M_{g}$. Since N is a graded n-absorping submodule of M, we have either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N. As $M_{g} \subseteq M$ and $N_{g}=N \bigcap M_{g}$, so either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N_{g}. Hence N_{g} is a $g-n-$ absorbing $R_{e}-$ submodule of M_{g} for every $g \in G$.

Theorem 2.6. Let R be a G-graded ring, M be a cyclic multiplication graded $R-$ module, and N a graded submodule of M. Then N is a graded $n-a b s o r b i n g$ submodule of M if and only if $\left(N:_{R} M\right)$ is a graded n-absorbing ideal of R.

Proof. Suppose that $M=R m$ for some $m \in h(M)$ is a cyclic multiplication graded R-module and N is a graded n-absorbing submodule of M. Assume that $a_{1}, \ldots, a_{n+1} \in h(R)$ with $a_{1} \cdot \ldots \cdot a_{n+1} \in\left(N:_{R} M\right)$. For every $1 \leq i \leq n$, let $\widehat{a_{i}}$ be the element of R which is obtained by eliminating a_{i} from $a_{1} \cdot \ldots \cdot a_{n}$. Assume that $\widehat{a_{i}} a_{n+1} \notin\left(N:_{R} M\right)$ for every $1 \leq i \leq n$. Then $\widehat{a}_{i} a_{n+1} m \notin N$. So it follows from $\left(a_{1} \cdot \ldots \cdot a_{n}\right)\left(a_{n+1} m\right) \in N$ and the fact that N is a graded n-absorbing that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$. Hence $\left(N:_{R} M\right)$ is a graded n-absorbing ideal of R.

Conversely, suppose that $\left(N:_{R} M\right)$ is a graded n-absorbing ideal of R. Let $a_{1}, \ldots, a_{n} \in h(R)$ and $x \in h(M)$ with $a_{1} \cdot \ldots \cdot a_{n} x \in N$. Then there exists $a_{n+1} \in h(R)$ with $x=a_{n+1} m$. Thus $a_{1} \cdot \ldots \cdot a_{n} a_{n+1} m \in N$. So $a_{1} \cdot \ldots \cdot a_{n} a_{n+1} \in$ $\left(N:_{R} m\right)=\left(N:_{R} M\right)$. Since $\left(N:_{R} M\right)$ is a graded n-absorbing ideal of R, so there are (n) of the $a_{i}{ }^{\prime} s$ whose product is in $\left(N:_{R} M\right)$. This implies that either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with x is in N. Therefore N is a graded $n-$ absorbing submodule of M.

Theorem 2.7. Let R be a G-graded ring and M be a graded R-module. If N_{j} is a graded n_{j}-absorbing submodule of M for every $1 \leq j \leq k$, then $\bigcap_{j=1}^{k} N_{j}$ is a graded n-absorbing submodule of M for $n=n_{1}+\ldots+n_{k}$.

Proof. Let $a_{1}, \ldots, a_{n} \in h(R), m \in h(M)$ and $N=\bigcap_{j=1}^{k} N_{j}$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N$ such that there are not $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N. We want to show that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$. As $a_{1} \cdot \ldots \cdot a_{n} m \in N$, so $a_{1} \cdot \ldots \cdot a_{n} m \in N_{j}$
for every $1 \leq j \leq k$. Therefore $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{j}:_{R} M\right)$ for every $1 \leq j \leq k$ since N_{j} is a graded n_{j}-absorbing submodule of M and $n_{j} \leq n$. Therefore $a_{1} \cdot \ldots \cdot a_{n} \in \bigcap_{j=1}^{k}\left(N_{j}:_{R} M\right)=\left(N:_{R} M\right)$. Hence $\bigcap_{j=1}^{k} N_{j}$ is a graded n-absorbing submodule of M.

Note 2.8. The result of Theorem 2.7 may be recast using w function as

$$
w\left(N_{1} \bigcap \ldots \bigcap N_{k}\right) \leq w\left(N_{1}\right)+\ldots+w\left(N_{k}\right)
$$

Theorem 2.9. Let R be a G-graded ring, M be a graded R-module, and N, V be graded $R-$ submodules of M with $V \subseteq N$. Then N is a graded $n-a b s o r b i n g$ submodule of M if and only if N / V is a graded n-absorbing R-submodule of M / V.

Proof. Assume that N is a graded $n-$ absorbing submodule of M.
Let $a_{1}, \ldots, a_{n} \in h(R), m \in h(M)$, and $a_{1} \cdot \ldots \cdot a_{n}(m+V) \in N / V$. Since N is a graded n-absorbing submodule of M and $a_{1} \cdot \ldots \cdot a_{n} m \in N$, we have either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N. Hence either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N / V:_{R} M / V\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with $(m+V)$ is in N / V. Therefore N / V is a graded n-absorbing R-submodule of M / V.
Conversely, suppose that N / V is a graded n-absorbing R-submodule of M / V. Let $a_{1}, \ldots, a_{n} \in h(R)$ and $m \in h(M)$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N$. Since N / V is a graded n-absorbing R-submodule of M / V and $a_{1} \cdot \ldots \cdot a_{n}(m+V) \in N / V$, we conclude that either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N / V:_{R} M / V\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with $(m+V)$ is in N / V and hence either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N. Therefore N is a graded n-absorbing submodule of M.

Notation. Let R be a $G-$ graded ring and $a_{1}, \ldots, a_{n} \in h(R)$. We denote by \widehat{a}_{i} the element $a_{1} \cdot \ldots \cdot a_{i-1} a_{i+1} \cdot \ldots \cdot a_{n}$. In this case the definition of a graded n-absorbing submodule can be reformulated as: the graded submodule N of the graded R-module M is called a graded n-absorbing if when $a_{1}, \ldots, a_{n} \in h(R)$ and $m \in h(M)$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N$, then either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$ or $\widehat{a_{i}} m \in N$ for some $1 \leq i \leq n$. Similarly the definition of a $g-n-$ absorbing submodule can be reformulated as: the $g-n-$ absorbing submodule N_{g} of $R_{e}-$ module M_{g} is called a $g-n$-absorbing if whenever $a_{1}, \ldots, a_{n} \in R_{e}$ and $m \in M_{g}$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N_{g}$, then either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $\widehat{a_{i}} m \in N_{g}$ for some $1 \leq i \leq n$.
The following theorem shows the relationship between graded P-primary submodules and graded n-absorbing submodules.

Theorem 2.10. Let R be a G-graded ring, M be a graded R-module, and N be a graded submodule of M. If N is a graded P-primary submodule of M and $P^{n} M \subseteq N$ for some positive integer n, then N is a graded n-absorbing submodule of M.

Proof. Assume that $a_{1}, \ldots, a_{n} \in h(R)$ and $m \in h(M)$ with $a_{1} \cdot \ldots \cdot a_{n} m \in N$ such that $\widehat{a_{i}} m \notin N$ for every $1 \leq i \leq n$. We show that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N:_{R} M\right)$. For every $1 \leq i \leq n$, as $a_{i} \widehat{a}_{i} m \in N$ with $\widehat{a_{i}} m \notin N$ and N is a graded P-primary submodule of M, we have $a_{i} \in P$. Consequently, $a_{1} \cdot \ldots \cdot a_{n} \in P^{n} \subseteq\left(N:_{R} M\right)$. Hence N is a graded $n-$ absorbing submodule of M.

Note 2.11. The result of Theorem 2.10 may be recast using w function as

$$
w(N) \leq n
$$

Theorem 2.12. Let R be a Notherian G-graded ring and M be a finitely generated graded R-module. Then every nonzero proper graded submodule of M is a graded n-absorbing submodule of M for some positive integer n.

Proof. Let N be a graded P-primary submodule of M. Then $\left(N:_{R} M\right)$ is a graded P-primary ideal of R. Since R is a Notherian G-graded ring, then there exists a positive integer m such that $P^{m} \subseteq\left(N:_{R} M\right)$. Thus N is a graded m-absorbing submodule of M by Theorem 2.10 . Now suppose that K is a proper graded submodule of M, we show that K is a graded n-absorbing submodule of M. Since M is a finitely generated graded R-module, then M is Notherian graded R-module. Assume that $K=N_{1} \bigcap \ldots \bigcap N_{k}$ is a primary decomposition of K, where N_{i} is a graded P_{i}-primary submodule of M for any $1 \leq i \leq k$. By the first part of the proof, each $N_{i}(1 \leq i \leq k)$ is a graded m_{i}-absorbing submodule of M for some positive integer m_{i}. Thus, by Theorem 2.7, K is a graded n-absorbing submodule of M in which $n=m_{1}+\cdots+m_{k}$.

Recall that, the graded radical of a graded ideal I of a $G-\operatorname{graded}$ ring R denoted by $\operatorname{Gr}(I)$ is the set of all $x \in R$ such that for each $g \in G$ there exists a positive integer $n_{g}>0$ with $x_{g}{ }^{n_{g}} \in I$. Note that if r is a homogeneous element of R, then $r \in G r(I)$ iff $r^{n} \in I$ for some positive integer n (see[23], definition 1.1).

The graded radical of a graded submodule N of a graded $R-$ module M denoted by $M-\operatorname{rad}(N)$ is defined to be the intersection of all graded prime submodule of M containing N. According to [2], a proper submodule N of an R-module M is said to be divided if $N \subset R m$ for all $m \in M \backslash N$. Also, a prime ideal P of a ring R is said to be a divided prime ideal if $P \subset x R$ for every $x \in R \backslash P$.

Theorem 2.13. Let R be a G-graded ring, M be a finitely generated faithful multiplication graded R-module, and $K=P M$ be a divided graded prime submodule of M, where $P=\left(K:_{R} M\right)$ is a graded prime ideal of R. If $M-\operatorname{rad}(N)=$ K and N is a graded n-absorbing submodule of M for some positive integer n, then N is graded P-primary submodule of M.

Proof. First of all, by [25, Th.2.12], $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$. On the other hand, $M-\operatorname{rad}(N)=K=P M$ ([25], Corollary 2.11). Moreover, every finitely generated faithful multiplication module is cancelation. Thus $M-\operatorname{rad}(N)=$ $\sqrt{\left(N:_{R} M\right)} M=K=P M=\left(K:_{R} M\right) M$ implies that $P=\left(K:_{R} M\right)=\sqrt{\left(N:_{R} M\right)}$. Assume that $a m \in N$ but $a \notin P$. Then from $a m \in K, a \notin\left(K:_{R} M\right)$ and K prime we get $m \in K$. By [2, Prop. 6], P is a divided prime ideal of R. So $P \subset R a^{n-1}$ since $a \notin P$. Therefore, $K=P M \subset M a^{n-1}$, and hence $m=a^{n-1} t$ for some $t \in M$. Now it follows from $a^{n} t=a m \in N$ and $a^{n} \notin\left(N:_{R} M\right)$ that $m=a^{n-1} t \in N$ since N is a graded n-absorbing. Therefore N is a graded P-primary submodule of M.

Theorem 2.14. Let R be a G-graded ring and M be a finitely generated faithful multiplication graded R-module. Let $\operatorname{Nil}(M) \subset P$ be divided graded prime submodule of M. Then P^{n} is a graded n-absorbing submodule of M for every positive integer n.

Proof. Since M is a multiplication faithful module, we have $\operatorname{Nil}(M)=\operatorname{Nil}(R) M$. Also M is a cancelation module since every finitely generated faithful multiplication module is cancelation by [25]. Therefore $\operatorname{Nil}(R) \subset\left(P:_{R} M\right)$ are divided prime ideals by [2, Prop.6]. It follows now from [5, Th.3.3] that $\left(P:_{R} M\right)^{n}$ is a graded $\left(P:_{R} M\right)$-primary ideal of R. Hence $P^{n}=\left(P:_{R} M\right)^{n} M$ is a graded $\left(P:_{R} M\right)$-primary submodule of M by [9, Cor. 2]. Therefore P^{n} is a graded n -absorbing submodule of M by Theorem 2.10.

Corollary 2.15. Let R be a G-graded integral domain and M be a faithful multiplication graded prime R-module. Let P be a nonzero divided graded prime submodule of M. Then P^{n} is a graded n-absorbing submodule of M for every positive integer n.

Proof. By [1], Nil $(M)=0$ is a divided prime submodule of M and therefore by the proof of Theorem $2.14, P^{n}$ is a graded n-absorbing submodule of M.

In [21], we have the following $R(+) M$ construction:
Let R be a commutative ring with identity and M be an R-module. Then
$R(M)=R(+) M$ is a commutative ring with identity $\left(1_{R}, 0\right)$ under addition defined by $(r, m)+(s, n)=(r+s, m+n)$ and multiplication defined by

$$
(r, m)(s, n)=(r s, r n+s m) .
$$

Note that $(0(+) M)^{2}=0$, so $0(+) M$ is nilpotent ideal with index 2 . We view R as a subring of $R(+) M$ via $r \longmapsto(r, 0)$. An ideal A is said to be homogeneous if $A=I(+) N$ for some ideal I of R and some submodule N of M.

Theorem 2.16. Let R be a G-graded ring, I be a graded ideal of R, M be a graded R-module, and N be a graded submodule of M. If $I(+) N$ is a graded n-absorbing ideal of $R(M)$ such that $I(+) N$ is a homogeneous of $R(M)$, then I
 of M.

Proof. Assume that $I(+) N$ is a graded $n-$ absorbing ideal of $R(M)$.
Let $a_{1}, \ldots, a_{n+1} \in h(R)$ such that $a_{1} \cdot \ldots \cdot a_{n+1} \in I$, then

$$
\left(a_{1}, 0\right)\left(a_{2}, 0\right) \cdot \ldots \cdot\left(a_{n+1}, 0\right) \in I(+) N
$$

Since $I(+) N$ is a graded n-absorbing ideal of $R(M)$, then $\widehat{\left(a_{i}, 0\right)} \in I(+) N$ for some $1 \leq i \leq n$. So $\widehat{a_{i}} \in I$ for some $1 \leq i \leq n$ and hence I is a graded $n-$ absorbing ideal of R. Now, let $a_{1}, \ldots, a_{n} \in h(R)$ and $m \in h(M)$ with $a_{1} \ldots$. $a_{n} m \in N$. Since $I(+) N$ is a homogeneous ideal of $R(M)$, we have $\left(a_{1}, 0\right)\left(a_{2}, 0\right)$. $\ldots \cdot\left(a_{n}, 0\right)(0, m) \in I(+) N$. Since $I(+) N$ is a graded n-absorbing ideal of $R(M)$, so either $\left(a_{1}, 0\right)\left(a_{2}, 0\right) \cdot \ldots \cdot\left(a_{n}, 0\right) \in I(+) N$ or there exist $n-1$ of $\left(a_{i}, 0\right)^{\prime} s$ whose product with $(0, m)$ is in $I(+) N$. Then $a_{1} \cdot \ldots \cdot a_{n} \in I \subseteq\left(N:_{R} M\right)$ or there are $n-1$ of $a_{i}^{\prime} s$ whose product with m is in N and hence N is a graded $n-$ absorbing submodule of M.

Theorem 2.17. Let R be a G-graded ring, M be a graded R-module, and N be a graded submodule of M. Let $g \in G$ such that N_{g} is a $g-n$-absorbing $R_{e}-$ submodule of M_{g}. Then the following hold:
For every R_{e}-submodule V of M_{g} and every $a_{1}, \ldots, a_{n} \in R_{e}$ such that $a_{1} \ldots$. $a_{n} V \subseteq N_{g}$, either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with V is contained in N_{g}.

Proof. Suppose that $a_{1}, \ldots, a_{n} \in R_{e}, V$ is an $R_{e}-$ submodule of M_{g}, and $a_{1} \ldots$. $a_{n} V \subseteq N_{g}$ such that $\widehat{a_{i}} v \notin N_{g}$ for every $1 \leq i \leq n$ and for some $v \in V$. We show that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$. For every $1 \leq i \leq n$, as $a_{i} \widehat{a_{i}} v \in N_{g}$ with $\widehat{a_{i}} v \notin N_{g}$ and N_{g} is $g-n$-absorbing R_{e}-submodule of M_{g}, we conclude that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$.

Theorem 2.18. Let R be a G-graded ring, M be a graded R-module, and N be a graded submodule of M. Let $g \in G$ such that M_{g} is cyclic $R_{e}-$ module. Then N_{g} is a $g-n$-absorbing R_{e}-submodule of M_{g} iff $\left(N_{g}:_{R_{e}} M_{g}\right)$ is a $g-n$-absorbing ideal of R_{e}.

Proof. Suppose that N_{g} is a $g-n$-absorbing R_{e}-submodule of M_{g} such that $M_{g}=R_{e} x$ for some $x \in M_{g}$. Assume that $a_{1}, \ldots, a_{n+1} \in R_{e}$ with $a_{1} \cdot \ldots \cdot a_{n+1} \in$ ($N_{g}: R_{e} M_{g}$). For every $1 \leq i \leq n$, let $\widehat{a} \widehat{a}_{i}$ be the element of R_{e} which is obtained by eliminating a_{i} from $a_{1} \cdot \ldots \cdot a_{n}$. Assume that $\widehat{a_{i}} a_{n+1} \notin\left(N_{g}:_{R_{e}} M_{g}\right)$ for every $1 \leq i \leq n$. Then $\widehat{a_{i}} a_{n+1} x \notin N_{g}$. So it follows from $\left(a_{1} \cdot \ldots \cdot a_{n}\right)\left(a_{n+1} x\right) \in N_{g}$ and the fact that N_{g} is a $g-n$-absorbing that $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$. Hence ($N_{g}:_{R_{e}} M_{g}$) is a $g-n$-absorbing ideal of R_{e}.
Conversely; assume that $\left(N_{g}:_{R_{e}} M_{g}\right)$ is a $g-n-$ absorbing ideal of R_{e} and let a_{1}. $\ldots \cdot a_{n} m \in N_{g}$ for some $a_{1}, \ldots, a_{n} \in R_{e}$ and for some $m \in M_{g}$. Since $M_{g}=R_{e} x$, then there exists $a_{n+1} \in R_{e}$ with $m=a_{n+1} x$. Then $a_{1} \cdot \ldots \cdot a_{n} a_{n+1} x \in N$. Hence $a_{1} \cdot \ldots \cdot a_{n} a_{n+1} \in\left(N_{g}:_{R_{e}} x\right)=\left(N_{g}:_{R_{e}} M_{g}\right)$. Since $\left(N_{g}:_{R_{e}} M_{g}\right)$ is a $g-n-$ absorbing ideal of R_{e}, so there are n of the $a_{i}{ }^{\prime} s$ whose product is in $\left(N_{g}:_{R_{e}} M_{g}\right)$. This implies that either $a_{1} \cdot \ldots \cdot a_{n} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or there are $n-1$ of the $a_{i}{ }^{\prime} s$ whose product with m is in N_{g}. Therefore N_{g} is a $g-n-$ absorbing $R_{e}-$ submodule of M_{g}.

Acknowledgements

The authors are grateful to Prof. M.H. Fahmy, and Prof. R.M. Salem, Math. Dept. Fac. of Sci. Al-Azhar Univ. Egypt, for their useful comments.

REFERENCES

[1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008), 4620-4642.
[2] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math. 39 (2009), 193-213.
[3] K. Al-Zoubi - R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, Journal of Mathematics Sciences and Applications 28 (2014), 45-60.
[4] D. D. Anderson - E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003), 831-840.
[5] D.F. Anderson - A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), 1646-1672.
[6] S. E. Atani, On graded prime submodules, Chiang Mai. J. Sci. 33 (1) (2006), 3-7.
[7] S. E. Atani, On graded weakly prime ideals, Turk. J. Math. 30 (2006), 351-358.
[8] S. E. Atani, On graded weakly prime submodules, Int. Math. Forum. 1 (2) (2006), 61-66.
[9] S.E. Atani - F. Callalp - U. Tekir, A short note on the primary submodules of multiplication modules, Inter. J. Algebra 1 (8) (2007), 381-384.
[10] S. E. Atani - F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.
[11] S. E. Atani - F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (3) (2007), 247-252.
[12] A. Badawi, On 2-absorbing ideals of commutative rings, Bull Austral Math. Soc. 75 (3) (2007), 417-429.
[13] A. Badawi - Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), 441-452.
[14] A. Badawi - U. Tekir - E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean. Math. Soc. 51 (2014), 1163-1173.
[15] A. Badawi - U. Tekir - E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), 97-111.
[16] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52 (2012), 91-97.
[17] A. Y. Darani - E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), 83-91.
[18] A. Y. Darani - F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011), 577-584.
[19] J.Dauns, Prime modules, J. reine. Angew. Math. 2 (1978), 156-181.
[20] M. Ebrahimpour - R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), 1268-1279.
[21] J. A. Huckaba, Commutative rings with zero divisors, New York, Marcel Dekker Inc, USA, 1988.
[22] K. H. Oral - U. Tekir - A. G. Agargun, On graded prime and primary submodules, Turk. J. Math. 35 (2011), 159-167.
[23] M. Refai - K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.
[24] P.F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.
[25] P.F. Smith - Z. El-Bast, Multiplication modules, Comm. Algebra 16 (1988), 755799.

MOHAMMAD HAMODA
Department of Mathematics
Al-Aqsa University, Gaza Palestine, 4051. e-mail: mamh_73@hotmail.com

ARWA EID ASHOUR
Department of Mathematics The Islamic university of Gaza, Gaza

Palestine, 108.
e-mail: arashour@iugaza.edu.ps

