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THE SYMMETRIC MELLIN TRANSFORM
IN QUANTUM CALCULUS

KAMEL BRAHIM - BOCHRA NEFZI - ANIS BSAISSA

In this paper, we define the q-analogue of Mellin transform symmetric
under interchange of q and q−1, and present some of its main properties
and explore the possibility of using the integral transform to solve a class
of differential q-differences equations.

1. Introduction

The study of q-analysis is an old subject, which dates back to the end of the
19th century. The subject of q-analysis concerns mainly the properties of the
so-called q-special functions, which are the extensions of the classical special
functions based on a parameter, or the base, q.

It is well known that one of the purposes of integral transforms like Fourier,
and Mellin is to solve differential equations using these q-special functions.

In this present paper, we are concerned with the study of the q-analogue of
the Mellin transform using the symmetric q-Jackson integral. We also discuss its
properties and we give its inversion formula. Furthermore, a q-analogue of the
Titchmarsh theorem is proved and we solve respectively the q-diffusion and the
q-wave equations using the symmetric q-derivative operator and the symmetric
q-Mellin transform.
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This paper is organized as follows. In Section 2, we present some prelim-
inary results and notations useful in the following sections. In Section 3 we
introduce the symmetric q-Mellin transform, we discuss its definition domain
and its properties. Special attention is devoted to the inversion formula. In Sec-
tion 4 we study the q-analogue of the convolution product. Finally, in Section 5,
a q-analogue of the Titchmarsh theorem and a solutions of the q-diffusion and
the q-wave equations are given.

2. Notations and preliminaries

Throughout this paper, we will fix q > 0, q 6= 1. We recall some usual notions
and notations used in q-theory (see [1–3, 5, 7–11]).
Let a ∈ C, the symmetric q-numbers [̃a]q and symmetric q-factorials [̃n]q! are
defined by

[̃a]q =
qa−q−a

q−q−1 , (1)

and
[̃n]q! = [̃1]q [̃2]q . . . [̃n]q. (2)

Clearly, these two symmetric q-analogues satisfy

[̃a]q = q−a+1 [a]q2 and [̃n]q! = q
−n(n−1)

2 [n]q2!, (3)

where

[a]q =
1−qa

1−q
. (4)

It is easy to prove that

[̃n]q = [̃n]q−1 =−[̃−n]q,

˜[n+m]q = qn [̃m]q +q−m [̃n]q = qm [̃n]q +q−n [̃m]q (5)

[̃0]q = 0, [̃1]q = 1.

The symmetric q-shifted factorial is defined by (see [11]):

(
[̃a]q
)

m
=

{
[̃a]q [̃a+1]q . . . ˜[a+m−1]q if m = 1,2, . . .
1 if m = 0

, (6)

=

{
q
−m(m−1)

2
q−am

(q−1−q)m

(
q2a;q2

)
m if m = 1,2, . . .

1 if m = 0
, (7)
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where

(a;q)0 = 1, (a;q)n =
n−1

∏
k=0

(
1−aqk

)
, n ∈ N∗. (8)

The symmetric q-hypergeometric series nΨ̃n−1 is defined by (see [11]):

nΨ̃n−1

(
a1, . . . ,an

b1, . . . ,bn−1
;q;z

)
=

∞

∑
m=0

(
[̃a1]q

)
m
. . .
(
[̃an]q

)
m(

[̃b1]q

)
m
. . .
(
[̃bn−1]q

)
m

zm

[̃m]q!
. (9)

For arbitrary number of numerator and denominator parameters, we introduce
the generalized symmetric q-hypergeometric series as:

for q ∈ ]0,1[,

rΨ̃s

(
a1, . . . ,ar

b1, . . . ,bs
;q;z

)
=

∞

∑
m=0

(
[̃a1]q

)
m
. . .
(
[̃ar]q

)
m(

[̃b1]q

)
m
. . .
(
[̃bs]q

)
m

[
q
−m(m−1)

2

(q−1−q)m

]1+s−r
zm

[̃m]q!
,

(10)
and for q > 1,

rΨ̃s

(
a1, . . . ,ar

b1, . . . ,bs
;q;z

)
=

∞

∑
m=0

(
[̃a1]q

)
m
. . .
(
[̃ar]q

)
m(

[̃b1]q

)
m
. . .
(
[̃bs]q

)
m

[
q

m(m−1)
2

(q−q−1)m

]1+s−r
zm

[̃m]q!
.

(11)
We introduce the symmetric q-binomial theorem, expressed with the symmetric
q-hypergeometric series by

1Ψ̃0

(
a
− ;q;z

)
=

∞

∑
m=0

(
[̃a]q
)

m

[̃m]q!
zm =

(
qaz;q2

)
∞

(q−az;q2)
∞

. (12)

The symmetric q-derivative D̃q f , of a function f is given by

D̃q f (x) =

{
f (qx)− f(q−1x)

(q−q−1)x , i f x 6= 0,
f ′ (0) , when f ′ (0) exists

; (13)

= Dq2 f
(
q−1x

)
,

where

Dq f (x) =

{
f (qx)− f (x)
(q−1)x , if x 6= 0,

f ′ (0) , provided f ′ (0) exists
. (14)
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For n ∈ N, we note

D̃1
q = D̃q, D̃n

q = D̃q
(
D̃n−1

q
)
. (15)

The symmetric q-derivative has the following property

D̃q ( f (x)g(x)) = f (qx) D̃qg(x)+g
(
q−1x

)
D̃q f (x) . (16)

The symmetric q-Jackson integrals are defined by (see [2])∫ a

0
f (x) d̃qx =

(
q−1−q

)
a

+∞

∑
n=1,3,...

f (aqn)qn, q ∈]0,1[ (17)∫
∞

0
f (x) d̃qx =

∣∣q−1−q
∣∣ ∑

n=±1,±3,...
f (qn)qn,

and the q-Jackson integrals are given by:
for q ∈ ]0,1[ : ∫ a

0
f (x)dqx = (1−q)a

+∞

∑
n=0

f (aqn)qn, (18)

∫
∞

0
f (x)dqx = (1−q)

+∞

∑
n=0

f (qn)qn,

∫ +∞

−∞

f (x)dqx = (1−q)
+∞

∑
n=0

f (qn)qn +(1−q)
+∞

∑
n=0

f (−qn)qn, (19)

provided the sums converge absolutely. Using these symmetric q-integrals, we
set

L1
q

(
R̃q,+

)
=

{
f :
∫

∞

0
| f (x)| d̃qx < ∞.

}
, (20)

where R̃q,+ is the set
R̃q,+ =

{
q2n+1, n ∈ Z

}
, (21)

and we write for p > 0,

L1
q (Rq,+) =

{
f :
∫ +∞

0
| f (x)| dqx < ∞.

}
, (22)

Lp
q (Rq) =

{
f : ‖ f‖p,q =

(∫ +∞

−∞

| f (x)|p dqx
) 1

p

< ∞.

}
,

where

Rq,+ = {qn, n ∈ Z} ,Rq = {±qn, n ∈ Z} . (23)
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The symmetric improper q-integral is defined by∫
∞/A

0
f (x) d̃qx =

∣∣q−1−q
∣∣∑

k∈Z
f
(

q2k+1

A

)
q2k+1

A
. (24)

In the case A = q2n, we can write

∫
∞/q2n

0
f (x) d̃qx =

∫
∞

0
f (x) d̃qx. (25)

The symmetric q-Jackson integral in a generic interval [a,b] is given by∫ b

a
f (x) d̃qx =

∫ b

0
f (x) d̃qx−

∫ a

0
f (x) d̃qx, (26)

we have, in particular

∫ qm−1

qm+1
f (x) d̃qx =

(
q−1−q

)
qm f (qm) . (27)

Theorem 2.1. 1. If F is any anti q-derivative of the function f , namely
D̃qF = f , continuous at x = 0, then∫ a

0
f (x) d̃qx = F (a)−F (0) . (28)

2. For any function f we have:

D̃q

(∫ x

0
f (t) d̃qt

)
= f (x) . (29)

3. A symmetric q-analogue of the integration by parts formula is given by∫ a

0
f (qx) D̃qg(x) d̃qx = f (b)g(b)− f (a)g(a) (30)

+
∫ a

0
g
(
q−1x

)
D̃q f (x) d̃qx.

The symmetric q-analogues of the exponential function are given by

Ẽz
q =


1Ψ̃1

(
1
1

;q;
(
q−1−q

)
z
)
= ∑n>0 q−

n(n−1)
2 zn

[̃n]q!
for 0 < q < 1

1Ψ̃1

(
1
1

;q;
(
q−q−1

)
z
)
= ∑n>0 q

n(n−1)
2 zn

[̃n]q!
for q > 1

(31)
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ẽz
q =1 Ψ̃0 (1;−;q;z) = ∑

n>0

zn

[̃n]q!
, (32)

and

ξ̃
z
q =


2Ψ̃0

(
1,1
− ;q; z

q−1−q

)
= ∑n>0 q

n(n−1)
2 zn

[̃n]q!
for 0 < q < 1

2Ψ̃0

(
1,1
− ;q; z

q−q−1

)
= ∑n>0 q−

n(n−1)
2 zn

[̃n]q!
for q > 1

.

The symmetric q-Gamma function Γ̃q is defined by (see [3])

Γ̃q (x) = q−(x−1)(x−2)/2
Γq2 (x) , x 6= 0,−1,−2, . . . , (33)

where

Γq (x) =

 (1−q)1−x (q;q)
∞

(qx;q)
∞

for q ∈ ]0,1[

q
x(x−1)

2 (q−1)1−x (q−1;q−1)
∞

(q−x;q−1)
∞

for q > 1
. (34)

It is well known that it satisfies

Γ̃q (x+1) = [̃x]qΓ̃q (x) , Γ̃q (1) = 1 and Γ̃q−1 (x) = Γ̃q (x) . (35)

Theorem 2.2. For any x > 0 we have:
For q ∈ ]0,1[,

Γ̃q (x) = q−x(x−3)/2Kq2 (x)
∫

∞/(q−1−q)

0
tx−1Ẽ−t

q d̃qt, (36)

where

Kq2 (x) =

(
−q2,−1;q2

)
∞(

−q2x,−q2(1−x);q2
)

∞

, (37)

and

Γ̃q (x) = q−x(x+1)/2
∫

∞/(q−1−q)

0
tx−1

ξ̃
−t
q d̃qt. (38)

Moreover, if Log
(
q−1−q

)
/Log(q) ∈ 2Z, we obtain

Γ̃q (x) = q
−x(x+1)

2

∫
∞

0
tx−1

ξ̃
−t
q d̃qt, q ∈ ]0,1[ . (39)

Recently, R. L. Rubin [9] introduced a q-derivative operator ∂q as follows

∂q ( f )(z) =
f
(
q−1z

)
+ f

(
−q−1z

)
− f (qz)+ f (−qz)−2 f (−z)

2(1−q)z
. (40)
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The q2-analogue of exponential function is given by

e
(
z;q2)= cos

(
−iz;q2)+ isin

(
−iz;q2) , (41)

where cosine and sine are the q-trigonometric functions defined by:

cos
(
x;q2)= ∞

∑
n=0

(−1)n qn(n+1) x2n

[2n]q!
, (42)

sin
(
x;q2)= ∞

∑
n=0

(−1)n qn(n+1) x2n+1

[2n+1]q!
.

In [9], R.L. Rubin defned the q2-analogue Fourier transform by

f̂
(
x;q2)= Fq ( f )(x) = K

∫ +∞

−∞

f (t)e
(
−itx;q2)dqt, x ∈ Rq, (43)

where

K =

(
q;q2

)
∞

2(q2;q2)
∞
(1−q)1/2 . (44)

We remind the following properties:

1. If f (u) ,u f (u) ∈ L1
q (Rq), then

∂q(Fq( f ))(x) = Fq(−iu f (u))(x). (45)

2. If f and ∂q f ∈ L1
q (Rq), then

Fq(∂q f )(x) = ixFq( f )(x). (46)

3. For f ∈ L2
q (Rq), we have

f (t) = K
∫ +∞

−∞

Fq ( f )(x)e
(
itx;q2)dqx, t ∈ Rq. (47)

3. The symmetric q-Mellin transform

Definition 3.1. Let f be a function defined on R̃q,+ we define the symmetric
q-Mellin transform of f as

M̃q ( f )(s) = M̃q [ f (t)] (s) =
∫

∞

0
ts−1 f (t) d̃qt q ∈ ]0,1[ . (48)
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Theorem 3.2. Let f be a function defined on R̃q,+ and let u,v ∈ R with u > v.
We suppose

f (x) = Oo+ (x
u) and f (x) = O+∞ (xv) . (49)

Then M̃q ( f )(s) exists in the strip 〈−u,−v〉.

Theorem 3.3. If f is a function defined on R̃q,+, then M̃q ( f )(s) is analytic on
the strip

〈
αq, f ,βq, f

〉
and we have

∀s ∈
〈
αq, f ,βq, f

〉
,

d
ds

M̃q ( f )(s) = M̃q [Log(t) f (t)] (s) . (50)

3.1. Properties

In the following subsection, we give some interesting properties of the symmet-
ric q-Mellin transform.

1. For a = q2n, n ∈ Z and s ∈
〈
αq, f ,βq, f

〉
, we have

M̃q [ f (at)] (s) = a−sM̃q ( f )(s) . (51)

2. For s ∈
〈
−βq, f ,−αq, f

〉
, we have

M̃q

[
f
(

1
t

)]
(s) = M̃q ( f )(−s) . (52)

3. For s ∈
〈
1−βq, f ,1−αq, f

〉
, we have

M̃q

[
1
t

f
(

1
t

)]
(s) = M̃q ( f )(1− s) . (53)

4. For s ∈
〈
αq, f ,βq, f

〉
, we have

M̃q
[
tD̃q2 f (t)

]
(s) = [̃−s]q2M̃q ( f )(s) . (54)

5. For s ∈
〈
αq, f +1,βq, f +1

〉
, we have

M̃q
[
D̃q2 f (t)

]
(s) = [̃1− s]q2M̃q ( f )(s−1) . (55)

By induction, we obtain that, for n ∈ N∗ and s ∈
〈
αq, f +n,βq, f +n

〉
,

M̃q

[
D̃(n)

q2 f (t)
]
(s) = [̃1− s]q2 . . . [̃n− s]q2M̃q ( f )(s−n) .
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6. Given ρ a positive odd integer and s ∈
〈
ραqρ , f ,ρβqρ , f

〉
, we have

M̃q [ f (tρ)] (s) =
[̃

1
ρ

]
qρ

M̃qρ ( f )
(

s
ρ

)
.

7. Let (µk)k be a sequence of Rq,+ \ R̃q,+, let (λk)k be a sequence of C, and
let f be a suitable function, then we have

M̃q

[
∑
k>0

λk f (µkt)

]
(s) =

(
∑
k>0

λk

µs
k

)
M̃q ( f )(s) ,

provided the sums converge.

3.2. The symmetric q-Mellin inversion formula

Theorem 3.4. Let f be a function defined over R̃q,+,and let c ∈ ]αq, f ,βq, f [, then

∀x ∈ R̃q,+,
1

2iπ
log(q)

(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
M̃q ( f )(s)x−sds = f (x) . (56)

Proof. Let c ∈ ]αq, f ,βq, f [ and x = q2k+1 ∈ R̃q,+, we have:

1
2iπ

log(q)
(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
M̃q ( f )(s)x−sds

=
log(q)

2iπ

∫ c+iπ/ log(q)

c−iπ/ log(q)

(
∑
n∈Z

f
(
q2n+1)(q2n+1)s

)(
q2k+1

)−s
ds

=
log(q)

2iπ

∫ c+iπ/ log(q)

c−iπ/ log(q)

(
∑
n∈Z

f
(
q2n+1)(q2n−2k

)s
)

ds,

since the series ∑n∈Z f
(
q2n+1

)(
q2n−2k

)s converge uniformly with respect to s,
one gets:

1
2iπ

log(q)
(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
M̃q ( f )(s)x−sds

=
i log(q)

2iπ ∑
n∈Z

q2c(n−k) f
(
q2n+1)∫ π/ log(q)

−π/ log(q)
q2i(n−k)tdt

= ∑
n∈Z

q2c(n−k) f
(
q2n+1)

δn,k

= f
(

q2k+1
)
.
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3.3. Symmetric q-Mellin’s convolution product

Definition 3.5. The symmetric q-Mellin convolution product of the functions f
and g is the function f ?M̃q

g defined by

f ?M̃q
g(x) =

∫
∞

0
f (t)g

(
q

x
t

) d̃qt
t
, x ∈ R̃q,+, (57)

provided the symmetric q-integral exists.

Theorem 3.6. If the symmetric q-Mellin convolution product of f and g exists,
then

f ?M̃q
g = g?M̃q

f , (58)

M̃q

[
f ?M̃q

g
]
(s) = q−sM̃q ( f )(s)M̃q (g)(s) . (59)

Proof.

M̃q

[
f ?M̃q

g
]
(s) =

∫
∞

0
xs−1 f ?M̃q

g(x) d̃qx

=
(
q−1−q

)∫ ∞

0
xs−1

(
∑
n∈Z

f
(
q2n+1)g

(
xq−2n)) d̃qx

=
(
q−1−q

)
∑
n∈Z

f
(
q2n+1)∫ ∞

0
xs−1g

(
xq−2n) d̃qx

=
(
q−1−q

)
∑
n∈Z

f
(
q2n+1)(q−2n)−s

M̃q (g)(s)

= q−sM̃q (g)(s)M̃q ( f )(s) .

Theorem 3.7. For the suitable functions f and g, we have the following rela-
tions:

1
2iπ

log(q)
(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
M̃q ( f )(s)M̃q (g)(1− s)ds =

∫
∞

0
g(x) f (x) d̃qx,

(60)
and

1
2iπ

log(q)
(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
q−sM̃q ( f )(s)M̃q (g)(s)ds =

∫
∞

0
f (t)g

(q
t

) d̃qt
t
.

(61)

Proof. In order to prove the first relation, let c ∈ R such that c ∈ ]αq, f ,βq, f [∩
]1−βq,g,1−αq,g[. We put I(c) = [c− iπ/Log(q) ,c+ iπ/Log(q)]. From the
symmetric q-Mellin inversion formula, and the relation

sup
s∈I(c)

∣∣∣(q2n+1)1−s
g(q2n+1)M̃q( f )(s)

∣∣∣= q(1−c)(2n+1) ∣∣g(q2n+1)
∣∣ sup

s∈I(c)

∣∣M̃q( f )(s)
∣∣ ,
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we obtain

1
2iπ

log(q)
(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
M̃q ( f )(s)M̃q (g)(1− s)ds

=
1

2iπ
log(q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
∑
n∈Z

(
q2n+1)1−s

g
(
q2n+1)M̃q ( f )(s)ds

=
log(q)

2iπ ∑
n∈Z

q2n+1g
(
q2n+1)∫ c+iπ/ log(q)

c−iπ/ log(q)

(
q2n+1)−s

M̃q ( f )(s)ds

=
1

2iπ
log(q)

(q−1−q)

∫
∞

0
g(x)

(∫ c+iπ/ log(q)

c−iπ/ log(q)
x−sM̃q ( f )(s)ds

)
d̃qx

=
∫

∞

0
g(x) f (x) d̃qx.

4. Applications

4.1. Symmetric q-integral equations

Theorem 4.1. Let K and g be functions defined on R̃q,+. We suppose that〈
αq,L,βq,L

〉
∩
〈
1−βq,g,1−αq,g

〉
is not empty, for a suitable real c, we put

∀x ∈ R̃q,+, L(x) =
q−1

2iπ
log(q)

(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)

x−s

M̃q (K)(1− s)
ds. (62)

Then the q-symmetric integral equation∫
∞

0
f (x)K

(
q−1xt

)
d̃qx = g(t) , t ∈ R̃q,+, (63)

has as solution

f (x) =
∫

∞

0
g(t)L

(
q−1xt

)
d̃qt, x ∈ R̃q,+. (64)

In addition, if
M̃q (K)(s)M̃q (K)(1− s) = q−1, (65)

then equation (63) has the solution:

f (x) =
∫

∞

0
g(t)K

(
q−1xt

)
d̃qt, x ∈ R̃q,+. (66)

Proof. By taking the symmetric q-Mellin transform in the equation (63), we
obtain

M̃q ( f )(s)M̃q (K)(1− s) = qs−1M̃q (g)(1− s) .
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From the relation (62), we deduce that

M̃q ( f )(s) = qsM̃q (L)(s)M̃q (g)(1− s) .

Then, for c′ ∈
〈
αq,L,βq,L

〉
∩
〈
1−βq,g,1−αq,g

〉
, we get:

∀x ∈ R̃q,+,

f (x) =
log(q)

2iπ (q−1−q)

∫ c′+iπ/ log(q)

c′−iπ/ log(q)
M̃q (L)(s)M̃q (g)(1− s)

(
q−1x

)−s
ds

=
log(q)

2iπ (q−1−q)

∫ c′+iπ/ log(q)

c′−iπ/ log(q)
M̃q
[
L
(
q−1xt

)]
(s)M̃q (g)(1− s)ds.

Finally, by the relation (60), we have:

∀x ∈ R̃q,+, f (x) =
∫

∞

0
g(t)L

(
q−1xt

)
d̃qt.

4.2. Symmetric q-analogue of the Titchmarsh theorem

Theorem 4.2. Let K be a function defined on R̃q,+. Suppose that
〈
αq,K ,βq,K

〉
is not empty. If the integral equation

f (x) =
∫

∞

0
K
(
q−1xu

)
d̃qu

∫
∞

0
K
(
q−1yu

)
f (y) d̃qy, (67)

has a suitable solution f then, for every s ∈ C such that s and 1− s are in〈
αq,K ,βq,K

〉
, we have

M̃q (K)(s)M̃q (K)(1− s) = q−1.

Proof. The integral equation (67) is written as a pair of reciprocal formulas as
follows

1. g(x) =
∫

∞

0
K
(
q−1yx

)
f (y) d̃qy,

2. f (x) =
∫

∞

0
K
(
q−1yx

)
g(y) d̃qy.

By taking the symmetric q-Mellin transform in (1) and (2 ) at s, we get

M̃q (g)(s) = qsM̃q ( f )(1− s)M̃q (K)(s) ,

and
M̃q ( f )(s) = qsM̃q (g)(1− s)M̃q (K)(s) ,

changing s into 1− s in one of these equations and multiplying, we deduce that

M̃q (K)(s)M̃q (K)(1− s) = q−1.
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4.3. Symmetric q-diffusion equation

We assume that
Log(q−1−q)

Log(q) ∈ 2Z. We consider the following symmetric q-
diffusion equation:

D̃q2,tu(x, t) = (∂q,x)
2 u
(
x,q2t

)
, x ∈ Rq and t ∈ R̃q,+, (68)

subject to the initial condition

u(x,0) = f (x) , f ∈ L2
q (Rq) . (69)

By taking a the q2-Fourier transform in x and the symmetric q-Mellin transform
in t, we obtain

[̃s−1]q2U (λ ,s−1) = λ
2q−2sU (ξ ,s) . (70)

The general solution is [6]

U (λ ,s) =C (λ )λ
−2sqs(s+1)

Γ̃q2 (s) , (71)

where C (λ ) is a function of λ only. For the relation (39), the inversion symmet-
ric q-Mellin transform of λ

−2sqs(s+1)
Γ̃q2(s) is

log(q)
2iπ(q−1−q)

∫ c+iπ/ log(q)

c−iπ/ log(q)
λ
−2sqs(s+1)

Γ̃q2(s)t−sds = ξ̃
−λ 2t
q2 . (72)

Then

u(x, t) = K
∫ +∞

−∞

C (λ ) ξ̃
−λ 2t
q2 e

(
iλx,q2)dqλ . (73)

For t = 0, we get

u(x,0) = K
∫ +∞

−∞

C (λ )e
(
iλx,q2)dqλ = f (x) , (74)

so

C (λ ) = K
∫ +∞

−∞

f (x)e
(
−iλx,q2)dqx = f̂

(
λ ,q2) . (75)

Therefore, a solution of (68) is

u(x, t) = K
∫ +∞

−∞

f̂
(
λ ,q2)

ξ̃
−λ 2t
q2 e

(
iλx,q2)dqλ . (76)
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4.4. Symmetric q-wave equation

We assume that
Log(q−1−q)

Log(q) ∈ 2Z. Let’s consider the following symmetric q-
wave equation:(

D̃q2,t
)2 u

(
x,q−2t

)
= (∂q,x)

2 u
(
x,q2t

)
, x ∈ Rq and t ∈ R̃q,+, (77)

with the initial conditions

u(x,0) = f (x), D̃q2,tu(x,0) = g(x) , f ,g ∈ L2
q (Rq) . (78)

By applying the q2-Fourier and the symmetric q-Mellin transform, we ob-
tain

[̃s−1]q2 [̃s−2]q2U (λ ,s−2) =−λ
2q−2(2s−1)U (λ ,s) . (79)

A solution of the equation (79) is given by:

U (λ ,s) =
[
C (λ )(−iλ )−s +C′ (λ )(iλ )−s]qs(s+1)

Γ̃q2 (s) , (80)

where C (λ ) and C′ (λ ) are functions of λ only.
From the symmetric q-Mellin inversion formula, we get

û(λ , t) =
[
C (λ ) ξ̃

iλ t
q2 +C′ (λ ) ξ̃

−iλ t
q2

]
, (81)

where û(λ , t) is the q2-Fourier transform of u(x, t) with respect to x.
Now we rewrite (81) in terms of the symmetric q-Sine and the q-Cosine function
which are defined by

S̃inq (x) =
ξ̃q

ix
− ξ̃q

−ix

2i
, C̃osq (x) =

ξ̃q
ix
+ ξ̃q

−ix

2
. (82)

The result is

û(λ , t) = D(λ )C̃osq2 (λ t)+D′ (λ ) S̃inq2 (λ t) , (83)

where D(λ ) and D′ (λ ) are functions of λ .
Now, the inverse q2-Fourier transform of (83) gives:

u(x, t) = K
∫ +∞

−∞

(
D(λ )C̃osq2 (λ t)+D′ (λ ) S̃inq2 (λ t)

)
e
(
iλx,q2)dqλ . (84)

By taking t = 0 in (84), we get D(λ ) = f̂
(
λ ,q2

)
.

On the other hand, by using the relations

D̃q2,t S̃inq2 (λ t) =−λ S̃inq2

(
q2

λ t
)
,
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and
D̃q2,tC̃osq2 (λ t) = λC̃osq2

(
q2

λ t
)
,

we get
ĝ
(
λ ,q2)= D′ (λ )λ . (85)

Therefore the final solution of (77) is

u(x, t) = K
∫ +∞

−∞

(
f̂
(
λ ,q2)C̃osq2 (λ t)+

ĝ
(
λ ,q2

)
λ

S̃inq2 (λ t)

)
e
(
iλx,q2)dqλ .

(86)
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