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NEW INFORMATION INEQUALITIES ON NEW
GENERALIZED f -DIVERGENCE AND APPLICATIONS

KAMAL C. JAIN - PRAPHULL CHHABRA

In this work, we introduce new information inequalities on new gener-
alized f -divergence in terms of well known Chi-square divergence. Fur-
ther we obtain relations of other standard divergences as an application
of new inequalities by using Logarithmic power mean and Identric mean,
together with numerical verification by taking two discrete probability
distributions: Binomial and Poisson.

1. Introduction

Divergence measures are basically measures of distance between two probabil-
ity distributions or compare two probability distributions.Divergence measure
must take its minimum value zero when probability distributions are equal and
maximum when probability distributions are perpendicular to each other. So,
any divergence measure must increase as probability distributions move apart.
Divergence measures have been demonstrated very useful in a variety of dis-
ciplines such as economics and political science (1972, 1967) [30, 31], biol-
ogy (1975) [23], analysis of contingency tables (1978) [12], approximation of
probability distributions (1968, 1980) [7, 20], signal processing (1967, 1967)
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[18, 19], pattern recognition (1978, 1973, 1990) [2, 6, 17], color image segmen-
tation (2010) [21], 3D image segmentation and word alignment (2006) [29],
cost- sensitive classification for medical diagnosis (2009) [25], magnetic reso-
nance image analysis (2010) [32] etc.
Also we can use divergences in fuzzy mathematics as fuzzy directed divergences
and fuzzy entropies (2010, 2004, 2012) [1, 13, 16], which are very useful to
find the amount of average ambiguity or difficulty in making a decision whether
an element belongs to a set or not. Fuzzy information measures have recently
found applications to fuzzy aircraft control, fuzzy traffic control, engineering,
medicines, computer science, management and decision making etc.
Without essential loss of insight, we have restricted ourselves to discrete prob-
ability distributions, so let Γn = {P = (p1, p2, p3, . . . , pn) : pi > 0,∑n

i=1 pi = 1},
n ≥ 2 be the set of all complete finite discrete probability distributions. The
restriction here to discrete distributions is only for convenience, similar results
hold for continuous distributions. If we take pi ≥ 0 for some i = 1,2,3 . . . ,n,
then we have to suppose that 0 f (0) = 0 f

(0
0

)
= 0.

Some generalized functional information divergence measures had been intro-
duced, characterized and applied in variety of fields, such as: Csiszars f -diver-
gence (1974, 1967) [8, 9], Bregmans f -divergence (1967) [4], Burbea- Raos
f -divergence (1982) [5], Renyis like f -divergence (1961) [24] etc. Similarly,
Jain and Saraswat (2012) [15] defined new generalized f -divergence measure,
which is given by

S f (P,Q) =
n

∑
i=1

qi f
(

pi +qi

2qi

)
, (1)

where f : (0,∞)→ R (set of real no.) is real, continuous, and convex function
and P = (p1, p2, . . . , pn) ,Q = (q1,q2, . . . ,qn) ∈ Γn, where pi and qi are prob-
ability mass functions. Many divergence measures can be obtained from the
generalized f -divergence (1) by suitably defining the function f .
Some resultant divergences by S f (P,Q), are as follows.
• If we take f (t) =− log t in (1), we obtain

S f (P,Q) =
n

∑
i=1

qi log
(

2qi

pi +qi

)
= F (Q,P) , (2)

where F (Q,P) is called adjoint of the Relative JS divergence F (P,Q) (1969)
[26].
• If we take f (t) = (t−1)2

t in (1), we obtain

S f (P,Q) =
1
2

n

∑
i=1

(pi−qi)
2

pi +qi
=

1
2

∆(P,Q) , (3)
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where ∆(P,Q) is called the Triangular discrimination (1978) [10].
• If we take f (t) = t log t in (1), we obtain

S f (P,Q) =
n

∑
i=1

pi +qi

2
log
(

pi +qi

2qi

)
= G(Q,P) , (4)

where G(Q,P) is called adjoint of the Relative AG divergence G(P,Q) (1995)
[28].
• If we take f (t) = (t−1) log t in (1), we obtain

S f (P,Q) =
1
2

n

∑
i=1

(pi−qi) log
(

pi +qi

2qi

)
=

1
2

JR (P,Q) , (5)

where JR (P,Q) is called the Relative J-divergence (2001) [11].
• If we take f (t) = (t−1)2 in (1), we obtain

S f (P,Q) =
1
4

n

∑
i=1

(pi−qi)
2

qi
=

1
4

χ
2 (P,Q) , (6)

where χ2 (P,Q) is called the Chi- square divergence or Pearson divergence mea-
sure (1900) [22].
Similarly, we can obtain many divergences by using linear convex functions.
Since these divergences are not worthful in practice, therefore we can skip them.
We can see that, divergence (3) is symmetric while (2), (4), (5), and (6) are non-
symmetric with respect to probability distribution.
Now, there are two generalized means which are being used in this paper for
calculations only. These are as follows.

Lp (a,b) =


bp+1−ap+1

(p+1)(b−a) if p 6=−1,0
logb−loga

b−a if p =−1
1 if p = 0

a,b > 0, a 6= b. (7)

I (a,b) =

1
e

(
bb

aa

) 1
b−1

if a 6= b

b if a = b
a,b > 0. (8)

Means (7) and (8) are called p- Logarithmic power mean and Identric mean
respectively.

2. New information inequalities

In this section, we introduce new information inequalities on S f (P,Q). Such
inequalities are for instance needed in order to calculate the relative efficiency
of two divergences.



274 KAMAL C. JAIN - PRAPHULL CHHABRA

Definition 2.1. Convex function: A function f (x) is said to be convex over an
interval (a,b) if for every x1,x2 ∈ (a,b) and 0≤ λ ≤ 1, we have

f [λx1 +(1−λ )x2]≤ λ f (x1)+(1−λ ) f (x2) ,

and said to be strictly convex if equality does not hold only if λ 6= 0 or λ 6= 1.

Theorem 2.2. Let f : (α,β )⊂ R+→ R be a real, convex differentiable function
on (α,β ) with 0 < α ≤ 1≤ β < ∞, α 6= β .
If P,Q ∈ Γn and satisfying the assumption 0 < α < 1

2 ≤
pi+qi
2qi
≤ β < ∞∀i =

1,2,3, . . . ,n, then we have the following inequalities

0≤ BS f (α,β )−S f (P,Q)

≤ f ′ (β )− f ′ (α)

β −α

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
≤ AS f (α,β ) , (9)

where S f (P,Q) and χ2 (P,Q) are given by (1) and (6) respectively and

BS f (α,β ) =
(β −1) f (α)+(1−α) f (β )

β −α
, (10)

AS f (α,β ) =
1
4
(β −α)

[
f ′ (β )− f ′ (α)

]
. (11)

Proof. Since f is differentiable and convex, therefore we can write the follow-
ing for a,b ∈ (α,β ) by mean value theorem

f ′ (a)(b−a)≤ f (b)− f (a) . (12)

Now put a = c and b = δc+γd
δ+γ

(by assuming δ ,γ ≥ 0 with δ +γ > 0) in (12), we
get

f ′ (c)
(

δc+ γd
δ + γ

− c
)
≤ f

(
δc+ γd
δ + γ

)
− f (c) ,

i.e.,

(d− c)
γ

δ + γ
f ′ (c)≤ f

(
δc+ γd
δ + γ

)
− f (c) . (13)

In a similar manner, by putting a = d and b = δc+γd
δ+γ

in (12), we get

(c−d)
δ

δ + γ
f ′ (d)≤ f

(
δc+ γd
δ + γ

)
− f (d) . (14)

Now multiply (13) by δ and (14) by γ and add the resultant inequalities, we get

(d− c)
δγ

δ + γ

[
f ′ (c))− f ′ (d))

]
≤ (δ + γ) f

(
δc+ γd
δ + γ

)
−δ f (c)− γ f (d) ,
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which is nothing but the following

0≤ δ f (c)+ γ f (d)
δ + γ

− f
(

δc+ γd
δ + γ

)
≤ (d− c)

δγ

(δ + γ)2

[
f ′ (d))− f ′ (c)

]
, (15)

where first inequality of (15) is the definition of convex function itself.
If we choose c = α , d = β , δ = β − x, and γ = x−α in (15), we get

0≤ (β − x) f (α)+(x−α) f (β )
β −α

− f (x)≤ (β − x)(x−α)

β −α

[
f ′ (β ))− f ′ (α)

]
. (16)

Now put x = pi+qi
2qi

in inequalities (16), multiply by qi and then sum over all
i = 1,2,3, . . . ,n , we get

0≤ (β −1) f (α)+(1−α) f (β )
β −α

−
n

∑
i=1

qi f
(

pi +qi

2qi

)
≤ f ′ (β )− f ′ (α)

β −α[
(β −1)(1−α)− 1

4

n

∑
i=1

(
pi

2

qi
−1
)]

or

0≤ BS f (α,β )−S f (P,Q)≤ f ′ (β )− f ′ (α)

β −α

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
. (17)

Since it is well known that χ2 (P,Q) ≥ 0 and (β −1)(1−α) ≤ 1
4 (β −α)2 ,

therefore (17) can be written as

0≤ BS f (α,β )−S f (P,Q)≤ f ′ (β )− f ′ (α)

β −α

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
≤

1
4
(β −α)2 f ′ (β )− f ′ (α)

β −α
, i.e.,

0≤ BS f (α,β )−S f (P,Q)

≤ f ′ (β )− f ′ (α)

β −α

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
≤ AS f (α,β ) .

Hence the result is proven.

3. Application of new information inequalities

In this section, we obtain bounds of different divergences in terms of the Chi-
square divergence by using new inequalities (9).
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Proposition 3.1. Let F (P,Q) and χ2 (P,Q) be defined as in (2) and (6) respec-
tively. For P,Q ∈ Γn, we have

0≤ log I
(

1
α
,

1
β

)
−L−1 (α,β )+L0 (α,β )−F (Q,P)

≤ L−2 (α,β )

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
≤ 1

4
(β −α)2 L−2 (α,β ) . (18)

Proof. Let us consider

f (t) =− log t, t ∈ R+, f (1) = 0, f ′ (t) =−1
t

and f ′′ (t) =
1
t2 .

Since f ′′ (t)> 0∀ t > 0 and f (1) = 0, so f (t) is convex and normalized function
respectively.
Now put f (t) in (1) and (10) and put f ′ (t) in (11), we get the followings by
considering means (7) and (8).

S f (P,Q) =
n

∑
i=1

qi log
(

2qi

pi +qi

)
= F (Q,P) . (19)

BS f (α,β ) =
(β −1)(− logα)+(1−α)(− logβ )

β −α

=
logβ α − logαβ

β −α
− logβ − logα

β −α
(20)

= log I
(

1
α
,

1
β

)
−L−1 (α,β )+L0 (α,β ) .

AS f (α,β ) =
1
4
(β −α)

[
1
α
− 1

β

]
=

1
4
(β −α)2

αβ
=

1
4
(β −α)2 L−2 (α,β ) . (21)

The result (18) is obtained by using (19), (20), and (21) in (9).

By using the similar approach, we obtain the relation of other divergences
with chi-square divergence; these results are as follows (which can be proved
on the same lines).

Proposition 3.2. If we take f (t) = (t−1)2

t , then we have

0≤ (β −1)(1−α)L−2 (α,β )− 1
2

∆(P,Q)

≤ α +β

α2β 2

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
(22)

≤ 1
2
(β −α)2 L−3 (α,β ) .
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Proposition 3.3. If we take f (t) = t log t , then we have

0≤ log I (α,β )+L0 (α,β )−G(Q,P)

≤ L−1 (α,β )

[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
(23)

≤ 1
4
(β −α)2 L−1 (α,β ) .

Proposition 3.4. If we take f (t) = (t−1) log t , then we have

0≤ (β −1)(1−α)L−1 (α,β )− 1
2

JR (P,Q)≤

[L−1 (α,β )+L−2 (α,β )] (24)

·
[
(β −1)(1−α)− 1

4
χ

2 (P,Q)

]
≤ 1

4
(β −α)2 [L−1 (α,β )+L−2 (α,β )] .

4. Numerical verification of inequalities

In this section, we give two examples for calculating the divergences ∆(P,Q),
JR (P,Q), and χ2 (P,Q) and verify the inequalities (22) and (24).
Example 4.1 Let P be the binomial probability distribution with parameters
(n = 10, p = 0.5) and Q its approximated Poisson probability distribution with
parameter (λ = np = 5) for the random variable X , then we have

xi 0 1 2 3 4 5 6
pi ≈ .000976 .00976 .043 .117 .205 .246 .205
qi ≈ .00673 .033 .084 .140 .175 .175 .146

pi+qi
2qi
≈ .573 .648 .757 .918 1.086 1.203 1.202

xi 7 8 9 10
pi ≈ .117 .043 .00976 .000976
qi ≈ .104 .065 .036 .018

pi+qi
2qi
≈ 1.063 .831 .636 .527

Table 1: (n = 10, p = 0.5,q = 0.5)

By using Table 1, we get the followings.

α (= .527)≤ pi +qi

2qi
≤ β (= 1.203) . (25)

∆(P,Q) =
11

∑
i=1

(pi−qi)
2

pi +qi
≈ .0917. (26)
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JR (P,Q) =
11

∑
i=1

(pi−qi) log
(

pi +qi

2qi

)
≈ .0808. (27)

χ
2 (P,Q) =

11

∑
i=1

(pi−qi)
2

qi
≈ .1471. (28)

Put the approximated numerical values from (25) to (28) in (22) and (24) re-
spectively and verify them.
Example 4.2 Let P be the binomial probability distribution with parameters
(n = 10, p = 0.7) and Q its approximated Poisson probability distribution with
parameter (λ = np = 7) for the random variable X , then we have By using

xi 0 1 2 3 4 5 6
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200
qi ≈ .000911 .00638 .022 .052 .091 .177 .199

pi+qi
2qi
≈ .503 .510 .532 .586 .697 .788 1.002

xi 7 8 9 10
pi ≈ .266 .233 .121 .0282
qi ≈ .149 .130 .101 .0709

pi+qi
2qi
≈ 1.392 1.396 1.099 .698

Table 2: (n = 10, p = 0.7,q = 0.3)

Table 2, we get the followings.

α (= .503)≤ pi +qi

2qi
≤ β (= 1.396) . (29)

∆(P,Q) =
11

∑
i=1

(pi−qi)
2

pi +qi
≈ .1812. (30)

JR (P,Q) =
11

∑
i=1

(pi−qi) log
(

pi +qi

2qi

)
≈ .1686. (31)

χ
2 (P,Q) =

11

∑
i=1

(pi−qi)
2

qi
≈ .3298. (32)

Put the approximated numerical values from (29) to (32) in (22) and (24) re-
spectively and verify them.
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5. Conclusion and discussion

Jain and Saraswat (2012) [15] introduced and characterized the new f -diver-
gence S f (P,Q). Properties and relation of S f (P,Q) with well known Csiszars
f -divergence can be seen in the same literature. In this work, we presented new
information inequalities on convex functions for S f (P,Q). Further, bounds of
various well known divergences have been obtained in terms of the chi-square
divergence in an interval (α,β ), 0 < α ≤ 1≤ β < ∞ with α 6= β as an applica-
tion of new inequalities. These bounds have been verified numerically by taking
two discrete distributions: Binomial and Poisson.
We found in our previous article (2014) [14] that square root of some particular
divergences of Csiszars class is a metric space but C f (P,Q) is not a metric be-
cause of violation of triangle inequality, so we strongly believe that divergence
measures can be extended to other significant problems of functional analysis
and its applications and such investigations are actually in progress because this
is also an area worth being investigated.
We hope that this work will motivate the reader to consider the extensions of
divergence measures in information theory, other problems of functional anal-
ysis and fuzzy mathematics. Such types of divergences are also very useful to
find utility (2010, 1986) [3, 27] of an event, i.e., an event is how much useful
compare to other event.
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