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NONLINEAR ELLIPTIC EQUATIONS AND GAUSS MEASURE

G. DI BLASIO - F. FEO

We prove existence and regularity results for weak solutions to nonlinear
elliptic equations, whose propotype is:

�
− div (ϕ(x)|∇u| p−2∇u) + b(x)ϕ(x)|∇u| p−1 = gϕ − div( f ϕ) in �

u = 0 on �,

where p is a real number 1 < p < +∞, ϕ(x) = (2π)− n
2 exp (−|x |2/2)

is the density of Gauss measure, the function g belongs to the weighted

Zygmund space L p�
(log L)−

1
2 (ϕ,�), f belongs to the weighted Lebesgue

space L p�
(ϕ,�) and the coefficient b belongs to the weighted Zygmund

space L∞(log L)−
1
2 (ϕ,�).

1. Introduction.

In the present paper we prove existence and regularity results for
weak solutions to the following nonlinear elliptic problem

(1.1)
�
−div(a(x,u,∇u))+H(x,∇u)+G(x,u)=gϕ−div( f ϕ) in �

u = 0 on ∂�,

where ϕ(x) = (2π)−
n
2 exp

�
− |x |2

2

�
is the density of Gauss measure

γn(dx) = ϕ(x)dx , p is a real number 1 < p < +∞ and � is an
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open subset of R
n (n ≥ 2) with Gauss measure less than one. Moreover

a : � × R × R
n → R

n , H : � × R
n → R and G : � × R → R are

Carathéodory functions such that

(i) a(x, η, ξ )ξ ≥ ϕ(x)|ξ |p;

(ii) |a(x, η, ξ )| ≤ c1ϕ(x)
�
|η|p−1 + |ξ |p−1 + k1(x)

�
,

c1 > 0, k1(x) ≥ 0 and k1(x) ∈ L p
�

(ϕ,�);

(iii)
�
a(x, η, ξ ) − a(x, η, ξ )

��
ξ − ξ

�
> 0 if ξ �= ξ ;

(iv) |H(x, ξ )| ≤ ϕ(x)
�
b(x)|ξ |p−1 + k2(x)

�
,

b(x) ≥ 0, k2(x) ≥ 0, b(x) ∈ L∞(log L)−
1
2 (ϕ,�) and

k2(x) ∈ L p�
(ϕ,�);

(v) |G(x, η)| ≤ c3ϕ(x)
�
|η|p−1 + k3(x)

�
,

c3 > 0, k3(x) ≥ 0 and k3(x) ∈ L p
�

(ϕ,�);

(vi) G(x, η)η ≥ 0;

(vii) g ∈ L p
�

(log L)−
1
2 (ϕ,�) ;

(viii) | f | ∈ L p
�

(ϕ,�),

for a.e. x ∈ �, for any η ∈ R and ξ, ξ ∈ R
n .

We are interested in studying both existence and regularity of weak
solutions to the problem (1.1) belonging to the weighted Sobolev space

W
1,p
0 (ϕ,�).

We just observe that when � is bounded, problem (1.1) is uniformly
elliptic, then existence results can be found in [17], [18] and [19].

There are three main difficulties in studying problem (1.1). The first
one is due to the operator -div (a(x, u,∇u)) which is not uniformly
elliptic. The second difficulty is due to the fact that the domain � can be
unbounded and finally, the third difficulty is due to the presence of the
lower order term H(x, u) which produce a lack of coerciveness when
�b�

L∞(log L)
− 1

2 (ϕ,�)
is not sufficiently small.

Let us describe how we overcome such difficulties in studying

existence. The main step is to find some apriori estimate for W
1,p
0 (ϕ,�)-

norm of solutions to problem (1.1). These estimates are obtained by
adapting the classical techniques due to Talenti (see [32]) which is based on
the use of classical isoperimetric inequality and Schwarz symmetrization



NONLINEAR ELLIPTIC EQUATIONS AND GAUSS MEASURE 247

(see also [32], [34], [33], [1], [2], [3] and [4]). The presence of the
function ϕ(x) that appear in condition (i ) and the fact that � can be
unbounded, bring us to use the isoperimetric inequality with respect to
the Gauss measure and to use the notion of rearrangement with respect
to the Gauss measure.

In this paper we link also the summability of u with the summability
of data. When � is bounded, regularity results for solution to linear and
nonlinear degenerate equations are well known (see [30], [36], [2], [3],
[10], [9], [13], [14]). In our case, by logarithmic Sobolev imbedding

theorem, we have that if u ∈ W
1,p
0 (ϕ,�) is a solution to problem (1.1),

then u belongs to the Lorentz-Zygmund space L p(log L)
1
2 (ϕ,�) (see

section 2 for the definition); we show how the summability of u improves
by improving the summability of the data in the Lorentz-Zygmund spaces
La,q(log L)α(ϕ,�). Finally we prove a pointwise comparison result (see
section 4).

In order to obtain this results we prove a pointwise comparison
(see section 4),

(1.2) u�(x) ≤ w(x),

where w(x) is solution to the following problem:

(1.3)






−
�
ϕ|wx1|

p−2wx1

�

x1
− B(�(x1))ϕ|wx1|

p−2wx1 − k�
2ϕ = in ��

= g�ϕ − (F(�(x1))ϕ)

w = 0 on ∂��.

Here �� is the half-space {x ∈ R
n : x1 > λ}, with λ ∈ R such that

γn(�
�) = γn(�), g�(x) and k�

2(x) are the rearrangements with respect
to Gauss measure of the functions g(x) and k2(x), F(x) and B(x) are
functions built on the level sets of u and �(τ) = γ1(τ,+∞).

Comparison and regularity results for solution to linear degenerate
equations, using rearrangement with respect to Gauss measure, are proved
in [7], [20] and in [21]. Parabolic case has been studied in [15] and the
eigenvalues problem is contained in [8].

2. Notation and preliminary results.

2.1. Gauss measure and rearrangements.

Let � be an open set of R
n , we denote by γn the n-dimensional
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normalized Gauss measure on R
n defined as

γn(dx) = ϕ(x)dx = (2π)−
n
2 exp

�

−
|x |2

2

�

dx, x ∈ R
n.

Observe that (see [25])

(2.1) lim
t→0+;1−

(2π)−
1
2

exp
�
− �−1(t)2

2

�

t
�
2 log 1

t

� 1
2

= 1

holds, where �(τ) =
1

√
2π

� +∞

τ

exp
�
−

t 2

2

�
dt , τ ∈ R ∪ {−∞, +∞}.

One of the main tools to prove our results is the isoperimetric
inequality with respect to Gauss measure (see [12], [22]) which states
that among all (n − 1)−rectificable subsets E of R

n with fixed Gauss
measure, the half-spaces archive the smallest perimeter with respect to
Gauss measure, that is

P(E) =

�

∂E

ϕ(x)Hn−1(dx) ≥ P(H),

where H is the half-space such that γn(H) = γn(E) and Hn−1(x) is the
(n − 1)−dimensional Hausdorff measure.

Now we give the notion of some equimeasurable rearrangements. If
u is a measurable function, we denote by

• u∗ the usual decreasing rearrangement of u with respect to Lebesgue
measure1 , i.e.

u∗(s) = inf {t ≥ 0 : |{x ∈ � : |u| > t}| ≤ s} s ∈]0, 1];

• u⊗ the decreasing rearrangement of u with respect to Gauss measure,
i.e.

u⊗(s) = inf {t ≥ 0 : µ(t) ≤ s} s ∈]0, 1],

where µ(t) = γn({x ∈ � : |u| > t}) is the distribution function of u;

• u� the rearrangement with respect to Gauss measure of u, i.e.

u�(x) = u⊗(�(x1)) x ∈ ��,

1 We denote by |D| the n-dimentional Lebesgue measure of a subset D ⊂ R
n .
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where �� = {x = (x1, ..., xn) ∈ R
n : x1 > λ} is the half-space such

that γn(�
�) = γn(�).

For these rearrangements a Hardy-Littlewood inequality and Polya-
Szëgo principle (see [35]) hold.

Let us introduce the following notation of pseudo-rearrangement
firstly introduced in [2].

To this end let u be a measurable function in �, f ∈ L p(ϕ,�) with
1 ≤ p ≤ +∞, f ≥ 0 and �⊗ = (0, γn(�)). We will say that a function
f̃u : �⊗ → R is a Gauss pseudo-rearrangement of f with respect to u
if there exists a family E(u) = {E(s)}s∈�⊗ of measurable subsets of �

such that

γn(E(s)) = s,

s1 ≤ s2 ⇒ E(s1) ⊆ E(s2)

E(s) = {x ∈ � : |u(x)| > u⊗(s)} if ∃t ∈ R, s = µ(t)

and

(2.2) f̃u(s) =
d

ds

�

E(s)

f (x)ϕ(x) dx for a.e. s ∈ �⊗.

For general results about the properties of rearrangement and
pseudo-rearrangement we refer for instance to [16], [31] and [23].

2.2. Some inequalities.

We often will use the following Hardy inequalities with fixed
weight (see [5]):

Proposition 2.1. Let ψ be a nonnegative measurable function on (0, 1).
Suppose r > 0 and −∞ < α < +∞. If 1 ≤ q < ∞, then the inequalities

(2.3)
� 1�

0

�
t−r (1 − log t)α

t�

0

ψ(s)ds
�q dt

t

� 1
q

≤ c
� 1�

0

(t1−r (1 − log t)αψ(t))q
dt

t

� 1
q

and

(2.4)
� 1�

0

�
tr (1 − log t)α

1�

t

ψ(s)ds
�q dt

t

� 1
q

≤ c
� 1�

0

(t1+r (1 − log t)αψ(t))q
dt

t

� 1
q
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hold; while, for q = ∞ it holds that

(2.5) sup
0<t<1

�
t−r(1−log t)α(

t�

0

ψ(s)ds
��

≤ c sup
0<t<1

(t 1−r(1−log t)αψ(t))

and

(2.6) sup
0<t<1

�
t r(1− log t)α

� 1�

t

ψ(s)ds
��

≤ c sup
0<t<1

(t 1+r(1− log t)αψ(t)).

Suppose r = 0. If 1 ≤ q < ∞ and 1
q
+ α < 0 then the inequality

(2.7)
�� 1

0

�
(1−log t)α

� 1

t

ψ(s)ds
�q dt

t

� 1
q
≤c

�� 1

0

(t (1−log t)α+1ψ(t))q
dt

t

� 1
q

holds, while for q = ∞ and α < 0 it holds that

(2.8) sup
0<t<1

�
(1 − log t)α

� 1

t

ψ(s) ds
�

≤ c sup
0<t<1

(t (1 − log t)α+1ψ(t)).

In all cases, the constants c = c(r, q, α) are independent by ψ .

2.3. Lorentz-Zygmund spaces.

In this section we recall a few properties of Lorentz-Zygmund spaces.
Let u be any measurable function in � for 0 < q, p ≤ ∞ and
−∞ < α < +∞, we denote2

(2.9)

||u||L p,q (log L)α(ϕ,�) =

=






�
γn(�)�

0

[t
1
p (1 − log t)αu⊗(t)]q

dt

t

� 1
q

if 0 < q < ∞,

sup
t∈(0,γn(�))

[t
1
p (1 − log t)αu⊗(t)] if q = ∞.

A measurable function u belongs to the Lorentz-Zygmund space
L p,q(log L)α(ϕ,�) if ||u||

p
L p,q (log L)α(ϕ,�) < ∞.

2 We will use the following ’arithmetic’ convention:

s

∞
= 0, for s > 0.
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For the definition of the classical Lorentz-Zygmund space and for
more properties and details we refer to [29], [6] and [5]. For brevity the
quasinorm (2.9) will be denoted by ||u||p,q;α .

Recall also that the weighted Sobolev space W
1,p
0 (ϕ,�) is the closure

of C∞
0 (�) under the norm

�u�
W

1,p
0

(ϕ,�)
=

� �

�

|∇u(x)|p dγn(x)
� 1

p
.

Moreover if γn(�) < 1 a Poincarè type inequality holds (see [20]
and [15], where the case p = 2 has been considered).

Finally, we recall an inequality (see [21]) which will be useful in
the following.

Proposition 2.2. Let f ∈ L p,q(log L)α(ϕ,�) with 1 ≤ σ < p ≤
∞, σ ≤ q ≤ ∞ and −∞ < α < +∞ and Fσ = (�f σ )u , then
F ∈ L p,q(log L)α(�⊗) and

�F�L p,q(log L)α(�⊗) ≤ C� f �L p,q(log L)α(ϕ,�).

3. Existence result.

In this section we prove an existence result for weak solutions to
problem (1.1). First of all we recall the definition of weak solution to
problem (1.1).

Definition 3.1. We say that u ∈ W
1,p
0 (ϕ,�) is a weak solution to problem

(1.1), if

(3.1)

�

�

a(x, u,∇u)∇ψdx +

�

�

H(x,∇u)ψdx +

�

�

G(x, u)ψdx =

=

�

�

(gψϕ + f∇ψϕ)dx, ∀ψ ∈ W
1,p
0 (ϕ,�).

If γn(�) < 1, under our hypotheses it is easy to verify that all terms
in (3.1) are well defined.

Now we state our existence result that will be proved in Section 3.2.
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Theorem 3.2. Let us assume (i)-(viii), γn(�) < 1 and one of the following
conditions holds true:

(a) �b�
L∞(log L)

− 1
2 (ϕ,�)

is sufficiently small,

(b) b ∈ L∞,r(log L)−
1
2 (ϕ,�) with 2 < r < ∞.

Then there exists at least a weak solution u to problem (1.1).

3.1. Apriori estimate for a solution to problem (1.1).

In this subsection we prove some apriori estimate for solution
to problem (1.1).

Lemma 3.1. Let u be a weak solution to problem (1.1). Under the
assumptions of Theorem 3.2, then the following estimate holds true

(3.2)

�u�
W

1,p
0

(ϕ,�)
≤ C1� f �

p−1

L p�(ϕ,�)
+ C2�g�

p−1

L p�(log L)
− 1

2 (ϕ,�)

+

+ C3�k2�
p�

L p� (log L)
− 1

2 (ϕ,�)

,

where C1,C2 and C3 are constants which depend only on p, γn(�) and
�b�

L∞(log L)
− 1

2 (ϕ,�)
.

Proof. Proceeding in a standard way (see [34] and [7], [21] to) we
obtain

(3.3)

−
d

dt

�

|u|>t

|∇u|pϕ(x)dx ≤

+∞�

t

�
−

d

ds

�

|u|>s

bp(x)ϕ(x)dx
� 1

p
×

×
�

−
d

ds

�

|u|>s

|∇u|pϕ(x)dx
� 1

p�
ds+

+
�

−
d

dt

�

|u|>t

| f |p
�

ϕ(x) dx
� 1

p
�
�

−
d

dt

�

|u|>t

|∇u|pϕ(x) dx
� 1

p
+

+

�

|u|>t

k2(x)sign u ϕ(x)dx +

�

|u|>t

g(x)sign u ϕ(x) dx .

On the other hand, coarea formula (see [24]), isoperimetric inequality
with respect to the Gauss measure and Hölder inequality imply

(3.4) 1 ≤ (2π)
1
2 exp

��−1(µ(t))2

2

�
(−µ�(t))

1

p
�
�
−

d

dt

�

|u|>t

|∇u|pϕ(x) dx
� 1

p
.
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In (3.3), applying (3.4) and Hardy-Littlewood inequality by definitions
of pseudorearrangement, we have

�
−

d

dt

�

|u|>t

|∇u|pϕ(x)dx
� 1

p�
≤

≤ F(µ(t))(−µ�(t))
1

p
�
+ (2π)

1
2 exp

��−1(µ(t))2

2
t
�
(−µ�(t))

1

p
�
×

� +∞

t

B(µ(s))(−µ�(s))
1
p

�
−

d

ds

�

|u|>s

|∇u|pϕ(x)dx)
1
p� ds+

+(2π)
1
2 exp

��−1(µ(t))2

2

�
(−µ�(t))

1

p
�
� � µ(t)

0

(k◦∗
2 (s) + g⊗(s))ds

�
.

where F and B are functions such that F p�
= (�f p�

)u and B p = (�bp)u .

If (a) or (b) hold we can use a slight modification of Gronwall
lemma (see [28] for the proof of the classical one and [21] for the
precise statement) obtaining

(3.5) �
−

d

dt

�

|u|>t

|∇u|pϕ(x)dx
� 1

p�
≤ F(µ(t))(−µ�(t))

1
p� +

(2π)
1
2 exp

��−1(µ(t))2

2

�
(−µ�(t))

1

p
�

µ(t)�

0

(k⊗
2 (s) + g⊗(s))ds+

(2π)
1
2 (−µ�(t))

1
p� exp

��−1(µ(t))2

2

�+∞�

t

B(µ(τ))(−µ�(τ))×

×
�
F(µ(τ))+ (2π)

1
2 exp

��−1(µ(τ))2

2

��
µ(τ)�

0

(k⊗
2 (s) + g⊗(s))ds

��
×

× exp
�
(2π)

1
2

τ�

t

B(µ(r)) × exp
��−1(µ(r))2

2

�
(−µ� (r))dr

�
dτ,

that is
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(3.6)

�

�

|∇u|pϕ(x)dx ≤

≤ c

� � γn(�)

0

(F(t))p
�
+ (2π)

p�

2 exp
��−1(t)2

2
p�

�� � t

0

k⊗
2 (s) + g⊗(s)ds

�p�

+ (2π)
p�

2 exp

�
�−1(t)2

2
p�

�� � t

0

B(τ)
�
F(τ) + (2π)

1
2 exp

��−1(τ)2

2

�
×

� τ

0

(k⊗
2 (s) + g⊗(s))ds

�
exp

�
(2π)

1
2

� t

τ

B(r) exp
��−1(r)2

2

�
dr

�
dτ

�p�

dt

�

.

We observe that, if (a) is true, integrating by parts and using
Proposition 2.2 we have

(3.7)

� t

s

B(r)

r(1 − log r)
1
2

dr≤C�B�
L∞(log L)

− 1
2 (�⊗)

+C

� t

s

� r

0 B(τ)dτ

r2(1 − log r)
1
2

dr

≤ C�b�
L∞(log L)

− 1
2 (ϕ,�)

+ �b�
L∞(log L)

− 1
2 (ϕ,�)

log
� t

s

�
,

for some positive constant C.

If (b) hold, Hölder and Young inequalities give

(3.8)

� t

s

B(r)

r(1 − log r)
1
2

dr ≤ C(ε)

� t−s

0

� B∗(r)

(1 − log r)
1
2

�a dr

r
+ ε

� t

s

1

r
dr

≤ C(ε)�b�a
L∞,r(log L)

− 1
2 (ϕ,�)

+ ε log
� t

s

�
,

where ε can be arbitrary small and C(ε) is a suitable constant depending
on ε.

From now on c will denote a positive constant depending only on
p, γn(�) and �b�

L∞(log L)
− 1

2 (ϕ,�)
, which may vary from line to line.

Now we evaluate the right-hand side of (3.6) by using (2.1) and (3.7)
in case (a) or (3.8) in case (b):
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(3.9)

�

�

|∇u|pϕ(x)dx ≤

≤

� γn(�)

0

F p�
(t)dt+ c

� γn(�)

0

1

t p�
(1 − log t)

p�

2

� � t

0

(k⊗
2 (s)+g⊗(s))ds

�p�

+

+c

� γn(�)

0

1

t p�
(1 − log t)

p�

2

� � t

0

B(τ)F(τ)
� t

τ

�β

dτ

�p�

dt

+c

� γn(�)

0

1

t p�
(1 − log t)

p�

2

� � t

0

(2π)
1
2 B(τ)

τ(1 − log τ)
1
2

×

×

� τ

0

(k⊗
2 (s) + g⊗(s))ds

� t

τ

�β

dτ

�p�

dt ,

where β = cε if we use (3.7) and β = c�b�
L∞(log L)

− 1
2 (ϕ,�)

if we use

(3.8).

Using (2.3) for a sufficiently small β , Hardy-Littlewood inequality
and Proposition 2.2 the two last integrals in the right-hand side of (3.9)
become

� γn(�)

0

1

t p�
(1 − log t)

p�

2

�� t

0

B(τ)F(τ)
� t

τ

�β

dτ

�p�

dt

≤ c

� γn(�)

0

B∗p�
(t)F∗p�

(t)

(1 − log t)
p�

2

dt ≤ c�b�
p�

L∞(log L)
− 1

2 (ϕ,�)

� f �
p�

L p�(ϕ,�)

and

� γn(�)

0

1

t p�
(1 − log t)

p�

2

�� t

0

(2π)
1
2 B(τ)

τ(1 − log τ)
1
2

×

×

� τ

0

(k⊗
2 (s) + g⊗(s))ds

� t

τ

�β

dτ

�p�

dt ≤

≤ c

� γn(�)

0

B∗p�
(t)

t p�
(1 − log t) p�

� � t

0

(k⊗
2 (s) + g⊗(s))ds

�p�

dt

≤ c�b�
p�

L∞(log L)
− 1

2 (ϕ,�)

�
�g�

p�

L p�(log L)
− 1

2 (ϕ,�)

+ �k2�
p�

L p� (log L)
− 1

2 (ϕ,�)

�
.
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Therefore
�

�

|∇u|pϕ(x)dx≤c
�
� f �

p�

L p�(ϕ,�)
+�g�

p�

L p�(log L)
− 1

2 (ϕ,�)

+�k2�
p�

L p�(log L)
− 1

2 (ϕ,�)

�

that is (3.2). �

3.2. Proof of Theorem 3.2.

In order to prove Theorem 3.2 we firstly approximate the data
of problem (1.1) and we consider the sequence of the corresponding
approximated problems. We prove that weak solutions to such problems
exists by adapting the classical method due to Leray-Lions (see Appendix
1 below). Then we observe that the apriori estimates given by Lemma 3.1
hold true for the solutions of the approximated problems. This allows us
to pass to the limit in the approximated problem and therefore to obtain
a solution to problem (1.1).

For the sake of simplicity we give the proof with G ≡ 0 and | f | = 0
in problem (1.1) .

Denote by Th : R → R the usual truncation at level h > 0, that is

Th(s) =

� s if |s| ≤ h,
s

|s|
h if |s| > h.

Let us consider the approximated problem

(3.10)

�
−div(a(x, uh,∇uh)) + Hh(x,∇uh)ϕ = gϕ in �

uh = 0 on ∂�,

where

Hh(x, ξ ) = Th

�
H̃ (x, ξ )

�
and H̃(x, ξ ) =

H(x, ξ )

ϕ(x)
.

Moreover we observe that

|Hh(x, ξ )|ϕ(x) ≤ hϕ(x)

for a.e. x ∈ �, ∀ξ ∈ R
n .

Problem (3.10) has at least a weak solution by Theorem 6.1 (in
the Appendix 1 below). Moreover it follows from Lemma 3.1 that the

sequence (uh)h is bounded in W
1,p
0 (ϕ,�), hence there exist a function



NONLINEAR ELLIPTIC EQUATIONS AND GAUSS MEASURE 257

u ∈ W
1,p
0 (ϕ,�) and a subsequence, still denoted by (uh)h such that

(3.11)






uh � u weakly in W
1,p
0 (ϕ,�),

uh → u strongly in L p(ϕ,�),

uh → u a.e. in �.

We observe that, using (iv), (v) and estimate (3.2), the function
Hh(x,∇uh) is uniformly bounded in L 1(ϕ,�).

Using Theorem 7.1 (in the Appendix 2 below) we conclude that, for
some subsequence, still denoted by (uh)h , we have

(3.12) ∇uh → ∇u a.e. in �.

Recalling that a(x, η, ξ ) and H(x, ξ ) are Carathéodory functions,
from (3.12) and (3.11) we have

�
ã(x, uh,∇uh) → ã(x, u,∇u) a.e. in �,

Hh(x,∇uh) → H̃ (x,∇u) a.e. in �,

where

(3.13) ã(x, η, ξ ) =
a(x, η, ξ )

ϕ(x)
.

Using (ii ), (iv) and Hölder inequality for any fixed s ∈ [1, p �) and
for any γn -measurable subset E , it follows

�

E

�
�
�ã(x, uh,∇uh)

�
�
�
s

ϕdx ≤

≤ c1
� �

E

|uh |
s(p−1)ϕdx +

�

E

|∇uh|
s(p−1)ϕdx +

�

E

ks1(x)ϕdx
�

≤ c1
� �

E

|uh |
pϕ dx

� s
p�
γn(E)

1− s
p� + c1

� �

E

|∇uh|
pϕ dx

� s
p�
γn(E)

1− s
p�

+c1

�

E

ks1(x)ϕ dx

and �

E

|Hh(x,∇uh)|ϕ dx ≤

��

E

|b(x)|pϕ dx
� 1

p
� �

E

|∇uh|
pϕ dx

� 1
p�

+

�

E

k2(x)ϕ dx .
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By Vitali theorem, we can conclude that

(3.14)

�
ã(x,uh,∇uh)→ ã(x,u,∇u) strongly in L s(ϕ,�), s∈ [1, p�[,
Hh(x,∇uh) → H̃(x,∇u) strongly in L1(ϕ,�).

Using (3.14) it is possible to pass to the limit in
�

�

a(x, uh,∇uh)∇ψdx+

�

�

Hh(x,∇uh)ψϕdx =

�

�

gψϕdx ∀ψ ∈D(�)

and we obtain
�

�

a(x, u,∇u)∇ψdx +

�

�

H(x,∇u)ψdx =

�

�

gψϕdx ∀ψ ∈ D(�).

This conclude the proof. �

4. Comparison result.

In this section we compare the solution to problem (1.1) with the
solution to problem (1.3) which is defined in an half-space and has
coefficients depending on one variable. The comparison give also a
pointwise estimate of u(x) in terms of the data since the solution to
(1.3) can be explicitly written.

Theorem 4.1. Let u ∈ W
1,p
0 (ϕ,�) be solution to (1.1) with the

assumptions (i)-(viii), γn(�) < 1 and one of the following conditions
holds true:

(a) �b�
L∞(log L)

− 1
2 (ϕ,�)

is sufficiently small,

(b) b ∈ L∞,r(log L)−
1
2 (ϕ,�) with 2 < r < ∞.

Then we have

(4.1) u�(x1) ≤ w(x) f or a.e. x ∈ ��

and

(4.2)

�

�

|∇u|qϕ(x)dx ≤

�

��

|∇w|qϕ(x)dx f or all 0 < q ≤ p

where

w(x) =

� x1

λ

exp
�

−
τ 2

2

��
exp

�τ 2

2

p

p�

�
F(�(τ))+
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+ exp
�τ 2

2
p
�� +∞

τ

(g�(σ ) + k�
2(σ )) exp

� � σ

τ

B(�(r))dr −
σ 2

2

�
dσ+

+ exp
�τ 2

2
p
� � +∞

τ

F(�(σ))B(�(σ)) exp
� � σ

τ

B(�(r))dr−
σ 2

2

�
dσ

� p�

p
dτ

is the solution to the problem (1.3) and λ is such that γn(�
�) = γn(�).

Proof. Arguing as in the proof of Lemma 3.1, by (3.5) and raising

to the p�

p power, relation (3.4) can be rewrite as

(4.3) 1 ≤ (2π)
p�

2 (−µ�(t))
�
(2π)−

1
2 exp

��−1(µ(t))2

2

p

p�

�
F(µ(t))+

+ exp
��−1(µ(t))2

2
p
� � µ(t)

0

(g⊗(s)+

k⊗
2 (s))ds + exp

��−1(µ(t))2

2
p
� � ∞

t

(F(µ(τ))B(µ(τ))+

+(2π)
1
2 B(µ(τ)) exp

��−1(µ(τ))2

2

� � µ(τ)

0

(g⊗(s) + k⊗
2 (s))ds

�
(−µ�(τ))×

× exp
�
(2π)

1
2

� τ

t

B(µ(r)) exp
��−1(µ(r))2

2

�
(−µ�(r))dr

�
dτ

� p�

p
.

Integrating between 0 and t , (4.3) becomes

t ≤

� γn(�)

µ(t)

(2π)
p�

2

�
(2π)−

1
2 exp

��−1(σ )2

2

p

p�

�
F(σ )+

+ exp
��−1(σ )2

2
p
� � σ

0

(g⊗(s) + k⊗
2 (s))ds + exp

��−1(σ )2

2
p
�
×

×

� σ

0

exp
�
(2π)

1
2

� σ

r

B(τ) exp
��−1(τ)2

2

�
dτ

�
×

×
�
F(r)B(r)+(2π)

1
2 B(r) exp

��−1(r)2

2

� � r

0

(g⊗(s)+k⊗
2 (s))ds

�
dr

� p�

p
dσ.

Now putting µ(t) = s, s = �(x1) and observing that
� +∞

τ

B(�(σ)) exp
� � σ

τ

B(�(r))dr
�� +∞

σ

(g�(r)+k�
2(r)) exp

�
−
r2

2

�
dr dσ =
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= −

� +∞

τ

(g�(σ ) + k�
2(σ )) exp

�
−

σ 2

2

�
dσ+

+

� +∞

τ

(k�
2(σ ) + g�(σ )) exp

� � σ

τ

B(�(r))dr −
σ 2

2

�
dσ

we have

(4.4) u�(x) ≤

� x1

λ

exp
�

−
τ 2

2

��
exp

�τ 2

2

p

p�

�
F(�(τ)) +

+ exp
�τ 2

2
p
� � +∞

τ

F(�(σ))B(�(σ)) exp
� � σ

τ

B(�(r))dr −
σ 2

2

�
dσ+

+ exp
�τ 2

2
p
�� +∞

τ

(g�(σ )+k�
2(σ )) exp

� � σ

τ

B(�(r))dr−
σ 2

2

�
dσ

� p�

p
dτ,

where λ is such that γn(�
�) = γn(�) and �� = {x = (x1, ..., xn) ∈ R

n :
x1 > λ}. To complete the proof we observe that the right-hand side of
(4.4) is the solution to problem (1.3).

Let us prove now (4.2). Using Hölder inequality and (3.5) we have

−
d

dt

�

|u|>t

|∇u|qϕ(x)dx ≤ (−µ�(t))1−
q
p

�
−

d

dt

�

|u|>t

|∇u|pϕ(x)dx
� q

p
≤

≤ (−µ�(t))
�
F(µ(t)) + (2π)

1
2 exp

��−1(µ(t))2

2

�
×

×

� µ(t)

0

(g⊗ + k⊗
2 )ds + (2π)

1
2 exp

��−1(µ(t))2

2

�
×

×

∞�

t

�
F(µ(τ)) + (2π)

1
2 exp

��−1(µ(τ))2

2

�
µ(τ)�

0

(g⊗ + k⊗
2 )ds

�
×

×B(µ(τ))(−µ�(τ))×

× exp
�
(2π)

1
2

τ�

t

B(µ(r)) exp
��−1(µ(r))2

2

�
(−µ�(r))dr

�
dτ

� q
p−1

.

Integrating between 0 and +∞ the last inequality becomes

�

�

|∇u|qϕ(x)dx ≤

γn(�)�

0

�
F(s) + (2π)

1
2 exp

��−1(s)2

2

�
×
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×
� � s

0

(g⊗(τ) + k⊗
2 (τ))dτ

�
+ (2π)

1
2 exp

��−1(s)2

2

�
×

×

� s

0

�
F(τ) + (2π)

1
2 exp

��−1(τ)2

2

� � τ

0

(g⊗(σ ) + k⊗
2 (σ ))dσ

�
×

×B(τ) exp
�
(2π)

1
2

� s

τ

B(σ ) exp
��−1(σ )2

2

�
dσ

�
dτ

� q
p−1

ds,

that is (4.2). �

5. Regularity results.

In this section we give an estimates of a solution u to the problem
in suitable Lorentz-Zygmund spaces, which are obtained evaluating the
norm of the function w defined by (1.2). The estimate give the link
between the summability of the data f and g and the summability of u.

We will consider separately cases | f | ≡ 0 and g ≡ 0.

Theorem 5.1. Under the assumptions of Theorem 4.1 when | f | ≡ 0 the
following results hold:

(1) if g ∈ L
a

p−1
,

q
p−1 (log L)α(p−1)−

p
2 (ϕ,�) then u ∈ La,q(log L)α(ϕ,�),

where






a = p,

1 ≤ q ≤ p,

α(p − 1) − p
2
+ 1

2
≥ 0,

or






a = p,

p < q ≤ ∞,

α(p − 1) − p
2
+ p−1

q
> 1

2
− 1

p
,

or

p < a < ∞, 1 ≤ q ≤ ∞ and − ∞ < α < +∞.

Moreover

(5.1) �u�La,q(log L)α(ϕ,�) ≤ C1 �g�
1

p−1

L
a

p−1
,

q
p−1 (log L)

α(p−1)−
p
2 (ϕ,�)

+ C2

holds;

(2) if g ∈ L
∞,

q
p−1 (log L)α(p−1)+

p
2 −1(ϕ,�) then u ∈ L∞,q(log L)α(ϕ,�),
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where





1 ≤ q < ∞,

α < − 1
q
,

p−1
q

+ α(p − 1) < − p
2
+ 1,

or






q = ∞,

α < 0,

α(p − 1) < − p
2
+ 1,

and

(5.2) �u�L∞,q(log L)α(ϕ,�) ≤ C3 �g�
1

p−1

L
∞,

q
p−1 (log L)

α(p−1)+
p
2

−1
(ϕ,�)

+ C4.

The constants C1, C2, C3 and C4 depend on p, a, q, α, γn (�),

�b�
L∞(log L)

− 1
2 (ϕ,�)

and �k2�L p�(ϕ,�).

Proof. Let w ∈ W
1,p
0 (ϕ,��) be a weak solution to the problem (1.3)

with F ≡ 0. Using (2.1) and (3.7) in the case (a) or (3.8) in the case
(b), it follows that

(5.3) w⊗(t)≤c

γn(�)�

t

1

σ p
�
(1 − logσ)

p�

2

� � σ

0

�σ

s

�β

(g⊗(s)+k⊗
2 (s))ds

� p
�

p
dσ,

where β = c�b�
L∞(log L)

− 1
2 (ϕ,�)

if we use (3.7) and β = cε if we use

(3.8) and c is a positive constant which depends only by p, γn(�) and
�b�

L∞(log L)
− 1

2 (ϕ,�)
and which may vary from line to line.

We prove (5.1) when 1 ≤ q < ∞. By definition (2.9), (5.3), inequality
(2.4) and (2.3) for a sufficiently small β we have

(5.4) ||w||
q
a,q;α ≤ C1�g�

1
p−1
a

p−1
,

q
p−1

,α(p−1)−
p
2

+ C2.

Therefore, (4.1) and (5.4) give (5.1).

When q = ∞, the inequality (5.1) follows by analogous arguments
as before with (2.4) replaced by (2.6) and (2.3) replaced by (2.5).

If 1 ≤ q < ∞ inequality (5.2) follows by the above arguments using
(2.7), when α < − 1

q
, and (2.3).

When q = ∞ we can use (2.8) with α < 0 and (2.5). �

Theorem 5.2. Under the assumptions of Theorem 4.1 when g ≡ 0 the
following results hold:
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(1) if | f | ∈ L
a

p−1
,

q
p−1 (log L)(p−1)(α− 1

2
)(ϕ,�) then u ∈ La,q(log L)α(ϕ,�),

where

p < a < ∞, p ≤ q ≤ ∞ and − ∞ < α < +∞;

and

(5.5) �u�La,q(log L)α(ϕ,�) ≤ C1 � f �
1

p−1

L
a

p−1
,

q
p−1 (log L)

(p−1)(α− 1
2

)
(ϕ,�)

+ C2

holds;

(2) if | f | ∈ L
∞,

q
p−1 (log L)(p−1)(α+ 1

2
)(ϕ,�) then u ∈ L∞,q(log L)α(ϕ,�),

where





p ≤ q < ∞,

α < − 1
q
,

(p − 1)(α + 1
2
+ 1

q
) < 0,

or






q = ∞,

α < 0,

(p − 1)(α + 1
2) ≤ 0;

and

(5.6) �u�L∞,q(log L)α(ϕ,�) ≤ C3 � f �
1

p−1

L
∞,

q
p−1 (log L)

(p−1)(α+ 1
2

)
(ϕ,�)

+ C4.

The constants C1, C2, C3 and C4 depends on p, a, q, α, γn (�),

�b�
L∞(log L)

− 1
2 (ϕ,�)

and �k2�L p�(ϕ,�) .

Proof. We first recall that the solution to the problem (1.1) with g = 0
is

(5.7) w⊗(t) = (2π)
p�

2

� γn(�)

t

�
(2π)−

1
2 exp

��−1(σ )2

2

p

p�

�
F(σ ) +

+ exp
��−1(σ )2

2
p
� � σ

0

exp
�
(2π)

1
2

� σ

r

B(τ) exp
��−1(τ)2

2

�
dτ

�
B(r)F(r)dr+

+exp
��−1(σ )2

2
p
�� σ

0

exp
�
(2π)

1
2

� σ

r

B(τ) exp
��−1(τ)2

2

�
dτ

�
k⊗
2 (r)dr

� p�

p
dσ.

We will denote by c a positive constant which depends only by p,
γn(�) and �b�

L∞(log L)
− 1

2 (ϕ,�)
and which may vary from line to line.
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Applying (2.1) and (3.7) in case (a), or (3.8) in case (b), it follows
that

w⊗(t) ≤ c(w1(t) + w2(t) + w3(t))

with

w1(t) =

� γn(�)

t

1

σ(1 − logσ)
1
2

(F(σ ))
p�

p dσ,

w2(t) =

� γn(�)

t

1

σ p�
(1 − logσ)

p�

2

� � σ

0

�σ

r

�β

B(r)F(r)dr
� p�

p
dσ

and

w3(t) =

� γn(�)

t

1

σ p�
(1 − logσ)

p�

2

� � σ

0

�σ

r

�β
k⊗
2 (r)dr

� p�

p
dσ,

where β = c�b� if we use (3.7) and β = cε if we use (3.8).

We first prove (5.5) when p ≤ q < ∞. The argument used in the
proof of Theorem 5.1 shows that

(5.8) �w3�a,q;α ≤ c�k2�
1

p−1

L p�(ϕ,�)
,

and

(5.9) �w2�
q
a,q;α ≤ c�b�

q
p−1

L∞(log L)
− 1

2 (ϕ,�)

� f �
q

p−1

L
a

p−1
,

q
p−1 (log L)

(p−1)(α− 1
2

)
(ϕ,�)

.

Let us observe that integrating by parts, using Hardy-Littlewood
inequality and Proposition 2.2 we get:

(5.10) w1(t) ≤ c

|| f ||
p−1

L
1

p−1 (ϕ,�)

γn(�)(1 − log γn(�))
1
2

+c

� γn(�)

t

� σ

0 (F∗(s))
1

p−1 ds

σ 2(1 − logσ)
1
2

dσ

By (5.10), using (2.4), (2.3) and Proposition 2.2, we have
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(5.11) �w1�a,q;α ≤ c|| f ||
1

p−1

L
1

p−1 (ϕ,�)

� � γn(�)

0

t
q
a (1 − log t)αq dt

t

� 1
q
+

+c

� � γn(�)

0

t
q
a (1 − log t)αq

� � γn(�)

t

� σ

0 (F∗(s))
1

p−1 ds

σ 2(1 − logσ)
1
2

dσ
�q dt

t

� 1
q

≤ c|| f ||
1

p−1

L
a

p−1
,

q
p−1 (log L)

(p−1)(α− 1
2

)
(ϕ,�)

+

+c

� γn(�)�

0

t
q
a −q(1 − log t)αq−

q
2

� t�

0

(F∗(σ ))
1

p−1 dσ
�q dt

t

� 1
q

≤ c� f �
1

p−1

L
a

p−1
,

q
p−1 (log L)

(p−1)(α− 1
2

)
(ϕ,�)

.

By (4.1), the assert follows from (5.11), (5.9) and (5.8).

Estimate (5.5) when q = ∞ can be handled in the same way, we
have just to replace (2.4) with (2.6) and (2.3) with (2.5) under the same
conditions.

Estimate (5.6) can be obtained with similar arguments. �

Remark 5.3. Arguing as in Theorem 5.1 and Theorem 5.2 analogous
regularity result can be obtain for problem (1.1).

Remark 5.4. In the proof of Lemma 3.1 if we replace (iv) with the
assumption

(iv)’ |H(x, ξ )| ≤ (b(x)|ξ |σ + k2(x))ϕ(x)

a.e. x ∈ �, ∀ξ ∈ Rn, σ ∈ [0, p−1[, b(x) ∈ L∞(log L)−
1
2 (ϕ,�)

and k2(x) ∈ L p
�

(ϕ,�),

we can show an estimate like (3.2) without smallness hypotheses on

�b�
L∞(log L)

− 1
2 (ϕ,�)

or b ∈ L∞,r(log L)−
1
2 (ϕ,�) with 2 < r < ∞, i.e.

(5.12)

�u�
W

1,p
0

(ϕ,�)
≤ C1� f �

p−1

L p�(ϕ,�)
+ C2�g�

p−1

L p�(log L)
− 1

2 (ϕ,�)

+

+ C3�k2�
p�

L p�(log L)
− 1

2 (ϕ,�)

+ C4,

where C1,C2,C3 and C4 are nonnegative constants which depend only
on p, γn(�), �b�

L∞(log L)
− 1

2 (ϕ,�)
.
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In this case by (5.12) existence result can be proved with a slight
modifications of the proof of Theorem 3.2 and comparison and regularity
results can be obtained observing that

|∇u|σ ≤ (|∇u|p−1 + 1).

Remark 5.5. In the framework of this paper under assumptions (i)-(i i i)
and (v)-(vi i i) we can prove existence, comparison and regularity results
for the following problem

(5.13)

�
−div(a(x, u,∇u)) − div(K (x, u)) + G(x, u) =

= gϕ − div( f ϕ) in �

u = 0 on ∂�,

where K : � × R → Rn is a Carathéodory function such that

(i x) |K (x, η)| ≤ (d(x)|η|p−1 + k4(x))ϕ(x)

a.e. x ∈ �, ∀η ∈ R, d(x), k4(x) ≥ 0, d(x) ∈ L∞(log L)−
1
2 (ϕ,�) and

k4(x) ∈ L p
�

(ϕ,�).

6. Appendix 1: Existence result for coercive equations.

In this Appendix we enunciate an existence result for nonlinear
coercive elliptic equations that can be proved by adapting the classical
methods due to Leray-Lions (see [26]).

Let us consider the problem

(6.1)
�
−div(a(x,u,∇u))+H(x,∇u)+G(x,u)=gϕ−div( f ϕ) in �

u=0 on ∂�,

where a : � × R × R
n → R

n , and G : � × R → R are Carathéodory
functions which satisfy the assumptions (i )-(iii ) and (v)-(vi ) respectively.
Moreover we assume that H : � × R

n → R is a Carathéodory function
which satisfy (instead of the more general assumption (iv))

(iv)” |H(x, ξ )| ≤ ϕ(x)(c1|ξ |p−1 + k2(x)),

c1 ≥ 0, k2(x) ≥ 0, k2(x) ∈ L p
�

(ϕ,�), a.e. x ∈ �, ∀ξ ∈ R
n .

Finally we assume that f satisfy the assumption (vi i ) while g
satisfy (vi i i ).
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Observe that there exists Lu ∈ W−1,p�
(ϕ,�) such that

�Lu, w� =

�

�

a(x, u,∇u)∇wdx

+

�

�

H(x,∇u)wdx +

�

�

G(x, u)wdx, ∀w ∈ W
1,p
0 (ϕ,�)

and

(6.2) Lu = −div a(x, u,∇u) + H(x,∇u) + G(x, u), ∀u ∈ D(�).

Theorem 6.1. Let us assume (i )-(iii ), (iv)” and (v). Let L be defined
by (6.2) and

< Lv, v >

�v�
W

1,p
0

(ϕ,�)

→ ∞, i f �v�
W

1,p
0

(ϕ,�)
→ ∞.

Then for every T ∈ W−1,p�
(ϕ,�)3 it exists u ∈ W

1,p
0 (ϕ,�) such

that

Lu = T .

Proof. By the classical theory on pseudomonotone and coercive
operator, it is sufficient to prove that the operator L is bounded and
there exists an operator

L : W
1,p
0 (ϕ,�) × W

1,p
0 (ϕ,�) → W−1,p�

(ϕ,�)

such that

(1) Lu = L(u, u);

(2) the map v → L(u, v) ∀u ∈ W
1,p
0 (ϕ,�) is bounded, hemiconti-

nous4 and

(6.3) < L(u, u) − L(u, v), u − v >≥ 0;

(3) the map u → L(u, v) ∀v ∈ W
1,p
0 (ϕ,�) is bounded and

hemicontinous;

3 We denote by W−1,p�
(ϕ,�) the dual space of W

1,p
0 (ϕ,�).

4 The application T : v ∈ W
1,p
0 (ϕ,�) → Tv ∈ W−1,p�

(ϕ,�) is hemicontinuous if the
map

λ ∈ R →�T (v1 + λv2),w� ∈ R

is continuous for any v1, v2 and w ∈ W
1,p
0 (ϕ,�).
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(4) if uk � u in W
1,p
0 (ϕ,�) and < L(uk, uk)−L(uk, u), uk−u >→

0, then for every v ∈ W
1,p
0 (ϕ,�)

L(uk, v) � L(u, v) in W−1,p�
(ϕ,�);

(5) if uk � u in W
1,p
0 (ϕ,�) and L(uk, v) → � in W−1,p�

(ϕ,�)

then

< L(uk, v), uk >→< �, u > .

We adopt the notation of Section 3.2 and, for sake of simplicity, we
denote

a(u, v, w) =

�

�

a(x, u,∇v)∇w dx,

H (u, w) =

�

�

H(x,∇u)w dx,

G(u, w) =

�

�

G(x, u)w dx,

for any u, v,w ∈ W
1,p
0 (ϕ,�).

The map w → a(u, v, w)+H (u, w)+G(u, w) ∀u, v ∈ W
1,p
0 (ϕ,�) is

linear and bounded, therefore there exists L : W
1,p
0 (ϕ,�)×W

1,p
0 (ϕ,�) →

W−1,p�
(ϕ,�) such that

�L(u, v), w� = a(u, v, w) + H (u, w) + G(u, w),

for any u, v,w ∈ W
1,p
0 (ϕ,�).

We begin by proving (2). Using (iii ), it follows immediately (6.3).
By continuity of the function a(x, η, ξ ) in the variable ξ , we obtain

ã(x, u,∇(v1 + λv2)) → ã(x, u,∇v1) in L p�
(ϕ,�)−weakly.

Therefore

a(u, v1 + λv2, w) → a(u, v1, w) if λ → 0 ∀u, v1, v2, w ∈ W
1,p
0 (ϕ,�).

Similarly it follows (3). Indeed by continuity of the functions
a(x, η, ξ ) and G(x, η) in the variable η and of the function H(x, ξ )

in the variable ξ, we obtain

ã(x, u1 + λu2,∇v) → ã(x, u1,∇v) in L p�
(ϕ,�)−weakly,

H̃(x,∇u1 + λ∇u2) → H̃ (x,∇u1) in L p�
(ϕ,�)−weakly,

G̃(x, u1 + λu2) →
∼

G (x, u1) in L p�
(ϕ,�)−weakly.
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Therefore if λ → 0 it follows that

a(u1 + λu2, v, w) + H(∇u1 + λ∇u2, w) + G(u1 + λu2, w) →

a(u1, v,w) + H (∇u1, w) + G(u1, w),

for any u1, u2, v,w ∈ W
1,p
0 (ϕ,�).

Now to prove (4), let us suppose that uk � u in W
1,p
0 (ϕ,�) and

< L(uk, uk) − L(uk, u), uk − u >→ 0.

It follows that

(6.4)






uk → u a.e. in �

∃ρ ∈ L p(ϕ,�) : |uk(x)| ≤ ρ(x) ∀k ∈ N a.e. in �

�uk�W1,p
0

(ϕ,�)
≤ L , for some L > 0.

Moreover using Lemma 2.2, Chapter 2 of [26] with the obviously
modification we have

(6.5) ∇uk(x) → ∇u(x) a.e. in �.

Therefore by continuity of the functions a(x, η, ξ ) and G(x, η) in
the variable η and the function H(x, ξ ) in the variable ξ , by (6.5) and
(6.4), we get

(6.6) ã(x, uk,∇v) →
∼
a (x, u,∇v) a.e. in �,

(6.7)
∼

H (x,∇uk) →
∼

H (x,∇u) a.e. in �,

(6.8)
∼

G (x, uk) →
∼

G (x, u) a.e. in �.

Furthermore by (ii ), (iv)”, (v) and (6.4) the functions ã(x, u k,∇v),

H̃ (x,∇uk) and G̃(x, uk) belongs to L p�
(ϕ,�). Thus by (6.6), (5.7) and

(6.8) we get (see Lemma 1.3 of [26])

ã(x, uk,∇v) →
∼
a (x, u,∇v) in L p�

(ϕ,�)−weakly,

H̃(x,∇uk) →
∼

H (x,∇u) in L p�
(ϕ,�)−weakly,

G̃(x, uk) → G̃(x, u) in L p�
(ϕ,�)−weakly,

therefore

a(uk, v, w) → a(u, v, w), ∀w ∈ W
1,p
0 (ϕ,�)
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H(uk, w) → H (u, w), ∀w ∈ W
1,p
0 (ϕ,�)

G(uk, w) → G(u, w), ∀w ∈ W
1,p
0 (ϕ,�)

that is

L(uk, v) � L(u, v) in W−1,p�
(ϕ,�).

Finally to prove (5) let us suppose that uk � u in W
1,p
0 (ϕ,�) and

L(uk, v) → � in W−1,p�
(ϕ,�). Using (ii ) and (6.4), we obtain

�
�ã(x, uk,∇v)

�
� ≤ c

�
|uk |

p−1 + |∇v|p−1 + |k1|
�
≤

≤ c
�
|ρ|p−1 + |∇v|p−1 + |k1|

�
= z(x),

with z ∈ L p�
(ϕ,�). By dominate convergence theorem we have

ã(x, uk,∇v) →
∼
a (x, u,∇v) in L p�

(ϕ,�),

hence

(6.9) a(uk, v, uk) → a(u, v, u).

Using (iv)”, (v) and (6.4) we get
�
�
�H (uk, uk − u) + G(uk, uk − u)

�
�
� ≤ c�uk − u�L p(ϕ,�),

and therefore

(6.10) H (uk, uk − u) + G(uk, uk − u) → 0.

Moreover

H(uk, u) + G(uk, u) =< L(uk, v), u > −a(uk, v, u) →

(6.11) < �, u > −a(u, v, u).

From (6.10) and (6.11) we deduce that

(6.12) H(uk, uk) + G(uk, uk) →< �, u > −a(u, v, u).

By (6.9) and (6.12) it follows that

< L(uk, v), uk >= a(uk, v, uk) − H (uk, uk) + G(uk, uk) →< �, u > .

This complete the proof. �
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7. Appendix 2: An extension of Theorem 2.1 of [11].

The following theorem is an extension of Theorem 2.1 of [11]:

Theorem 7.1. Assume that the hypothesis (i)-(iii) hold. Let
( fh)h ⊂ L p�

(ϕ,�), (gh)h ⊂ L1(ϕ,�) and let uh be a weak solution
to equations

�
−div(a(x, uh,∇uh)) = ghϕ−div( fhϕ) in �

u = 0 on ∂�

such that

(7.1) uh �u weakly in W
1,p
0 (ϕ,�), strongly in L p(ϕ,�) and a.e. in �,

(7.2) fh → f strongly in
�
L p�

(ϕ,�)
�n

,

and

(7.3) �gh�L1(ϕ,�) ≤ M,

where M is a constant which does not depend on h.

Then

∇uh → ∇u a.e. in �.

Proof. Using vh = T�(uh − u) ∈ W
1,p
0 (ϕ,�) as test function, we

obtain
(7.4) �

�

[a(x, uh,∇uh) − a(x, uh,∇u)]∇T�(uh − u) dx =

= −

�

�

a(x, uh,∇u)∇T�(uh − u) dx +

�

�

fh ∇T�(uh − u)ϕdx

+

�

�

ghT�(uh − u)ϕdx .

By (7.1), it follows that

T�uh � T�u weakly in W
1,p
0 (ϕ,�),

which implies that for � fixed, the first two term of the right-hand side
of (7.4) tend to 0 when h tends to infinity. On the other hand by (7.3)

�
�
�

�

�

ghT�(uh − u)ϕdx
�
�
� ≤ Mρ.

This proves that, for � fixed,

(7.5) lim sup
h→∞

�

�

[a(x, uh,∇uh) − a(x, uh,∇u)]∇T�(uh − u) dx ≤ Mρ.
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Now using (3.13) we put

zh(x) =
�
ã(x, uh,∇uh) − ã(x, uh,∇u)

�
(∇uh − ∇u).

It is easy to adapt the arguments contained in [11] in order to show
that zh(x)

θ → 0 strongly in L1(ϕ,�) with 0 < θ < 1, then there exists
a subsequence, still denoted by (zh)h , such that

(7.6) zh(x) → 0 ∀x ∈ � − �0 with γn(�0) = 0.

The claim now follows by a slight modification of Lemma 2.2,
Chapter 2-[26]. �
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