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THE SYMMETRIC MELLIN TRANSFORM
IN QUANTUM CALCULUS

KAMEL BRAHIM - BOCHRA NEFZI - ANIS BSAISSA

In this paper, we define the g-analogue of Mellin transform symmetric
under interchange of ¢ and ¢~!, and present some of its main properties
and explore the possibility of using the integral transform to solve a class
of differential g-differences equations.

1. Introduction

The study of g-analysis is an old subject, which dates back to the end of the
19" century. The subject of g-analysis concerns mainly the properties of the
so-called g-special functions, which are the extensions of the classical special
functions based on a parameter, or the base, g.

It is well known that one of the purposes of integral transforms like Fourier,
and Mellin is to solve differential equations using these g-special functions.

In this present paper, we are concerned with the study of the g-analogue of
the Mellin transform using the symmetric g-Jackson integral. We also discuss its
properties and we give its inversion formula. Furthermore, a g-analogue of the
Titchmarsh theorem is proved and we solve respectively the g-diffusion and the
g-wave equations using the symmetric g-derivative operator and the symmetric
g-Mellin transform.
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This paper is organized as follows. In Section 2, we present some prelim-
inary results and notations useful in the following sections. In Section 3 we
introduce the symmetric g-Mellin transform, we discuss its definition domain
and its properties. Special attention is devoted to the inversion formula. In Sec-
tion 4 we study the g-analogue of the convolution product. Finally, in Section 5,
a g-analogue of the Titchmarsh theorem and a solutions of the g-diffusion and
the g-wave equations are given.

2. Notations and preliminaries

Throughout this paper, we will fix ¢ > 0, g # 1. We recall some usual notions
and notations used in g-theory (see [l—i 5, 7-11)).

Let a € C, the symmetric g-numbers [a], and symmetric g-factorials [n] ! are
defined by

[, = qq__q"__l (1)
and s o -
i, = 11,3, .1, o)

Clearly, these two symmetric g-analogues satisfy

— — —n(n—1)

al,=q"'lalp,  and  [n] =g [n]p, 3)
where .
1=
It is easy to prove that
[n]q = [n]q*1 = _[_n]q7
[n+ml,=q"[m|,+q "[n],=q"[n],+q " [m], ©)
0], =0,01], = 1.
The symmetric g-shifted factorial is defined by (see [11]):
=N [@fat1],...jarm—1], ifm=1,2,...
a = q q q o , 6
<[ ]q>m { 1 ifm=0 ( )

(g7'—q

[ a7 e (), itm=1.2, (7
| ifm=0 7
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where

n—1

(a39)y =1, (a;q)nZH(l—aqk>, neN*. ®)

k=0

The symmetric g-hypergeometric series L, is defined by (see [11]):

©)

n‘i’n_1< ar,....a ;‘I;Z>:i (@ﬁq)m...([an]q)m o

bi,...,by—1 =0 (@q)m”(mq)m [;]qg.

For arbitrary number of numerator and denominator parameters, we introduce
the generalized symmetric g-hypergeometric series as:
for g €10,1],

rlpx< ai,...,a, ;q;z> _ i E?ﬁq)m-._ <[/C—l\:}q)m

bi,...,b /b\1/]q>m([a]q>m

m=0

and for g > 1,

(o) B

bise by = (i), (i) L= m

q

(11)
We introduce the symmetric g-binomial theorem, expressed with the symmetric
g-hypergeometric series by

- a - m z;
1‘1’0( B ;q;z) :mzz’o <W~]qq>!’”z’" = (Elq_jzj];))‘:- (12)

The symmetric g-derivative Dq f, of a function f is given by

flgx)—f(g~'x
qu(x>={ N lirxzo. (13)
(0 ) when 1(0) exists
=Dgf(q '),

where

[lgx)—f(x) ¢ 0,
_ | At ,
Daf () { Vil (qO) provided f’(0) exists (19
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For n € N, we note

Dl=D

¢ =Dy, Dy =D, (Dy"). (15)

The symmetric g-derivative has the following property

Dy (f (x)g(x) = f (qx) Dgg (x) + 8 (¢~ "x) Do f (x). (16)

The symmetric g-Jackson integrals are defined by (see [2])

a — +oo
Of(X)dqx:(q’l—q)a Y, flag")q", q€]01] (17)
n=13,...
/wf(X)CZIXZ\q“—q\ Y f@d,
0 n==+1,43,...

and the g-Jackson integrals are given by:

forg€]0,1[:
/Oaf(X)qu=(l—q)aff(aq”)q”, (18)
n=0
o oo
JA f<x>dqx=<1—q>gof<q">q"
400
i f( Zf —q);f(—q")q”, (19)

provided the sums converge absolutely. Using these symmetric g-integrals, we

set -
L (féw) —{f:/o |f(x)|£z;x<oo.}, (20)

where @qﬂr is the set
Re+ ={¢""", nez}, 1)

and we write for p > 0,

+oo
L@ ={r: [Tr@ldr <], 22)

Ly (Ry) = {fﬁ 1f1lp.q = (/_:m !f(x)l”dqx>ll) <oo.},

Rq,-ﬁ- = {qn7 ne Z} 7Rq = {iqna ne Z} . (23)

where
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The symmetric improper g-integral is defined by

/m/A ~ | 1 5 LT\ g2kt
f)dx=lq —q f< > : (24)
0 keZ A A
In the case A = ¢*, we can write
oo/qzn - ) —
/0 f(x)dyx = /0 f(x)dyx. (25)
The symmetric g-Jackson integral in a generic interval [a, ] is given by
b ~ b » a N
/ f(x)dyx = /0 fx)dgx— /0 f(x)dyx, (26)
a
we have, in particular
qul
d' —_ -1 _ m ( m) (27)
L fWdgx=(g"—q)q"f(d").
qm

Theorem 2.1.  [. If F is any anti g-derivative of the function f, namely
ﬁqF = f, continuous at x =0, then

a ~
| r0dpx=F@-F ). 28)
2. For any function f we have:
~ X ~
o, ([ rds) =re. @9)
3. A symmetric g-analogue of the integration by parts formula is given by

a - ~
| 1@0D g3 dyr= £ 0)g(6) = f (@3 @) (30
a ~
—I—/O g (q_lx) D, f (x)dgx.
The symmetric g-analogues of the exponential function are given by
~ 1 n(n—1) _pn
1 < 1% (ql—q)z> =Y,>0q9 2 ;l?] - for 0<g <1

bl 31)
o (1 1 not) o
Wil ee-a)z)=Eeog 7 oy forg>1

Ei—
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& =1%o (1;—:¢:2) Z~

n=>0 ]

and

=~ 1,1 nn—=1) _n
2‘P0< G A q>:Zn>o€1 2 i' for 0<g<1

i __ q
5(] - ~ 1’ 1 z _ n(n—1) -
2% e =Y.s0q9 2 = for g>1
- ]!
The symmetric g-Gamma function fq is defined by (see [3])

Fq (X) = q_(x_l)(x_Z)/zrqz (.X) y X 7& 07 _17 _27 RN

where
o x (659w
L () = (1—¢q) T o for ¢€]0,1]
- x(x—1 —Lg- .
' ¢ g 1)) for g1

It is well known that it satisfies
L,(x+1)= 1, Tg(x), Ty(1)=1 and I (x) =T, (x).

Theorem 2.2. For any x > 0 we have:

For g €10,1],
_ o of(a'=q) .
I,(x) =g x(x 3)/21{(12 (x)/o £~ leq L,
where ( ) 2)
-q°,—Lq7),,
Kp (x) = (>, —g20:2)
and -
- g '—q s .
Fq (x) q (x+1)/2/0 ¢ —1511 tdql‘

Moreover, if Log (c]‘1 — q) /Log (q) € 27, we obtain

~ —x(x+1)

() =q 5 /OtX*léq*’d”qt, g€lo,1].

(32)

(33)

(34)

(35)

(36)

(37

(3%)

(39

Recently, R. L. Rubin [9] introduced a g-derivative operator 8q as follows

9q(f)(2)=f(q dasde Z%(lf(cqz)Z)erf( 92) =2/ (=2)

(40)
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The ¢*-analogue of exponential function is given by
e (2:4%) = cos (—iz;q*) +isin (—iziq®) , (41)

where cosine and sine are the g-trigonometric functions defined by:

o 2n
cos (x;¢°) = g+ X , 42)
(x:q°) r;)( ) ]
sin (x' q2) = i (—1)" n(n+1) X2
’ = [2n—|—1]q!'

In [9], R.L. Rubin defned the g*>-analogue Fourier transform by

A too
Fxq*) =F,(f) (x) :K/_w f(t)e(—itx;q*)dgt, x€R, — (43)

where )
Ko D). . (44)
2(¢%¢%).. (1—q)"

We remind the following properties:

L If f (u) ,uf (u) € L} (Ry), then
9 (Fy(f))(x) = Fy(—iuf (u))(x). (45)
2. If f and 9, f € Ly (R,), then
Fyq(94f) (x) = ixFy(f) (x). (46)

3. For f € L (R,), we have

f(t)=K ijq (f(x)e (itx;qz) dgx, teR,. 47

3. The symmetric g-Mellin transform

Definition 3.1. Let f be a function defined on Rq,—i— we define the symmetric
g-Mellin transform of f as

()6 =010 = [+ 0de gelal @)
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Theorem 3.2. Let f be a function defined on ]Rq# and let u,v € R with u > v.
We suppose

FO=0, () and  f()= 0 (). (49)
Then M, (f) (s) exists in the strip (—u, —v).

Theorem 3.3. Iffis a function defined on R, , then M, (f) (s) is analytic on
the strip {0ty ,Bq.5) and we have

Vs € (a1 Bys) N (1) (5) = My [Log () FD](5). (50)

3.1. Properties

In the following subsection, we give some interesting properties of the symmet-
ric g-Mellin transform.

1. Fora=¢*, ne€Zands € (s, Bys), we have

M, [f (at)] (s) = a "My (f)(s). (51)

2. Fors € (—Bg.r,— 0 s ), we have
- 1 -
a1 (7)] =m0, 52)
3. Fors € (1—PBgs,1— ), we have

a1 (1)] = na-s. (53)

t t

4. For s € (ag.f,By.r), we have

My [tDp f ()] (s) = [—s] oMy (f) (s) . (54)

5. Fors e (ot s+ 1,By7+1), we have

P

My [Dpf (1)) (s) = [1 =] 2My (f) (s —1). (55)

By induction, we obtain that, for n € N* and s € <Ocq,f +n,Byr+ n> ,

e

1, (DR £ ()] () = [1=5] T = 5] oy () (s = ).
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6. Given p a positive odd integer and s € <p Olgp . £5 P ﬁqp’f>, we have
N =[] e (5).
p q° p

7. Let (W), be a sequence of R, 4 \ R, 4, let (A), be a sequence of C, and
let f be a suitable function, then we have

M, [Z /lkf(ﬂkl)] (s) = (Z kﬁ) My (f)(s),
=0 >0 Hi

provided the sums converge.

3.2. The symmetric g-Mellin inversion formula

Theorem 3.4. Let f be a function defined over Rq7+,and letc € oy, ¢, By [, then

- 1 1 c+im/log(q) _
vx c ]Rq7+, Og@/

. M, (f)(s)x"*ds = f(x). (56)
2in (¢~ = q) Je-in/10g(q) ()ls) )
Proof. Letc € oy s, B, ¢l and x = g%+ € R, ., we have:

1 IOg (q) c+im/log(q) _ ﬁv
7/ M, () (s) x~ds

2im (g7 —q) Je-in/108(q)
IOg (Q) /c+iﬂ/log(q) 2n+1 2n+1\% 2k+1 -5
- d
2 Jewin/108(q) ,;Zf () () ) () s

_ log.(CZ) /Hm/log Y £ (g () ( 2n— 2k>s ds,
2im Je ir/log(q ne?,

since the series ¥,cz f (¢"*!) (¢**~%)" converge uniformly with respect to s,
one gets:

1 log(q) /C+iﬂ/log(q)M () (s)x*ds

2im (q‘1 —q) Je—inrog(q) ?
_ ilog(q) Z 20K f (1) / 7/log(q) 21 gy
2in ~/log(q)
—_ Z q2c n— k q2n+l) 6n,k
nez

:f(qzkﬂ) 0
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3.3. Symmetric g-Mellin’s convolution product

Definition 3.5. The symmetric g-Mellin convolution product of the functions f
and g is the function f *i1, & defined by

) d -
S g = [ s (ah) L S NED)
provided the symmetric g-integral exists.

Theorem 3.6. If the symmetric g-Mellin convolution product of f and g exists,

then
S, 8= 8%,/ (58)
Wy [ £, 8] () = 47", (1) (5) M, (8) (5). (59)
Proof.
[f*Mg /XS f*Mg()qx
— (g —q / (Zf (1) ~2n ))dqx
nez
Q) Y () / g (v~ 2") dyx
nez
= (g =q) X £ (@) (a7") " M, (2) (s)
nez
=q "M, () (s)My (f)(s). -
Theorem 3.7. For the suitable functions f and g, we have the following rela-
tions:

o c+im/log(q) - * 7
1“50%))/6* . Mq(f)(s)Mq(g)(l—s)dSZ/O g(x) f (x)dyx

2i7t (¢~ = q) Je—in/tog(a)
(60)
and
1 log(q) /C+iﬂ/ loglg) ~ /m
(61)

Proof. In order to prove the first relation, let ¢ € R such that ¢ € Jot, 7, By [N
11 =By 1 —0gel. WeputI(c)=[c—in/Log(q),c+in/Log(q)]. From the
symmetric g-Mellin inversion formula, and the relation

() g )] = 2 o) sup (¥,

sel(c)

sup
s€l(c)
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we obtain

—_ M, S)M 1—ys)ds
2T (q_l —6]) c—in/log(q) Q(f)( ) q(g)( )

c+in/log(q) s -
st @ [ Y () g () a1, (1) ) ds

" 2ix —in/l0g(q) ney,

_ log(q) g (¢ / ctim/logla) =) 1\ s
= M s)ds
2im g‘z o &) M)

1 log(q) /°° (/C+i7f/10g(q) - ) .
= oM M, ds |d
2inlg —q) o $Y e—in/logla) 1()ls)ds |dx

= /Ooog(x)f(x)ciqx. O

4. Applications
4.1. Symmetric g-integral equations

Theorem 4.1. Let K and g be functions defined on IR%JF. We suppose that
<th7L, Bq7L> N <1 — By 1 — th7g> is not empty, for a suitable real c, we put

~ -1 c+im/log(q) -5
VxeRy4, L(x) = q(f(@/ A (62)
2in (7' —q) Je—injroglq) My (K)(1—s)
Then the q-symmetric integral equation
| r@K () dr =g ). (R, (63)
has as solution
/ gt q xt d t X € Rq_ﬂ_. (64)
In addition, if
My (K) (s) M, (K) (1 =5) = ¢, (65)
then equation (63) has the solution:
flx)= /0 g(t)K (g 'xt) dyt, xeR, . (66)

Proof. By taking the symmetric g-Mellin transform in the equation (63), we
obtain

My (f) ()M, (K) (1—5) = ¢""My(g) (1 —5).
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From the relation (62), we deduce that
My (f)(s) ="M, (L) (s)M, (g) (1—5).

Then, for ¢’ € (0.1, Bgr) N (1= Bgg, 1 — 0tgq), We get:

Vx e RQ;JH
Pl = 5D [ 0 ), ) (1) (g 71)
log (q) /c“+m/log<q> N | )
T in(a—a) M, |L(q 'xt)|(s)M, 1 —s)ds.
2175(‘1_1 _61) c—in/log(q) q [ ((] )] ( ) q (g)< )

Finally, by the relation (60), we have:

vxeR, ., flx)= /Owg(t)L (g 'xt)dyt. O

4.2. Symmetric g-analogue of the Titchmarsh theorem

Theorem 4.2. Let K be a function defined on Rq7+. Suppose that <Ocq7K, Bq.,K>
is not empty. If the integral equation

7= [ K ) dge | K (g7 ) £0) (67

has a suitable solution f then, for every s € C such that s and 1 — s are in
(0., Bg.x ), we have

My (K) (s) My (K) (1=5) =q".

Proof. The integral equation (67) is written as a pair of reciprocal formulas as
follows

1 glx)= /:K (g7 "'yx) £ () dyy,

2. flx)= /o K (g7 "yx) g (v) dgy.

By taking the symmetric g-Mellin transform in (1) and (2 ) at s, we get

My(g) (s) = q'My (f) (1—5) My (K) (5),
and
My () (s) = "M, (8) (1—5) My (K) (s),

changing s into 1 — s in one of these equations and multiplying, we deduce that

M, (K) (s) M, (K) (1—5) =" O
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4.3. Symmetric g-diffusion equation

—1_
We assume that % € 27Z. We consider the following symmetric g-

diffusion equation:
D u(x,t) = (Bq’x)zu (x,qzt) , x€ER andteR, 4, (68)
subject to the initial condition
u(x,0)=f(x),  feLf(Ry). (69)

By taking a the ¢*>-Fourier transform in x and the symmetric g-Mellin transform
in ¢, we obtain

—_—~—

[s—1],,U(A,s—1) =A% >U (&,). (70)
The general solution is [6]
U(A,s)=CA)A" =g, (s), (71)

where C (1) is a function of A only. For the relation (39), the inversion symmet-
ric g-Mellin transform of )L*zsqs(”l)l:qz (s)is

log(q) /C+i”/]0g(Q) 2 (st D)f B a2
—_ AT ST t%ds = . 72
2im(q~" —q) Je—in/10g(q) 1 #S)ds =6 (72)
Then
oo -
u(x,t) = K/_ C(A) fq}lzte (iAx, q2) dgh. (73)
For t =0, we get
+o0
u(x,00=K [ CA)e(ilx,q*)d,A = f(x), (74)
SO
oo A
C(A)=K i f(x)e(—ikx,qz) dqx:f(l,qz). (75)

Therefore, a solution of (68) is

u(x,t) = K/+mf (l,qz) éq_z)”z’e (ilx,qz) dgA. (76)
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4.4. Symmetric g-wave equation

Log(q ' —q)

T(q) € 2Z. Let’s consider the following symmetric g-

We assume that
wave equation:

(quvt)zu (x,qut) = (aw)zu (x, qzt) , x€ER jandteR, ., (17)
with the initial conditions
u(x,0) = f(x>7 quz,tu (x,0) =g (X) .8 € LZ (Rq> : (78)

By applying the ¢*>-Fourier and the symmetric g-Mellin transform, we ob-
tain

—~—

[s—1]2s—2]2U (A,s=2) = =A% *> VU (4,5). (79)
A solution of the equation (79) is given by:
U(A,s) = [C(A)(—id) " +C (M) (ir) ] ¢TI 2 (s) (80)

where C (A1) and C’ (1) are functions of A only.
From the symmetric g-Mellin inversion formula, we get

~ilt ~—iAt

a(A,t)=|C(A)E C’(A)éqz : (81)

where i (A,t) is the g*>-Fourier transform of u (x,) with respect to x.
Now we rewrite (81) in terms of the symmetric g-Sine and the g-Cosine function
which are defined by

S-;;lq( ) gq éq ’ /C'\OEq (X) 5‘] + gq ) (82)
2i 2
The result is
i (A,1) = D(A)Cos, (At) +D' (A)Sin,p (A1), (83)
where D (A) and D’ (1) are functions of A.
Now, the inverse ¢*>-Fourier transform of (83) gives:
+oo P —
(x,t)=K / A)Cos,p (At)+D' () Sin, (/lz)) e (iAx,q*)dA. (84)

By taking r = 0 in (84), we get D(A) = f (A.4%).
On the other hand, by using the relations

quJgﬁ’lqz (ll) = —lg;';lqz (C]z)Ll) )
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and - -
D Cos, (At) = ACos, (qzlt) ,

we get

g(A,¢*) =D (A)A. (85)
Therefore the final solution of (77) is

Foo _ 5 (L. q%) —
u(x,t) = K/ <f (A,q%) Cosp (At) + g(l’q)Sinqz (lt)) e (iAx,q*) dyA.
(86)
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